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Abstract: This paper describes a compact refractometer in visible with optical bounds states in the
continuum (BICs) using silicon nitride (Si3N4) based sub-wavelength medium contrast gratings
(MCGs). The proposed device is highly sensitive to different polarization states of light and allows a
wide dynamic range from 1.330 (aqueous environment) to 1.420 (biomolecules) monitoring, apart from
its being thermally stable. The proposed sensor has a sensitivity of 363 nm/RIU for X polarized light
and 137 nm/RIU for Y polarized light. The spectral characteristics have been obtained with a high
angular resolution for the smaller angle of incidence, which confirms the BIC hybrid modes with good
quality factors and enhanced field confinement. The device is based on a normal-to-the-surface optical
launching strategy to achieve exceptional interrogation stability and alignment-free performance.
This system can also be used in the CMOS photodetectors for on-chip label-free biosensing.

Keywords: Bound States in the Continuum; Medium Contrast Gratings; Silicon Nitride; Fano
Resonance; Sensors; Refractive Index Unit (RIU)

1. Introduction

Bound states in the continuums (BICs) is fundamentally a quantum mechanical process
that produces a unique state of light and is considered as a resonant mode of infinite quality
factor (Q) and lifetime [1,2]. The possibility of BICs was first time mentioned in 1929 by von
Neumann Wigner [3]. This exceptional eigenmode of a system with a discrete eigenvalue
in the continuum region remains localized within the system without radiating any energy
to the surroundings and has been observed in water, elastic, and acoustic waves [4–6].
Theoretically, BIC in photonics systems was realized for the first time in 2008, and later
in 2011, its experimental observation was also reported [7,8]. Only systems with at least
one dimension that extends to infinity can reach real BICs. However, in practice, due to
the finite extent of the structure, material absorption, and other external perturbations,
the BIC transforms to a finite-Q Fano resonance with a finite lifetime–a regime known
as quasi–BIC. These states have also been studied in a wide range of materials such as
optical waveguides [9], fibers [10], topological insulators [11], and dielectric photonic
crystals [12]. Further, BIC has been demonstrated in different geometrical structures, such
as resonant planar structures [13], periodic arrays [14], and metasurfaces [15], along with
its applications in transmission filters [16], lasers [17], second harmonic generation [18].

Recently, BIC has been explored with plasmonic systems for different applications,
including sensing, but this system exhibits significant absorption due to the presence of
metal which leads to a lower Q value [19,20]. For a certain degree of wavelength shift,
smaller linewidth has the advantage of causing a higher intensity change. A small linewidth
means a reduced dynamic range, which is the degree of refractive index change detected by
the detector prior to a change in intensity owing to wavelength shift and hence improves the
detection limit by enabling measurement of very small variations in refractive index [21,22].
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In comparison to plasmonic sensors [23], dielectric [24], fiber [25], resonant nanos-
tructures [26], photonic crystal structure [27,28], and gratings [23] have a higher Q-factor
but lower sensitivity. In the past years, BIC is paving the way for high throughput optical
sensing devices with enhanced light-matter interaction at the nanoscale [29,30]. They can
attain a higher Q-factor as well as a superior performance by optimizing the different
structural parameters [31,32]. One such structure is periodic grating using high index
materials such as silicon (Si), titanium oxide (TiO2), germanium (Ge) on low index sub-
strate [30,33–35], but they have a finite absorption in the visible region because of their low
bandgaps which smear out the BIC. However, silicon nitride (Si3N4), a low-density mate-
rial with high-temperature strength and good oxidation-resistant is an alternative grating
material with low loss, high optical power tolerance, and has a broad spectral operation
band spanning from visible to infrared wavelength [36]. Depending on the structures of
periodic systems, two different types of BIC can be realized: symmetry-protected BICs and
accidental BICs. A symmetry-protected BIC can only be generated in the zeroth-order of a
reflection/transmission or the Γ point of the periodic system [16,37], and accidental BICs
are formed by destructive interference of two different scattering channels [38].

In this manuscript, we propose a compact refractometer that can excite symmetry-
protected transverse electric (TE) and transverse magnetic (TM) polarized optical BICs,
that employs a refractive index subwavelength grating over a most widely and commonly
used silica substrate. We studied the impact of geometry parameters on the resonance
of reflection/transmission spectra. The proposed device is highly sensitive to different
polarization states of light and allows a wide dynamic range from 1.330 (aqueous environ-
ment) to 1.420 (biomolecules) monitoring, apart from its being thermally stable. Further,
the angular dependence of incident light sources on the performance of the system has
been studied.

2. Proposed Structure of Si3N4Based BIC System

The proposed 3D schematic structure of Si3N4 based BIC system is shown in Figure 1a.
It consists of a silicon dioxide (SiO2) glass substrate on which one-dimensional (1D) periodic
rectangular Si3N4 grating bars are considered. The rectangular bars are placed on the glass
substrate at regular intervals. A 2D schematic structure of the proposed BIC is depicted
in Figure 1b with the different parameters h, Λ, a, b which represent the height, pitch,
fill region, and blank region of the grating, respectively. Here, the ratio of the width of
the fill zone to the pitch of the grating (F = a/Λ) is termed as fill factor (F). This type of
structure can be experimentally fabricated by using the plasma-enhanced chemical vapor
deposition (PECVD) technique followed by e-beam lithography [39]. The optical response
of the proposed system has been recorded for various values of surrounding index ns.

Where the refractive index (RI) of the glass substrate (ngl) and the Si3N4 grating (nsn)
are considered as 1.500 and 2.020, respectively [22,34], incident light source polarized in
two orthogonal planes: X-polarization (X-pol) and Y-polarization (Y-pol), is considered for
the analysis as shown in Figure 1a. The X-pol axis is considered to be parallel to the plane
containing grating bars, and the mode travelling in this direction is TE mode. Similarly,
the Y-pol axis is perpendicular to the plane containing the grating bar, and the mode of
travelling is defined as TM mode. Suitable detectors can be used to record reflected and
transmitted light.
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chosen, and for the study, the electromagnetic wave, frequency domain (ewfd) is taken, 
which is under the wave optics module. We simulate the device using a fine mesh with 
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To observe enhanced reflectivity, Si3N4 has been considered as a 1D periodic grating 
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2a. This could be because ℎ and Λ are both equal to 400 nm, which facilitates the reso-
nance. It can be seen from the figures that Fano-like resonance is observed here for differ-
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Figure 1. Si3N4 grating-based BIC system (a) shows the schematic 3D representation of the proposed
BIC structure. The incident light source is polarized in two orthogonal planes with X-pol (green)
and Y-pol (blue) D1, D2, P, T, R, and λ denote detector-1, detector-2, power of light, transmittance,
reflectance, and wavelength of the incident light, respectively. (b) Shows a 2D representation of the
structure having different parameters.

3. Results and Discussion
3.1. Optimization of Grating Height and Fill Factor

The proposed structure is optimized using the finite element method (FEM) based
on COMSOL Multiphysics simulations to work as a refractometer in the visible range
(600–700) nm, where economic sources and detectors are easily available. Due to invariance
in the z-direction of our device, for convenience, the 2D geometry of the structure is
chosen, and for the study, the electromagnetic wave, frequency domain (ewfd) is taken,
which is under the wave optics module. We simulate the device using a fine mesh with
36,267 elements. Here, the periodic boundary condition is applied along the y-direction,
and two ports are defined along the z-direction to a grating unit cell to create 1D periodic
subwavelength grating structures. Here, the zeroth-order diffraction is observed due to the
normal incidence of plane wave light.

To observe enhanced reflectivity, Si3N4 has been considered as a 1D periodic grating
structure over SiO2 with optimized parameters h and F. Further, the value of h is varied from
100 nm to 500 nm by taking F = 50%, i.e., a = 200 nm, and the variation in transmittance with
the incident wavelength λ is shown in Figure 2a,b for X-pol and Y-pol lights, respectively.
The X-pol light exhibits a sharp resonance at h = 400 nm, as shown in Figure 2a. This
could be because h and Λ are both equal to 400 nm, which facilitates the resonance. It
can be seen from the figures that Fano-like resonance is observed here for different h
for both the polarization. This is because when the grating is illuminated from the far
zone, the destructive interference between incident light and guided mode in the structure
occurs at a specific wavelength or polarization to give rise to Fano-like resonances in
reflectance and transmittance spectrum [31,34,40–42]. Here, resonance wavelength (λr)
increases with h for both polarized lights, resulting in a redshift of 27 nm and 54 nm for
X-pol and Y-pol light, respectively. A large shift in Y-pol light occurs due to its highly
dispersive nature as compared to X-pol light [43,44]. This difference contributes largely to
the different properties of both polarized lights. Further, the computed transmittance with
the parametric sweep of h is shown through the contour plots in Figure 3a,b. Note that
the regime of the dotted circle shown in Figure 3a,b give evidence of BIC. Here, it can be
clearly seen that at this particular point, there is complete suppression of energy leading to
a high Q-factor [45]. The regime near to dotted circle is quasi-BIC [46].
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grating height (h) from 100–500 nm (c,d) show the change in λ with the fill factor (F) from 50–90% for
X-pol and Y-pol light, respectively.
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The variation in transmittance with respect to λ for different values of F is shown in
Figure 2c,d for both polarizations. Optical response of the incident light is observed for F
ranging from 50% to 90%. For the X-pol light in Figure 2c, the λr initially shifts forward
with increasing F and then shifts backward with the further increase in F. However, in the
case of Y-pol light, it follows an increasing trend in λr with an increase in F and shows
a redshift, as depicted in Figure 2d. This is due to the fluctuation in the Fano parameter
q (q = cot (δ)), where q represents the relative excitation intensity associated with the
discrete and continuous states and δ is the phase difference between the incident mode and
guided-mode [47]. The corresponding transmittance contour plots are given in Figure 3c,d.

By considering all of the combinations, the optimized value of h = 400 nm and F = 50%
is considered as F = 50% grating pitch is commonly employed in the fabrication of both
amplitude and phase grating due to its best-visibility and high sensitivity [48].The value
of all the optimized geometrical parameters shown in Figure 1 are listed in Table 1. As
a result, for the optimized structure and ns = 1.330 [34], the λr is found to be 619 nm
and 653 nm for X-pol and Y-pol lights, respectively. As the λr of the system is directly
proportional to the effective index (neff) of the mode, the λr of Y-pol is more than X-pol [32].
Additionally, the full width at half maximum (FWHM) of the resonant peak (δλ) for X-pol
and Y-pol lights are calculated to be 1.4 nm and 3.9 nm, respectively. Further, the Q = λr/δλ
is calculated and found to be 368.45 for X-pol and 165.52 for Y-pol, respectively. The
X-pol light has a higher Q-factor because it experiences larger index modulation by the
1D periodic grating [49,50]. For X-pol light, the same optimized structure with unity
surrounding refractive index, (i.e., free space or gaseous medium) gives λr, δλ, and Q-factor
values of around 511 nm, 4 nm, and 127.75, respectively.

Table 1. Value of the Geometric Parameter Shown in Figure 1.

h (nm) Λ (nm) a (nm) b (nm) Incident Angle θ (Degree)

400 400 200 200 0

3.2. Electric Field Profile of the Proposed BIC Structure

The electric and magnetic field enhancement of the optimized structure at the λr is
shown in Figure 4. The normalized electric field confinement in the proposed BIC structure
for X-pol and Y-pol light is depicted in Figures 4a and 4b, respectively. It is observed that the
maximum electric field is confined in the region between two bars for X-pol light, whereas
it is confined at both edges of the bar for Y-pol light, and there is an almost insignificant
field between the bars.

Since the proposed structure is a 1D periodic array of parallel gratings with periodicity
Λ and symmetric about the z-axis, if a light is incident with X–polarization, its propagation
is controlled by the Helmholtz equation for x–component of an electric field [34],(

∂2

∂y2 +
∂2

∂z2

)
Ex + k2εEx = 0 (1)

where k is a vacuum wavenumber, and ε is a grating dielectric function. Due to the grating
periodicity along the y-axis, the solution of Equation (1) can be written in the form of a
Bloch wave and given by,

Ex(y, z) = ψ(y, z)eiβy (2)

where ψ is the Bloch wave function and β is the propagation constant (β = 2π/λ) in the
positive y-direction. In an ideal case, the value of β is equal to zero. Figure 4c,d illustrate
the eigenmode profiles of the Si3N4 grating system, i.e., |Hy| in X-pol and |Ey| in Y-pol
light, at eigenfrequency of 484.3 THz and 459.1 THz, respectively. |Hy| and |Ey| are
antisymmetric (y-odd) with respect to the axis of an array and clearly fall into the symmetry
protected type as it is symmetrically mismatched to the zeroth-order diffraction channel [51].
Here we can see that there are also some leaky modes due to the presence of substrate,
which leads to a finite Q-factor in our proposed structure [52]. Note that Figure 4c,d show a
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field profile of quasi BICs. However, Figure 4a,b have a symmetric standing wave (y–even)
pattern, and it is a propagating Bloch BIC with β = 0.010/nm, and 0.009/nm for X-pol and
Y-pol lights, respectively, as they are not protected symmetry [14].
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3.3. Refractive Index Sensing

For refractometric applications, Figure 5a,b show the variation in R with λ for various
ns ranging from 1.330 to1.420 for normal incidence (along the z-axis). These figures clearly
illustrate that there is an increase in λ with the increase in ns, indicating a redshift in
wavelength in both polarized lights. For X-pol light in Figure 5a, the visibility of the
reflectance spectrum lowers as ns increases. However, in the case of Y-pol light, there is no
discernible difference in the visibility of the spectrum. The change in ns also results in a
Fano-like resonance in the reflection spectrum for both X-pol and Y-pol lights, as shown
in Figure 5a,b, respectively. The calculated reflectance contour plots by varying ns are
shown in Figure 6a,b. The RI sensitivity (Sn) of a system is defined as the ratio of change in
resonance wavelength (∆λr) to the change in the surrounding RI (∆ns), given by [34],

Sn =
∆λr

∆ns
(3)

In the calculation of sensitivity, the surrounding refractive index n0
s = 1.330 is taken

as the reference RI and the corresponding resonance wavelengths λ0
r 619 nm and 653 nm

are reference wavelengths for X-pol and Y-pol lights, respectively. In Equation (3), res-
onance wavelength change is ∆λr = λr − λ0

r and surrounding refractive index change
∆ns = ns − n0

s . The shift in resonance wavelength as calculated with different ns for X-pol
and Y-pol lights and have been shown using the linear fit function in Figure 5c,d, respec-
tively. A significantly higher shift of 35 nm and 12 nm is found in the resonant wavelength
for X-pol and Y-pol lights, respectively. The R2-value and slope for X-pol (Y-pol) light
are obtained as 0.99285 (0.99476) and 363 (137), respectively. As a result, we obtained a
sensitivity of 363 nm/RIU for X-pol and 137 nm/RIU for Y-pol light. As the X-pol light
experiences larger index modulation by the 1D periodic grating and, also the electric field
distribution of X-pol mode is more concentrated in the analyte region (see Figure 4), the
X-pol light has a higher sensitivity than Y-pol light. The FoM is given by a ratio of sensitivity

to the full width at half maximum (FoM =
Sn

FWHM
). Here a sensitivity is calculated as

363 nm/RIU (137 nm/RIU) for X-pol (Y-pol) light, and FWHM is 1.4 nm (3.9 nm) for X-pol
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(Y-pol) light. Hence FoM of the proposed structure is equal to 259.28/RIU (35/RIU) for
X-pol (Y-pol) light. Further, change in Q-factor with ns is shown in the inset of Figure 5c,d,
with the respective values of the highest Q-factor was found to be 820 and 233.08 for X-pol
and Y-pol lights.
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3.4. Vector Bending Measurement

To see the influence of the angle of incidence on optical responses, the angle of the
source (θ) is adjusted from 0◦ to 2◦for both polarized lights. Figure 7a,b demonstrate
the variation in T with λ for both polarized lights. It is apparent that there is a blueshift
(redshift) in λr that occurs with the change in θ for X-pol (Y-pol) light, respectively. The
change in the resonant wavelength ∆λr with θ for X-pol (red curve) and Y-pol (blue curve)
lights are shown in Figure 5c. A shift of 3.8 nm (7 nm) occurs in ∆λr, which gives the
angular sensitivity (Sθ = ∆λr/∆θ) of 1.9 nm/degree (3.5 nm/degree) for X-pol (Y-pol) light
of the system. Additionally, we have also calculated the change in Q-factor for different
θ. Figure 7d shows a variation of Q-factor with θ for both the polarized lights. As can be
clearly seen in the transmittance graphs, the Fano resonance spectra diverge (converge)
with the increase in the small angle of incidence in X-pol (Y-pol) light, respectively; as a
result, it is found that Q-factor decreases with an increase in θ for X-pol light, whereas it
increases with θ for Y-pol light. Further, the transmittance contour plots for various θ are
shown in Figure 6c,d.
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4. Conclusions

In conclusion, we report a refractometer with optical BICs using Si3N4 based sub-
wavelength grating structure. This proposed device is sensitive to different polarization
of light in the visible region and a broad range of refractive indices. The proposed sensor
has a 363 nm/RIU sensitivity for X-pol light and 137 nm/RIU for Y-pol light. The obtained
spectral characteristics in the small angular resolved scan between 0◦ to 2◦ verify the BIC
hybrid modes with good quality factors and enhanced field confinement. This system can
also be used in the CMOS photodetectors for on-chip label-free biosensing and selective
polarization interrogation of light emission from nanoscale emitters.
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