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Abstract: A delay-laser-based reservoir computer (RC) usually has its processing speed limited by
the transient response of laser dynamics. Here, we study a simple all-optical approach to enhancing
the processing speed by introducing optical injection to the reservoir layer of conventional RC that
consists of a semiconductor laser with a delay loop. Using optical injection, the laser’s transient
response effectively accelerates due to the speeded carrier-photon resonance. In the chaotic time-series
prediction task, the proposed RC achieves good performance in a flexible range of injection detuning
frequency under sufficient injection rate. Using proper injection parameters, the prediction error is
significantly reduced and stabilized when using high processing speed. For achieving a prediction
error below 0.006, the optical injection enhances the processing speed by an order of magnitude of
about 5 GSample/s. Moreover, the proposed RC extends the advantage to the handwritten digit
recognition task by achieving better word error rate.

Keywords: reservoir computer (RC); semiconductor laser; optical injection; chaotic time-series
prediction; handwritten digit recognition; processing speed

1. Introduction

Conventional computers or Turing approaches are inefficient to solve complex and
abstract problems such as pattern recognition or time series prediction [1–4]. Solving
abstract tasks are often achieved using algorithms related to artificial intelligence where
learning-based computation schemes are adopted. Nonetheless, the computing efficiency
and processing speed are difficult to be further improved by only optimizing algorithms
or electronic circuits [5]. Photonic devices are usually fast and power efficient. Recently,
utilizing transient response of nonlinear photonic device attracted considerable attentions
for achieving learning-based fast computing with high efficiency [6–25]. As one of the most
popular photonic implementations of learning-based computation, a delay-laser-based
reservoir computer (RC) utilizes nonlinear transient of a semiconductor laser under delayed
feedback [7]. Similar to the famously demonstrated echo state network in [8], a delay-laser-
based RC retains the advantage that only the connections from reservoir to output layer
are required to be trained [9–18]. Moreover, better than the echo state network where real
nodes are required, a delay-laser-based RC has virtual nodes along the delay loop which
obviously simplifies the configuration and reduces the cost [7].

In the last decade, Brunner et al. pioneered a delay-laser-based RC architecture where
the input signal multiplied with a temporal mask was added to the delayed feedback laser
on either bias current or optical intensity [7]. Here, the input signal is a series of discrete
data with a holding time of T. The temporal mask has a period equaling to T = Nθ where
N and θ, respectively, correspond to the number and interval of virtual nodes within the
delay loop. The number of nodes N ranging from tens to hundreds is typically sufficient for
the tasks such as pattern recognition or time series prediction [17]. Meanwhile, the interval
time θ should be limited within a range related to the characteristic transient response time
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τtr to enable nonlinear connections between neighboring virtual nodes [19–21]. In order
to enhance the processing speed, the conventional approach is using parallel processing
method where multiple coupled or uncoupled delay-laser-based RCs were integrated [17].
Compatible with the parallel processing method, improving single RC processing speed
using phase-to-intensity coupling response was also demonstrated [19]. Besides single-
mode dynamics, dual-mode dynamics such as polarization dynamics from a VCSEL using
polarization-controlled optical feedback is investigated as well [25]. Fundamentally, the
delay-laser-based RC architecture has a processing speed which is inversely proportional
to the interval θ for a given N. As θ has a lower limit related to τtr, reducing τtr should be a
promising solution towards processing-speed enhancement.

In this work, we propose and numerically demonstrated a simple all-optical approach
for enhancing processing speed of a delay-laser-based RC by optical injection. In the
reservoir layer, a response laser under delayed optical feedback is optically injected by a
master laser. Due to proper optical injection, the carrier-photon resonance can be sped
up to accelerate the transient response, hence enhancing the processing speed in chaotic
time-series prediction and handwritten digit recognition tasks.

2. Methods

Figure 1 shows a schematic of the proposed system. The input and output layers have
similar configurations to the conventional RC, whereas the reservoir layer is modified by
introducing optical injection from a master laser to the delayed feedback response laser.
The response laser in Figure 1b is described by the slowly varying complex electric field
amplitude E(t) and the carrier density N(t). The rate equations that govern the laser
dynamics are based on the modified Lang-Kobayashi equations [26]:

dE(t)
dt = 1

2 (1 + iα)
{

GN(N(t)−N0)

1+ε|E(t)|2
− 1

τp

}
E(t) + ks

√
Isexp{iπS(t)}exp(2πi× ∆νst)

+k f E(t− τ)exp(−i2πν0τ) + ki
√

Iiexp(2πi× ∆νit),
(1)

dN(t)
dt

= J − N(t)
τs
− GN(N(t)− N0)

1 + ε|E(t)|2
|E(t)|2, (2)

where the linewidth enhancement factor α, the gain coefficient GN , the carrier density
at transparency N0, the photon lifetime τp, the carrier lifetime τs, the gain saturation
coefficient ε, and the bias current J are the parameters of the response laser and summarized
in Table 1 [20]. At the right-hand side of Equation (1), the input layer, delayed optical
feedback, and optical injection are, respectively, described by the second, third, and last
terms. To focus on the dynamics, the effect of spontaneous emission noise is not taken into
account in this work. Though the spontaneous emission noise of response laser may be
detrimental to the RC performance, as it induces consistency problem if the response laser
is in chaotic state. Nonetheless, as demonstrated by [20], a proper stable locking state by
introducing optical injection to the delayed feedback response laser is helpful to minimize
the effect from noise.

In Figure 1a, the input layer couples the masked signal S(t) to the optical phase
of response laser using a coherent light source with coupling strength ks and coupling
detuning frequency ∆νs. S(t) is generated by multipling the information u(n) to a temporal
mask mask(t). γ is used for adjusting the standard deviation of the mask [20]. Hence,
the masked signal can be described as S(t) = γ × mask(t) × u(n). ∆νs = −4.7 GHz is
adopted to prepare for a stable locking condition when S(t) is turned off throughout the
work [20,21].

In Figure 1b, to form a reservoir with virtual nodes, a delayed optical feedback
loop with delay time τ is used to mimic N connected nodes. The feedback rate is set
to k f = 9 ns−1 to enable nonlinear connections between these virtual nodes throughout
this work. To enhance the transient dynamics of response laser, an optical injection from
a master laser is specified by the injection rate ki and the injection detuning frequency
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∆υi. ∆υi = υi − υ0, where υi,0 represent the free-running optical frequency of the master
and response lasers.
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Figure 1. Schematic of the proposed system including (a) input layer, (b) reservoir layer, (c) output layer.

Table 1. Values of laser parameters.

Parameters Designation Value

Linewidth enhancement factor α 3
Gain coefficient GN 8.4× 10−13 m3s−1

Carrier density at transparency N0 1.4× 1024 m−3

Gain saturation ε 2.0× 10−23

Injection current of the response laser J 1.05× 1033 m−3s−1

Carrier lifetime τs 2.04 ns
Photon lifetime τp 1.927 ps
Intensity of light source/master laser Is,i 6.56× 1020

Coupling strength of light source ks 14 ns−1

Coupling detuning frequency of light source ∆νs −4.7 GHz
Injection rate of master laser ki Scanning over 0–14 ns−1

Detuning frequency of master laser ∆νi Scanning over− 40–40 GHz
Node number of delay loop N 100
Interval of node θ Scanning over 1–20 ps
Holding time in input layer T T = Nθ
Loop delay time τ τ = T + θ

In Figure 1c of the output layer, as for the training procedure, the states (values of
intensity) of virtual nodes xnode in the reservoir layer are adopted to train and optimize
the weights ωnode based on the commonly used ridge regression algorithm. As for the
prediction procedure, the states xnode and the optimized ωnode are used to calculate the
prediction y = ∑ ωnodexnode.

If the injection rate ki is set to zero, the rate equations in Equations (1) and (2) are
reduced to a conventional delay-laser-based RC. The numerical results are calculated using
the fourth-order Runge–Kutta method with time step 0.1 ps.
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3. Transient Dynamics of Response Laser

As mentioned in [20], the best performance on time-series prediction task prefers the
delayed feedback response laser being injection locked to the coherent light source when
the masked signal is turned off [S(t) = 0]. In this work, the transient response time τtr
represents the characteristic time of the impulse response of such locked response laser.
When S(t) = 0, for feedback parameters of τ = 0.303 ns and k f = 9 ns−1, the response laser
stays in stable locking state when using ks = 14 ns−1 for with (ki = 12 ns−1, ∆νi = ∆νs)
and without (ki = 0 ns−1) master laser injection. Though the response laser outputs
constant intensities for both cases [27,28], the autocorrelation of its impulse response in
Figure 2a shows damped oscillations at different time scales. The transient response time
τtr corresponds to the period of such oscillation, which is obviously sensitive to the injection
from the master laser. It is worth mentioning that the impulse response partially repeats
itself after every feedback delay time τ, which is generally observed in chaotic states as
a time delay signature [29]. For delay-laser-based RC systems, using asynchronization
between the holding time T and delay time τ is a popular approach which may also be
helpful to reduce the potential threat of such time delay signature [9,20,21].
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Figure 2. (a) Autocorrelation of the impulse response of response laser with (ki = 12 ns−1, ∆νi = ∆νs)
and without (ki = 0 ns−1) master laser injection. (b) Transient response time τtr as a function of
injection rate ki.

Optical injection has been massively investigated for speeding up carrier-photon
resonance and enhancing modulation bandwidth of semiconductor lasers, which should
also be helpful to manipulate the transient response time τtr [30,31]. In Figure 2a, τtr
reduces from 0.179 ns to 0.111 ns when the injection from master laser is introduced, which
reveals an effectively accelerated transient response. Such acceleration is due to the speeded
carrier-photon resonance by optical injection. To further confirm the result, the variation
of τtr is showed in Figure 2b. As the injection rate ki from the master laser increases, τtr
is effectively reduced. However, if ki is too large, exceeding 30 ns−1, reduction in τtr is
saturated, which is not ploted in Figure 2b. The reduction in τtr provides more room for
reducing θ, hence resulting in a higher processing speed of RC.

4. Results
4.1. Chaotic Time-Series Prediction

Classical tasks for testing RC performance include digital or pattern recognition,
nonlinear channel equalization, chaotic time-series prediction, etc.. Chaotic time-series
prediction is one of the most popular tasks, as it examines both the memory capacity
and nonlinearity [32]. In this work, chaotic time-series prediction is adopted to test RC
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performance in terms of accuracy and processing speed. The Sante Fe data, corresponding
to the intensity time-series of a chaotic far-infrared laser, are adopted as the information u(n)
to be processed in the task [33]. The discrete sequence has 4000 data points where the first
3000 are used for training and the rest are used for testing [34]. Each data point has a holding
time of T = Nθ and is masked by an N-points random mask with six discrete levels (−1,
−0.6, −0.2, 0.2, 0.6, 1) [14]. The mask is used to maintain the high dimensionality between
the input layer and the reservoir layer. Then, the masked signal is phase-modulated to the
coherent light source and coupled to the phase dynamics of response laser in the reservoir
layer. The states of virtual nodes are collected by measuring the intensity dynamics at
each virtual node. The task is a one-step ahead prediction in which a former data point is
processing in RC to predict a latter one. Thus, the processing speed is evaluated as T−1.
The prediction performance is evaluated by the normalized mean square error (NMSE)
defined as follows:

NMSE =
1
m

∑m
j=1[y(j)− y(j)]2

σ(y)
, (3)

where j is the index of the input data, and m is the total number of data. y(j) is the output
of the RC. y(j) is the original target value. Practically, the performance is considered to
be good if the NMSE is below 0.1 [12,19]. For the virtual nodes within the delay loop,
the number is set to N = 100, which is typically sufficient for tasks such as time-series
prediction [16]. Asynchronization configuration of τ = T + θ between the delay time τ and
holding time T is adopted [9,20,21,32,35,36].

When using a small interval of θ = 3 ps, the processing speed is T−1 = 3.3 GSample/s.
Under ks = 14 ns−1, Figure 3 compares the prediction performance between the conven-
tional and proposed RCs corresponding to Figure 2. In Figure 3a, the conventional RC
produces significant prediction errors between the theory and the prediction waveforms
shown by the green curve, and the measured NMSE is relatively large, at about 0.0468.
Such a poor performance is related to the reduced nonlinearity of connections between
nodes when θ is too small. By contrast, the proposed optical injection effectively accelerates
the transient response in Figure 2, which significantly reduces the prediction errors at
high-speed processing, hence improving the NMSE performance by an order of magnitude
of more than 0.0016 in Figure 3b.
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Figure 3. Temporal theory (black) and prediction (red) waveforms, and prediction error (green) from
(a) conventional RC and (b) proposed RC. The interval of θ = 3 ps corresponds to a processing speed
of about T−1 = 3.3 GSample/s.
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4.1.1. Dependencies on Injection Parameters

Figure 3 shows that the proposed RC has a better performance than conventinal RC
in high-speed processing. The dependencies of this improvement on injection parameters
are further investigated by Figures 4 and 5. To eliminate the randomness of the mask, the
ploted NMSE data are the mean values in 10 runs of different masks.
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Figure 4. Measured NMSE as a function of total injection rate ki + ks for conventional (black) and
proposed (red) RCs. The data from conventional RC are obtained by setting ki = 0. The data from
proposed RC are obtained by setting ks = 14 ns−1 and ∆νi = ∆νs.
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Figure 5. Measured NMSE as a function of ∆νi when ki = 12 ns−1 and ks = 14 ns−1.

Figure 4 plots the NMSE as a function of the total injection rate ki + ks. The data shown
in red are obtained from the proposed RC by varying ki for ks = 14 ns−1 and ∆νi = ∆νs,
whereas those in black are obtained from the conventional RC by varying ks for ki = 0.
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The interval of θ = 3 ps corresponds to a processing speed of about T−1 = 3.3 GSample/s.
Interestingly, comparing the red to black under same total injection rates, the proposed
RC always achieves better NMSE performance when ki + ks > 17 ns−1. As the injection
from master laser has no phase modulation, it only contributes to the acceleration of
transient speed without impairments on the phase dynamics. Figure 4 reveals that using
injection from the master laser is better than just adjusting the coupling from the coherent
light source.

To further examine the dependence on the injection detuning frequency ∆νi, Figure 5
plots the NMSE as a function of ∆νi when ki = 12 ns−1 and ks = 14 ns−1. The interval
time is θ = 10 ps. Obviously, the NMSE is sensitive to ∆νi as ∆νi varies from −40 GHz to
40 GHz. Particularly, the NMSE performance prefers proper range of nagative ∆νi. For
instance, the NMSE is smaller at detuning frequencies within−30 GHz < ∆νi < 0 than that
at detuning frequencies outside. This flexible range significantly improves the robustness of
the RC performances as the detuning frequency often has fluctuations due to temperature
instabilities in practice, which will be further verified experimentally in the future work.

4.1.2. Processing-Speed Enhancement

To investigate the enhancement on the processing speed, Figure 6 plots the NMSE as a
function of processing speed T−1. The processing speed T−1 is varied through adjusting
the interval time θ. The data shown in black are measured from the conventional RC with
ks = 14 ns−1, whereas that shown in red are measured from the proposed RC by further
involving ki = 12 ns−1 and ∆νi = ∆νs. Fluctuations in NMSE are observed in the conven-
tionl RC, which are also reported by previous works [19,37]. Since the RC performance is
strongly related to the dynamics of response laser, the fluctuation of NMSE may be related
to the perturbation of dynamical states due to varying the feedback delay time. Comparing
the red to black, the proposed RC shows comparable NMSE performance to that of the
conventional RC for a relatively slow processing speed of T−1 < 630 MSample/s. Interest-
ingly, for a relatively high processing speed of T−1 > 630 MSample/s, the proposed RC
still retains good NMSE performance, whereas the conventional RC fails. For instance, to
retain the NMSE of less than 0.006, the conventional RC has an upper limit of a processing
speed of about T−1 = 500 MSample/s. By contrast, the proposed RC can increase the
processing speed by about an order of magnitude to 5 GSample/s. The processing-speed
enhancement is still valid even when the same total injection rate are adopted. In addition,
the proposed RC significantly improves the stability of NMSE performance when tuning
the processing speed.
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4.2. Handwritten Digit Recognition

To further verify the advantage of the proposed RC, the handwritten digit recognition
task is adopted to test the word error rate performance [38]. The 28 × 28 images to
be recognized show handwritten integers from 0 to 9. The images are taken from the
MINST data base, where 900 images are for training and 100 images are for testing. The
desired training outputs are classifiers that have ten dimensional vector of ten digits.
The classifier related to digit contains one value of 1 in the corresponding position, and
the remaining nine values are all −1. The mask consists of 0.51, 0.49, and 0 where the
first two have equal probablity of 0.01. In this task, the virtual node number is 400.
Then, the image 28 × 28 is masked by 400 × 28 dimensional matrix mask in the input
layer. The three-fold crossfold-validation is adopted to decrease the impact of division of
image data in which the procedure of training and testing is repeated three times using
different subsets. The evaluation index is word error rate (WER) which is defined using
WER = imwrong/imtotal [6,35].

Figure 7 compares the performance of proposed RC to the conventional one using the
same configuration as in Figure 3 excepting for θ = 4 ps and ki = 10 ns−1. The recognition
results of 0–9 are displayed in color of white and black. The white square in corresponding
position dipicts right recognition. Obviously, it is easier to recognize the digits using the
proposed RC than the conventional one. Comparing Figure 7a,b, the WER is reduced
from 0.32 to 0.16 by using proposed RC with a relative high processing speed of about
T−1 = 625 MSample/s. However, better performance can be achieved in conventianl RC
is much slower processing speed is adopted.
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5. Discussion

It is worth mentioning that some reported works have improved the processing speed
up to 10 GSample/s in time-series prediction by taking advantage of short photon lifetime
using particular lasers [15,23]. In addition, the NMSE from those works are usually in the
order of 0.01. Practically, using optical injection is an universal approach to manipulate
the carrier-photon resonance. Hence, our proposed method could be compatible to those
particular lasers for achieving further improvement on both processing speed and NMSE.

6. Conclusions

In summary, a delay-laser-based RC under optical injection is proposed and numeri-
cally investigated. The optical injection is introduced to the response laser in the reservoir
layer. Study of the response laser dynamics reveals an acceleration of the transient response.
The chaotic time-series prediction task and handwritten digit recognition are adopted to test
the improvement. The results show that the prediction error is significantly reduced and
stabilized in high processing speed range by using proper injection parameters. Comparing
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to the conventional RC, the proposed RC enhances the processing speed by an order of
magnitude of about 5 GSample/s for NMSE below 0.006. The advantage of using proposed
RC is also verified by using another task of handwritten digit recognition, where better
WER is achieved.
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