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Abstract: The air-hole assisted few-mode fiber (AH-FMF) enables modal intensity balance and offers
a profound prospect in gain equalization with the combination of adaptive ion doping. In this paper,
we proposed an AH-FM-EDF with a multi-layered erbium doping profile. In AH-FM-EDF, due to
the central air hole, only the first radial order modes (LP01, LP11, LP21, and LP31) are supported,
and all the modes are confined in the same high refractive index core region. The differential modal
gain (DMG) is highly reduced by optimizing the erbium doping proportion in each layer. Compared
with uniform doping, the DMG is reduced from 4 dB to 0.14 dB as triple-layer doping is deployed.
Additionally, the proposed erbium-doped fiber performs well in gain flattening and fabrication
tolerance over the whole C-band.

Keywords: mode division multiplexing (MDM); air-hole assisted; few-mode erbium-doped fiber
amplifier (FM-EDFA); gain equalization

1. Introduction

Mode-division multiplexing (MDM) transmission over few-mode fibers (FMF) is a
promising candidate to overcome the capacity limitation of single-mode fibers (SMF) [1–4].
It utilizes multiple modes on a single core at the same time, contributing to an efficient
capacity expansion. The few-mode erbium-doped fiber amplifiers (FM-EDFAs) are required
for long-haul transmission signal amplification [5–7]. Due to the different modal loss and
mode field distribution, a large differential modal gain (DMG) is probably aroused after
amplification. The power discrepancy between signals hinders the stability of the MDM
system and the bit error rate may be unacceptable after long-haul transmission or multi-
stage amplification. Therefore, researchers try to obtain the gain equalization in FM-EDFA
by refractive index (RI) [8–10] or doping profile design [8,11–13] of the FM-EDF as well as
the pump optimization [1,14–16].

In the FM-EDFAs, a large DMG may arise due to the obvious different modal profile
between the convergent Gaussian-like LP01 and divergent LPmn (m ≥ 0, n > 1) modes in the
step-index FM-EDF. In this case, FM-EDFs were designed to balance the modal patterns
by introducing a dip in the fiber center [17]. Yung first demonstrated an FM-EDFA by
using an FM-EDF with a tailored central dip [18], where the DMG is lowered by 2 dB more
than the traditional step-index fiber. With the depending dip, the ring-core fiber (RCFs)
is formed when the RI of the central region is equal to the clad. In RCF, a high- RI ring
core is sandwiched between the two low- RI regions. RCF has been proved to have much
potential in gain equalization. In 2015, a 2-LP ring-core FM-EDF is fabricated and a small
DMG (~1 dB) is realized [19]. With the aim of increasing the supporting mode number,
a trench-assisted five-mode ring-core erbium-doped fiber amplifier was proposed with a
DMG of ~1 dB, while the gain is only 10 dB [20]. However, the RCF may not be satisfactory
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in mode modification due to its poor fabrication tolerance. Usually, in RCF, both the model
number and sequence are sensitive to the thickness of the central dip and the RI difference
between the core and cladding.

The air-hole-assisted few-mode fiber (AH-FMF) has a higher RI depression in the central
than the RCF, thus enabling a stronger capability in modal intensity modification [21–24].
In the air-hole-assisted few-mode fiber, the high-refractive-index annular core (HRI-AC)
is sandwiched between the air hole and the cladding. Due to the weak light confinement
ability of the air hole, all the modes tend to be confined in the high-refractive-index annular
core. It benefits for balancing the value of the overlap integral factors between different
signal and pump mode groups, contributing to a low DMG. For instance, in a traditional
step-index FMF (SI-FMF), the LP01 mode distributes as a convergence Gaussian shape and
its modal gain is much higher than other divergence high-order modes [8,16]. While in the
air-hole-assisted few-mode fiber, the LP01 mode is restricted into the annual core region and
the modal intensity is similar to other high-order modes. This contributes to the semblable
overlap integral factors and benefits the FM-EDFA for gain equalization. In addition, the
central air hole changes the mode cutoff condition. With the introduction of the central
air hole, the fiber only supports single-radial-order modes (i.e., LPm1 modes where m is
an integer), enlarging the effective RI between modes, which significantly reduces the
modal crosstalk and coupling. In the terms of modal amplification, all of the guided modes
possess similar modal intensities. On that basis of appropriate pump selection and an
adaptive erbium-doping profile, the air-hole-assisted few-mode fiber is bound to provide
an excellent ability in gain equalization.

In 2015, Kang et al. proposed an air-core erbium-doped fiber (AC-EDF). It theoretically
analyzed the fiber performance under core pumping and cladding pumping conditions [15].
The relationship between DMG and pump mode selection was investigated. It is verified
that the cladding pumping is independent to the pump mode selection and it is promising in
constructing a stable all-fiber scheme. Compared with the uniform ion doping, the DMG is
reduced to lower than 2 dB with a multi-layered ion profile under cladding pumping. Then,
Jung et al. proposed a cladding-pumped air-hole-assisted erbium-doped fiber amplifier
(AH-EDFA), which further verified the influence of cladding pumping on the amplifier [25].
In the analysis, a 4 m length of air-hole-assisted erbium-doped fiber (AH-EDF) and the
976 nm multimode pump was selected. A peak gain of 15.7 dB is obtained at 1565 nm, and
in the wavelength range of 1555 nm to 1590 nm, the gain remains higher than 10 dB. It only
focuses on the specific output signal power, while the DMG is not further discussed.

From the former research, it can be found that when the central air hole is introduced to
the core, the high RI difference between the air hole and silica core can effectively adjust the
mode field distribution and restrict them into the ring-shaped core. It can initially reduce
the differences between mode field distribution, thereby achieving similar gains and low
DMG combined with the doping design. In this paper, we proposed an air-hole-assisted
few-mode erbium-doped fiber (AH-FM-EDF). The mode field distribution of different
guided modes, especially the gaussian distribution LP01 mode, can be adjusted and is
beneficial to gain equalization. With multi-layer erbium-ion doping in the ring-shaped core
based on the particle swarm optimization (PSO) algorithm, the gain of ~20 dB is obtained
and the DMG is reduced from 4 dB (uniform doping) to 0.14 dB (triple-layer doping). It
performs well in gain-flattening and fabrication tolerance over the whole C-band.

2. Theory and Model

The amplification of the FM-EDFA is based on a quasi-three-level erbium-ion sys-
tem [26] and two groups of differential equations are used in the simulation: rate and
propagation equations [8]. N0 is the dopant density of the erbium-doped fiber (EDF),
and τ is the spontaneous emission lifetime of the erbium ions. As the erbium ions in the
excited state is negligible, the erbium-ion system under 980 nm pump can be regarded as a
two-level system. The populations in upper and lower energy levels at the position (r, ϕ, z)
are N1(r, ϕ, z) and N2(r, ϕ, z), given by
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N1(r, ϕ, z) =

[
1
τ + 1

hvs

ms
∑

i=1
[PASE,i(z) + Ps,i(z)]σesΓs,i(r, ϕ)

]
N0(r, ϕ)[

1
hvs

ms
∑

i=1
[PASE,i(z) + Ps,i(z)](σes + σas)Γs,i(r, ϕ) + 1

τ + 1
hvp

mp

∑
j=1

Pp,j(z)σapΓp,j(r, ϕ)

] , (1)

N2(r, ϕ, z) = N0(r, ϕ, z)− N1(r, ϕ, z), (2)

where Γs,i(r, ϕ) and Γp,j(r, ϕ) are the normalized intensity patterns of the i-th signal mode
and j-th pump mode of the active fiber, h is Planck constant, σas and σap are the absorption
cross-section areas at signal and pump wavelengths, σes and σep are the emission cross-
section areas, ms/mp and vs/vp are the total number of guided modes and optical frequency
at λs and λp, respectively.

The power in signal mode i (Ps,i), the amplified spontaneous emission (ASE) power in
signal mode i (PASE,i), and pump power in mode j (Pp,j) evolve as below, where ∆v is the
equivalent amplifying bandwidth and a stands for the radius of uniform doping region.

dPs,i

dz
= Ps,i

2π∫
0

a∫
0

Γs,i(r, ϕ)[N2(r, ϕ, z)σes − N1(r, ϕ, z)σas]rdrdϕ, (3)

dPASE,i

dz
= PASE,i

2π∫
0

a∫
0

{Γs,i(r, ϕ) [N2(r, ϕ, z)σes − N1(r, ϕ, z)σas] + 2σeshvs∆vN2(r, ϕ, z)Γs,i(r, ϕ)

rdrdϕ, (4)

dPp,j

dz
= −Pp,j

2π∫
0

a∫
0

Γp.j(r, ϕ)N1(r, ϕ, z)σaprdrdϕ, (5)

The gain of the signal and the DMG of the amplifier is defined as

Gain(dB) = 10 log10
Ps,i(z = l)
Ps,i(z = 0)

, (6)

DMG(dB) = max(Gain)−min(Gain). (7)

From the former equations, the modal gain of different modes in an FM-EDFA is
affected by Γs,i(r, ϕ), Γp,j(r, ϕ) and n0(r, ϕ), which can be expressed by the overlap integral,
where n0(r, ϕ) is the doping concentration of erbium-ion in the core.

η
p,j
s,i =

2π∫
0

a∫
0

Γs,i(r, ϕ)Γp,j(r, ϕ)n0(r, ϕ)rdrdϕ, (8)

Due to the pump mode selection independence, we analyze the characteristics of FM-
EDFA under cladding pumping condition. Thus, Γp,j(r, ϕ) is a constant, and the overlap
integral factors are only determined by the normalized intensity of the signal modes and
the doping profile.

The normalized intensity of different guided modes can be adjusted according to the
introduction of the central air hole in the AH-FM-EDF. However, since the differences still
exist only considering the RI, multi-layer doping designs are taken into account to further
balance the overlap integral factors, which have different concentrations in different regions.
The design of the erbium-ion doping profile is usually non-coincident with the fiber RI
profile, as it can further eliminate the gain differences. The combination of the refractive
index and doping profile design can effectively reduce the DMG between different guided
modes and is conducive to the gain equalization of the FM-EDFA.

Several intelligent methods have been proposed for the EDF design in both the refrac-
tive index and doping profile, including the genetic algorithm (GA) [27,28], particle swarm
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optimization (PSO) [29] and gradient descent optimization (GDO) [30]. In this paper, the
erbium-ion doping profile of the proposed AH-FM-EDF is optimized under PSO, and the
optimal doping radius and the concentrations were obtained under double- and triple layer
doping design, which can balance the overlap integral factors of different pump-signal
mode groups and is beneficial to the gain equalization.

The proposed AH-FM-EDF is composed of a central air hole, an HRI-AC, and cladding,
which is illustrated in Figure 1a. With the central air hole, the modal intensity profile is
different from the traditional step-index fiber, as shown in Figure 1b, where aair = 2 µm,
aco = 9 µm, nco = 1.452, and ncl = 1.444. The central intensity of the LP01 mode is strongly
depressed. All the modes are confined in the HRI-AC and similar normalized intensities
can be obtained. Differing from the step-index fiber, the LP02 is cut off before the LP31. The
first radial order modes (LP01, LP11, LP21, and LP31) are supported in the AH-FM-EDF. The
effective RI (ERI) of the signal modes in the C-band is illustrated in Figure 1c. As shown in
the figure, the minimal value of the ERI difference is higher than 1 × 10−3 over the whole
C-band. The normalized intensities and ERI of different guided modes have been carried
out using COMSOL Multiphysics software. It is verified that the proposed AH-FM-EDF has
excellent modal isolation and it relatively avoids the mode coupling in signal amplification.

Figure 1. (a) Schematic diagram and the refractive index distribution of the AH-FM-EDF; (b) Nor-
malized intensities and (c) effective refractive indices of the guide modes.

3. Results and Discussions

Besides the RI of the fiber, the DMG correlates with the erbium doping profile. Nor-
mally, more accurate amplification can be obtained between different modes when the
number of doping-layers increases. It is worth mentioning that the PSO algorithm can
achieve the concentration optimization under any number of layers. Considering the
fabrication in practice, we analyzed three types of dopants profiles in the following section,
including single layer (uniform doping), double-layer, and triple-layer doping. The three
types of doping profiles are illustrated in Figure 2. The doping boundaries are set as r1,
r2, and r3. The corresponding doping concentration from the inside out is N1, N2, and
N3. In the simulation, the degenerate states of the signal mode are not considered. Each
signal input power is set as −10 dBm. The pump power is set as 3 W. The PSO algorithm is
applied to determine the doping concentration and boundaries.
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Figure 2. Different doping profile. (a) uniform doping; (b) double-layer doping; (c) triple-layer
doping.

In the first uniform doping profile, the erbium ion concentration is 4.4 × 1025 m−3.
Then in the double and triple-layer cases, the doping radius and concentration are iteratively
optimized by the PSO algorithm. The results are shown as below.

Double− layer:


N1= 2.5× 1025 m−3, 2 ≤ r ≤ 7.72

N2 = 6.1× 1025 m−3, 7.72 < r ≤ 9

Triple− layer :


N1 = 4.84× 1025 m−3, 2 ≤ r ≤ 4.5
N2 = 1.13× 1025 m−3, 4.5 < r ≤ 7.36
N3 = 6.39× 1025 m−3, 7.36 < r ≤ 9

The gains and DMG of the three doping cases are shown in Figure 3, where Figure 3a–c
corresponds to the gain characteristics under uniform-, double-layer, and triple-layer
doping, and Figure 3d illustrates the DMG results. It can be found from Figure 3a that
at uniform doping, there is a big difference in gains and the DMG is more than 4 dB
(LP01 = 24.79 dB, LP11 = 23.45 dB, LP21 = 22.39 dB, LP31 = 20.12 dB) at the fiber length
of 1 m. Then, with the PSO algorithm, the signal gains in the double- and triple-layer
cases are illustrated in Figure 3b,c. Under the same conditions, the gains are all higher
than 20 dB in double- and triple-layer doping cases. Comparing the DMG results under
different doping cases as shown in Figure 3d, the DMG of double-layer doping is effectively
reduced to 0.55 dB and a DMG of 0.14 dB is further obtained in the triple-layer doping
cases. Actually, the simulation results under four-layer doping cases have also been carried
out. However, the DMG cannot be further reduced through the increase in the number
of doping layers. The triple-layer doping case is considered the optimal solution for the
proposed AH-FM-EDF.

Due to the low DMG of 0.14 dB at the wavelength of 1550 nm, the following discus-
sion is implemented in the triple-layer doping cases. The gain characteristics over the
whole C-band is illustrated in Figure 4. All the signal gains are higher than 19 dB. In the
wavelength range of 1530–1550 nm, the DMG keeps lower than 0.15 dB. At the wavelength
1525 and 1565 nm, the DMG are 0.21 dB and 0.26 dB, respectively. Consequently, at each
wavelength, the DMG is lower than 0.3 dB. Moreover, due to the similar signal gains, there
is an excellent gain flatness within 1 dB over the C-band.

As we all know, it is impossible to maintain a stable gain value at any signal input
power level for an FM-EDFA. It provides more gains to the small signals and less to the
large ones, which is called the gain saturation effect [31]. The maximum output capability
of the FM-EDFA is characterized by the saturated signal output power. It is defined as the
corresponding output power when the saturated gain of each mode drops by 3 dB. The
relationship between the gains of the proposed AH-FM-EDFA and the signal input power
is investigated and simulated in the case of triple-layer doping design, as shown in Figure 5.
From the figure, it can be seen that when the signal input power varies from −40 dBm to
5 dBm, the DMG is relatively low (<0.35 dB). The gain equalization characteristics perform
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well and the saturated signal input power of different modes can be regarded as equal,
about −17.7 dBm. The saturated output power of the AH-FM-EDFA can reach 20 mW,
which means the maximum output capability of the amplifier.

Figure 3. Gain characteristics under (a) uniform-, (b) double-layer, and (c) triple-layer doping design.
(d) DMG versus fiber length.

Figure 4. Gains and DMG versus signal wavelength.
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Figure 5. Gain saturation characteristic.

Since the gain characteristics of the AH-FM-EDF are optimized under the length of 1 m
and 3000 mW pump power, the gains and DMGs under different fiber length and pump
power are further analyzed, as shown in Figure 6. The gain and DMG are illustrated in
Figure 6a, with the length varying from 0.5 m to 3 m. As the fiber length is more than 0.9 m,
signal gains are higher than 20 dB. In range of 1 m to 1.8 m for the fiber length, the DMG
remains lower than 0.3 dB. Figure 6b illustrates the gains and DMG as the pump power
varies. It can be seen that gains of different guided modes are higher than 20 dB and the
pump power is higher than 3000 mW, and meanwhile the DMG is stabilized below 0.2 dB.
Although the optimization of the doping profile is considered in the case of 3000 mW
cladding pumping and 1 m length of fiber, the proposed AH-FM-EDF still performs well in
gain equalization under different fiber length and pump power.

Figure 6. Gains and DMG versus (a) fiber length (under 3000 mW pump power) and (b) pump power
(under 1 m length of AH-FM-EDF).

Furthermore, as the inevitable imperfections always occur in practical manufacturing,
the influences on the fabrication tolerance characteristics of the proposed AH-FM-EDF are
further explored. However, due to the fiber fabrication, the RI and radius control have
been relatively mature. Herein, the discussion about the fabrication tolerance is focused
on the central air hole and the doping concentration deviation. The fabrication tolerance
on the radius of the central air hole is illustrated in Figure 7. When the air hole radius is
under±5% and±10% offset conditions, the DMG of the AH-FM-EDFA remains lower than
0.3 dB over the whole C-band and the minimum gain of the amplifier can reach 20 dB at
1550 nm signal wavelength.
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Figure 7. DMG versus wavelength under the shift of central air hole.

The doping concentration variation is analyzed with ±5% and ±10% offsets. The
results are shown in Figure 8, and Figure 8a–c correspond to N1 to N3. From the figure, it
can be seen that when the doping concentration offset occurs in N1 and N3, the maximum
DMG of the amplifier is up to 0.8 dB (under the deviation of ±10%). And when the
doping concentration happens to N2, low DMG (<0.4 dB) can be realized. Within the
±10% fabrication tolerance on doping concentrations, DMGs over the whole C-band can
be controlled within 0.8 dB. Thus, even if the fabrication error occurs in the doping process,
the gain equalization characteristics still perform well, which is beneficial to the actual
manufacturing.

Figure 8. DMG versus wavelength under the shift of doping concentration of each layer, where
(a–c) corresponds to the N1 to N3.

For the active air-hole fiber, the production of the AH-EDF was realized by the mod-
ified chemical vapor deposition (MCVD) process [25], and the femtosecond laser can be
used to form the void in the fiber core [24]. Considering the development of the layer-
doped technology, we believe that the fabrication of the multi-layer doped AH-FM-EDF
can be realized.

4. Conclusions

In conclusion, a multi-layer-doped AH-FM-EDF is proposed and the PSO is applied to
the doping concentration adjustment for low DMG. The adjustment of the modal intensity
distribution to different guided modes is achieved with the introduction of the central air
hole. A higher degree of overlap of integral factors can be obtained. According to the
multi-layer doping design of the ring-shaped core, the DMG of the AH-FM-EDFA can
be effectively reduced from 4 dB (uniform doping) to 0.14 dB (triple-layer doping) with
gains of more than 20 dB. The fiber has a good gain-flattening characteristic in the whole
C-band. From the simulations, the fiber we proposed has a good fabrication tolerance to the
variation of doping concentration and air hole radius. Low DMG (<0.8 dB) can be realized
under the ±10% offsets of doping concentration and air hole radius.
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