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Abstract: The performance of the cold atom clock based on coherent population trapping (CPT)
improved when the temperature decreased. In order to obtain a lower temperature in the cold
atom clock, we proposed a cooling scheme in this paper that employs direct two-photon transition
using optical frequency combs (OFCs). Two trains of time-delayed pulses from opposite directions
were utilized to interact with atoms. It was found that the temperature of the cold atoms reached
the minimum if the pulse area was π and the time delay between the absorption pulse and the
stimulated emission pulse was in the range from 0.7τ to τ. In this paper, it was confirmed that the
proposed cooling process allowed for faster and more efficient momentum exchange between light
and atoms, and the proposed cooling process could be applied to the atoms or molecules that could
not be cooled to desired temperature through the single-photon cooling process. The 87Rb cooling,
together with the CPT interrogating scheme using OFCs reduced the ratio value of linewidth/contrast,
and the frequency stability of the cold atom clock hence improved by more than six times as per
our calculation.

Keywords: CPT; OFCs; direct two-photon transition; stimulated emission; cold atom clock

1. Introduction

The performance of the atomic frequency standard based on the coherent population
trapping (CPT) using vapour-cell alkali metal atoms has greatly improved in stability
and accuracy [1–3]. Several optimization schemes based on proposed CPT were aimed
at improving the contrast of the signal, thereby improving the frequency stability, such
as push-pull [4], σ+-σ− [5], lin//lin [6], and lin⊥lin [7]. Field applications of chip-scale
atomic clocks (CSACs) [8,9] based on CPT are growing rapidly because of their small size
and low power consumption. Typically, CSACs deliver short-term fractional frequency
stability of <1 × 10−10 [10], but the devices are substantively not accurate because of large
systematic frequency shifts derived from high-pressure buffer gases and light shifts [11].
The temperature coefficient for the change in fractional frequency of high-performance
buffer-gas CPT clocks has been measured to be in the order of 10−10/K [2,12,13].

The frequency shifts and associated instability derived from buffer gases can be
eliminated by performing CPT with cold atoms [14–16]. Using laser-cooled atoms can
eliminate Doppler broadening, thus narrowing the atoms’ optical spectra and creating
a clean system in which all cold atoms are uniformly interrogated and light shifts can be
precisely studied [15].

A typical Λ system for CPT interrogation is shown in Figure 1. The atoms are evenly
distributed in the ground states |1〉 and |2〉, and the bichromatic laser (with angular fre-
quencyωa andωb) interacts with atoms. The frequency detuning between the ground states
|1〉 and |2〉, and the excited states |3〉 is defined as δ13(= ωa −ω13) and δ23(= ωb −ω23),
respectively, where ω13 and ω23 are the frequency splitting between the ground states
|1〉 and |2〉, and the excited states |3〉, respectively, and the Raman detuning δ is defined
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as δ = δ23 − δ13. The Rabi frequency Ωij for the transition with electric dipole moment
µij (i = 1, 2 and j = 3) is defined as Ωij = εµij/}, where ε is the electric field amplitude. Γ3
is the spontaneous decay rate of the excited state |3〉, and γ is the relaxation rate of the
coherence between the hyperfine ground states.
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Figure 1. Scheme of three-level Λ system for CPT interrogating.

Nowadays, technology that uses magneto-optical trap (MOT) to cool and trap neutral
atoms is popular. To reach a lower temperature beyond the single-photon Doppler limit,
two-photon transition (TPT) was also used for further cooling processes [17–22]. The
optical frequency combs (OFCs) correspond to a train of ultrafast pulses generated by
mode-locked (ML) laser in the time domain. This laser connects optical frequency with
microwave frequency and could provide the purest microwave frequency source [23]. Due
to its narrow linewidth and coherent frequencies, OFCs not only are suitable for frequency
standards based on CPT [24–26] but also can be used to cool atoms through the TPT
process [22]. There is a potential to combine these two functions of the combs together
in the cold atomic clock. The repetition rate of OFCs could be locked to the cooled 87Rb
TPT resonance too and has served as a frequency standard, with the stability reaching
1.5× 10−13 at an averaging time of 100 s [27]. This paper proposes a further cooling scheme
using OFCs. This cooling scheme utilizes the direct two-photon transitions (DTPT) cooling
method during the stimulated emission process to obtain a lower cooling temperature. In
the present paper, we study the applications of this kind of cooling scheme on the cold
atomic clocks to obtain better frequency stability in the future. In previous studies about
atom cooling with OFCs, the cooling processes mainly involved single-photon interactions
with the atoms [28–37], which used only a small fraction of the laser’s total power and
output spectrum. On the contrary, the DTPT cooling method for the atom cooling involves
all of the comb teeth contributing together [38].

2. Two-Photon Cooling Model by Pulses

We introduced a stimulated emission scheme for the two-photon cooling method by
pulses, as shown in Figure 2. A train of pulses generated by ML laser propagating toward
the right side interact with the atoms moving to the left side. In momentum–time space,
the atoms initially locate at (P0, t0) with momentum p0 toward the left side, and after they
absorb TPs with wave vectors k1 and k2 coming from the left side, the atoms go to the final
state | f 〉 from the initial state |i〉 directly through the process of DTPT while losing the
momentum of } (k1 + k2). Since the excited atoms do not absorb resonantly, their return to
the ground state without the spontaneous emission needed for further absorption can only
occur by stimulated emission [39,40]. If the stimulated emission is caused by a counter-
propagating pulse toward the left side, the excited atoms at (P1, t1) would lose another
momentum of } (k3 + k4); hence, the total momentum lost is } (k1 + k2 + k3 + k4). These
stimulated processes repeat at the Rabi frequency Ωi f that is much larger than the decay
rate Γ f . Because the excited atoms return to their ground states more frequently during
the stimulated emission process rather than during the spontaneous emission process,
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the pressure radiation force from photons will not be in a saturated state at a momentum
exchange rate limited by Γ f .
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Figure 2. Stimulated emission scheme in the momentum–time space, the atoms at (p0, t0) lose a
momentum of } (k1 + k2) during the TP absorption process (inset); after a time delay of less than the
lifetime τ, the excited atoms at (P1, t1) lose another momentum of } (k3 + k4) during the TP stimulated
emission process, and the total momentum transfer or loss of the atoms is } (k3 + k4 + k1 + k2) in
one absorption-stimulated emission cycle.

By using the scheme of “absorption-stimulated emission”, the recoil momentum ob-
tained by atoms or molecules mainly comes from the fast “absorption-stimulated emission”
cycle. By choosing appropriate laser parameters, the rate of this transition cycle can be
made much larger than the spontaneous radiation rate, so that the force on the atom or
the molecule obviously exceeds the spontaneous radiation force, thus ensuring a shorter
deceleration distance and a larger deceleration efficiency. In addition, the experimental
setup required by this scheme is relatively simpler. The advantage of this scheme of stimu-
lated radiation deceleration has been confirmed in previous experiments [41] and was used to
cool [42] or accelerate [39] atoms/molecules, depending on the details of experiment designs.

Assuming that the atoms are initially in the ground state, the density operator is
ρ̂a(0) =|i〉〈i|, and n is used to represent the number of photons in the laser field. In the
form of dressed states, the atom-photon density operator is written as

ρ̂(0) =
(
|i, n〉〈n, i| 0

0 0

)
(1)

We define the pulse area as

θ =
∫ +∞

−∞
Ωi f g(t)dt (2)

where g(t) is the pulse envelope and Ωi f is the two-photon Rabi frequency.
The absorption pulse operator can be written as

Û1 =

(
cos θ

2 |i, n〉〈n, i| −i sin θ
2 |i, n〉〈n− 2, f |

−i sin θ
2 | f , n− 2〉〈n, i| cos θ

2 | f , n− 2〉〈n− 2, f |

)
(3)

After the pulse is applied, the density operator of the atoms becomes

ρ̂1 = U1ρ̂(0)Û†
1 (4)
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Considering the fact that the atoms in the excited state undergo spontaneous emission
at the same time, the atoms in the excited state exponentially decay between the two trains
of pulses by a factor of e−t/τ before the stimulated emission pulse is applied.

The stimulated emission pulse operator is written as

Û2 =

(
cos θ

2 |i, n + 2〉〈n + 2, i| −i sin θ
2 |i, n + 2〉〈n, f |

−i sin θ
2 | f , n〉〈n + 2, i| cos θ

2 | f , n〉〈n, f |

)
(5)

The density operator of the atoms after the stimulated emission pulse becomes

ρ̂2 = Û2ρ̂1Û†
2 (6)

By tracing the final density operator, the probability of the population distribution in
the ground state (Pg) and the excited state (Pe) after the two trains of pulses can be obtained
as shown in Equation (8) and Figure 3.

Pg = trn(〈i|ρ̂2|i〉) = cos2 θ

2
− e−

t
τ sin2 θ

2
cos θ (7)

Pe = trn(〈 f |ρ̂2| f 〉) =
(

1 + e−
t
τ

)
sin2 θ

2
cos2 θ

2
+ (1− e−

t
τ ) sin4 θ

2
(8)
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Figure 3. The probability of the population distribution in the excited state varies with the pulse area
and the time delay of the stimulated emission pulse simultaneously. The curved surface graph in (a) and
the red line in (b) indicate the case in which the stimulated emission pulse is applied, whereas the
curved line graph in (a) and the blue line in (b) indicate that there is no stimulated emission pulse.

The repetition of the period of pulses is the time delay, which is usually less than the
lifetime τ of the atomic excited state. As apparent in Figure 3, the population distribution
of the excited state is simultaneously controlled by both the pulse area θ and the time
delay t of stimulated emission pulse. When the pulse area θ = π, the highest probability
is obtained as shown in Figure 3a. Additionally, in order to keep the high probability, the
stimulated emission pulse should be applied at a time delay between 0.7τ and τ, as shown
in Figure 3b. If the stimulated emission pulse is applied too early, the excitation probability
will be low.

3. Results

To show the cooling effect of the stimulated emission pulse on the atoms more directly
and by employing the concept of entropy, we compared the temperature change before
applying the proposed cooling scheme with that after applying the proposed cooling scheme.

The relationship between entropy operator η̂ and density operator ρ̂ is

η̂ = − ln ρ̂ (9)



Photonics 2022, 9, 268 5 of 11

The ensemble of the entropy operator η̂ is multiplied by Boltzmann’s constant kB to
obtain the corresponding macroscopic quantity information entropy S:

S = kB〈η̂〉 = −kBtr(ρ̂ ln ρ̂) = −kB ∑
n
(ρ̂ ln ρ̂)nn (10)

For our atomic systems,

S = −kB
(

Pg ln Pg + Pe ln Pe
)

(11)

When N particles are confined to a volume V at a temperature T, we have [43,44]

S = NkB[ln
(

V
N

)
+

3
2

ln T + σ0] (12)

Which is based on assuming that T1 and S1, and T2 and S2 are the temperature
and the entropy of the atomic group before and after the stimulated emission pulse is
applied. According to Equations (11) and (12), the ratio (R) of the temperature obtained
after applying the proposed cooling scheme to the ratio obtained before applying the
proposed cooling scheme can be obtained as

R =
T2

T1
=

2
3

eS2−S1 (13)

Figure 4a shows that the temperature ratio varies with the time delay, and each line
has a corresponding pulse area. When the pulse area is small (π/10), the time delay has
little effect on the result, and when the pulse area is π/2, the ratio increases with the time
delay. When the pulse area becomes larger, it can reduce the ratio to the minimum when
faced with a proper time delay, such as for 2π/3 pulse area, and the ideal time delay is 0.4.
For π pulse area, the ratio is independent of the time delay. Figure 4b shows the variation
of the temperature ratio with the pulse area, and each line has a corresponding time delay.
When pulse area θ < π/2, the shorter the time delay, the lower the ratio will be. When
pulse area θ = π, the ratio does not depend on the time delay, and the ratio is the lowest,
which means the lowest temperature could be obtained at pulse area θ = π.
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Figure 4. The ratio R temperature obtained before and after the application of the stimulated radiation
pulse is shown as a function of (a) the time delay, wherein the lines each have pulse areas of π/10,
π/2, 2π/3, and π and (b) the pulse area, wherein the lines each have time delays of 0.1 τ, 0.3 τ, 0.6 τ,
and 0.9 τ.

Considering both the high transition probability and the low temperature obtained, it
is best to apply the stimulated emission pulse with the pulse area of about π, where the time
delay is between 0.7τ and τ, such that the temperature of the atom can be decreased to the
minimum. As the ML-based DTPT cooling could reduce the temperature to a value much
lower than that achieved by the single-photon Doppler [45] and the stability of cold atomic
clock is thus improved at the lower temperature, it is predicted that the frequency stability
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of cold atom clock based on CPT is will reach a better performance than the previous or
current level.

The primary advantages of stimulated pulse together with a DTPT process for atom
cooling arises from the use of stimulated emissions in place of spontaneous emissions
to return atoms to their ground states. Therefore, the proposed cooling scheme allows
for rapid and repeated momentum exchanges between the atom and the light field by
restricting the atom–light interaction to a shorter time, compared to the traditional way in
which a cycle of absorption is followed by natural decay.

Because of the complex internal structure of some kinds of atoms and molecules, the
cw lasers used during single-photon Doppler cooling are not suitable for them, especially in
the deep ultraviolet (UV) range, as the single-photon laser cooling is not currently available
for the most atoms [45]. For instance, single-photon laser cooling is not suitable for the 1S-2S
transition of H atoms for the following two reasons, first, that there is no intermediate real en-
ergy level between 1S and 2S of H atoms, and second, that there is no commercially available
deep UV laser that will generate 243 nm or shorter wavelength to drive the transition.

However, DTPT cooling with stimulated emission scheme proposed herein can be
used to cool these kinds of atoms and molecules. The DTPT process played a main role in
interrogating the 1S-2S transition of H atoms [46]. In contrast to cw lasers, OFCs generated
by ML lasers can be efficiently frequency-multiplied to apply to the UV and can be used to
control the motion of atoms and molecules in ways that are not possible in cw lasers.

4. Discussion and Application

When the DTPT stimulated emission cooling method is used in the 87Rb atomic
frequency standard, we can calculate the laser source characteristics required. ML laser
electric field strength can be written in the form ε(r, t) = ε0g(t) exp

(
−r2/ω2

0
)
, where r

is the radial distance from the central axis, ω0 is the beam waist radius, and ε0 is the
peak amplitude of electric field at the central axis. Assuming that the driving pulse has a
Gaussian envelope g(t) = exp [−t2/2Tp

2], and Tp is the pulse width, it can be calculated

that the time average laser power of the π pulse condition is pπ =

√
2π3}ω2

0 frω3
i f

24Γ f Tpc2 . For the

Gaussian pulses from the ML lasers, the beam waist radius is ω0 = 20 µm, the pulse width
is Tp = 1 ps, the comb tooth repetition frequency is fr = 100 MHz, Γ f is the decay rate of the
upper state, and ωi f is the resonance frequency between the upper and lower states. In a
popular MOT, a 780 nm laser source is often used, the upper energy level is 5P3/2, and the
laser wavelength that creates the CPT resonance is 795 nm with the upper state of 5P1/2 due
to which the hyperfine energy levels are easily distinguished. When the TPT process is used
for cooling, the upper energy level can be 5D5/2 or 5D3/2, and a total of 39 pathways and
14 transitions can be identified for the 5S1/2-5D3/2 and 5S1/2-5D5/2 two-photon resonances
22; the relative transition probabilities are shown in Figure 5. We compared the difference
between circularly polarized photons and linearly polarized photons. As shown in Figure 5,
the 5S1/2-5D5/2 transition from F = 2 to F = 4 excited by circularly polarized photons has
the largest transition probability and can be used for DTPT stimulated emission cooling.

We take the line width of the upper state 5D as 660 kHz and the equivalent DTPT
resonance frequency as 7.7 × 1014 Hz (5S1/2-5D5/2). The time average power of the
Gaussian π pulse generated by ML laser is approximately 420 mW and the peak amplitude
of the pulse is about 5 × 105V/m, such that the temperature obtained from the DTPT
cooling scheme is supposed to reach one tenth of that of the single-photon Doppler cooling
limit, which is 145 µK for 87Rb [45].
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Figure 6 illustrates the results of these pulses interacting with the same sample of
cold 87Rb atoms to interrogate the CPT signals based on the configuration in Figure 1. For
both cases, the Doppler shifts δD are assumed to be 0.01Γ3. In the calculation, we used
500 Gaussian pulses to simulate the optical combs, the pulse–atom interaction is de-
scribed by the Bloch equations as in Ref. [47], and the temporal evolution of the ele-
ments ρij of the atomic density matrix can be numerically resolved by using the fourth-
order Runge–Kutta method. The Rabi frequency is defined as Ωij(t) = ε(t)µij/}, for ML,
ε(t) = ε0 ∑n g(t− nTr), ε0 = 5× 105 V/m, the pulse width is 1 ps, and the pulse repetition
period is 10 ns. For cw, the Rabi frequency is Ω13 = Ω23 = Γ3; γ = 10−6Γ3; and for the
87Rb atom Γ3 = 37 MHz. We assumed ρ33 + ρ22 + ρ11 = 1 and ρ22 = ρ11 = 0.5 under the
initial condition to obtain the results shown in Figure 6a. The red, green, and black lines in
the figure represent the population of excited state, bright state, and dark state changing
with the number of pulses, respectively, where the bright state and dark state are defined as
ρB = (ρ11 + ρ22)/2+Re(ρ12), ρD = (ρ11 + ρ22)/2− Im(ρ12), respectively. From Figure 6a,
we can see that the bright and dark states are at 50% each in the beginning. When the atoms
interact with about 40–50 pulses, the bright state (green line) is slowly pumped to the dark
state (black line), while the atomic excited state (red line) population slowly becomes 0, the
atoms have minimum fluorescence, which is in the dark state, and the CPT phenomenon
occurs. We denote the difference from the maximum value of ρ33 to the value at the end
of 50th pulse as ∆ρ33. The change in the population of excited states during this process
corresponds to the process of the fluorescence changing from bright to dark.
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By scanning the Raman detuning δ, we obtained the variation of ∆ρ33 changing with δ
as shown in Figure 6b. The blue line is obtained by using cw, and the red line is obtained
using the pulses discussed above. We obtained the shape and linewidth/contrast value
of the pulse-excited CPT signal by numerical simulation and compared it with that from
the cw-excited signal. From Figure 6b, we calculated the linewidth/contrast values of 0.69
and 0.11 from cw and ML excitations, respectively, as shown in Table 1. As the frequency
stability based on CPT is proportional to the linewidth/contrast value, it can be seen
that the frequency stability based on CPT in the cold 87Rb atoms has the potential to be
improved by more than six times when using proposed pulses instead of cw.

Table 1. The linewidth/contrast values of CPT signals based on different schemes and Doppler shifts.

Schemes δD Linewidth/Contrast

cw CPT
cw CPT

Γ3 1.06
0.1Γ3 0.70

DTPT cooling + cw CPT
DTPT cooling + ML CPT

0.01Γ3 0.69
0.01Γ3 0.11

As discussed above, the OFCs from ML lasers can be used to cool and interrogate
atoms in the one cold atom clock system. Traditional cold atomic clocks usually require
three semiconductor lasers for atom cooling, repumping, and CPT interrogation, and
each laser requires additional equipment for frequency locking. The entire optical system
is complex and bulky. As current mode-locked lasers can easily cover the wavelengths
required for Rb atomic cooling, repumping, and CPT detection and can also provide watt-
level power output, a single mode-locked laser can be used for atomic cooling, repumping,
and CPT detection, which is beneficial to the integration of the optical system. The ML laser
parameters depend on the specified element and its corresponding transition energy levels
that we study. 87Rb, for example, during the cooling process, the upper energy level can be
5D5/2, and the lifetime in this situation is about τ = 240 ns. According to the conclusions
drawn in this paper, the time delay can be selected from 170 ns to 240 ns, and the specific
delay measures can refer to the method in ref. [39]. 85Rb can also be used as the cooling
element studied, as selected in the literature [45]. If 133Cs is selected, the upper energy
level can be 6D3/2, 6D5/2, or 8S1/2, and the corresponding lifetime τ is different. As the
optical comb frequency is determined by the initial frequency and repetition frequency, the
repetition frequency is set as 100 MHz in our calculation and the specific transition can also
meet the requirements by selecting the appropriate initial frequency parameters.
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5. Conclusions

In conclusion, as the ratio value of linewidth/contrast of CPT signal was reduced as
the temperature of atoms decreased; hence, the performance of cold atom clock improved.
We proposed a more efficient cooling scheme, which utilizes the DTPT process of the
OFCs and stimulated emission pulse, to cool atoms for the cold atomic clock to a lower
temperature. It was found that the temperature of the atomic sample could be reduced to
the minimum when the pulse area was about π and the time delay was 0.7τ~τ, which was
dependent on the specified element and its corresponding transition energy levels that we
studied. We also calculated the pulse power required for the corresponding 87Rb cooling
process. Additionally, this cooling scheme could be used to cool other elements that cannot
be cooled to a desired temperature by traditional single-photon cooling methods. When
compared with traditional single-photon cooling methods using cw, if the same optical
combs were used to interrogate the CPT signal and when the proposed cooling scheme was
utilized, the ratio value of the linewidth/contrast decreased by more than six times, and
so did its frequency stability. The optical system of this OFC-based cold atomic clock was
integrated and will have potential application in the future.
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