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Abstract: According to the fundamental laws of quantum optics, vacuum noise is inevitably added
to the signal when one tries to amplify a signal. However, it has been recently shown that noiseless
signal amplification can be realized when a phase-sensitive process is involved. Two phase-sensitive
schemes, a correlation injection scheme and a two-beam phase-sensitive amplifier scheme, are both
proposed to realize multi-way noiseless signal amplification in a symmetrical cascaded four-wave
mixing process. We theoretically study the possibility of the realization of four-way noiseless signal
amplification by using these two schemes. The results show that the correlation injection scheme can
only realize one-way noiseless signal amplification, but that the two-beam phase-sensitive amplifier
scheme can lead to four-way noise figure values below 1. Our results here may find potential
applications in quantum information processing, e.g., the realization of quantum information tap and
quantum non-demolition measurement, etc.

Keywords: noiseless signal amplification; four-wave mixing; noise figure

1. Introduction

Noiseless signal amplification is the ultimate goal of any quantum amplifier. How-
ever, for a phase-insensitive amplifier, the quantum noise of vacuum is inevitably coupled
in via the unused port [1]. Thus, in the amplification process, the deterioration of the
signal-to-noise ratio (SNR) is unavoidable and can be halved in the high gain limit. This is
often referred to as the 3 dB penalty for a phase-insensitive amplifier [2,3]. To overcome
this penalty, an electro-optic feedforward scheme can be used to produce perfect noiseless
signal amplification in the linear optical process [4]. From the perspective of application, a
noiseless linear amplifier employed at the stage of signal preparation is a useful resource
to enhance the performance of coherent signals in the presence of phase diffusion [5]. In
addition, the effect of phase diffusion on quantum communication channels based on phase
the modulation of coherent states [6], experimental estimation of one-parameter qubit
gates [7], and the implementation of high-precision interferometric measurements [8] has
also been investigated thoroughly. Meanwhile, for the nonlinear optical process, a noiseless
optical amplifier based on a phase-sensitive four-wave mixing (FWM) process has been
implemented, and its noise figure (NF) value is always better than that obtained with a
phase-insensitive amplifier with the same gain [9]. Similarly, a probabilistic amplifier as
the underlying nonlinear operation can also be used to improve the detection efficiency
in the scheme of the detection of a low-intensity optical coherent signal [10]. However,
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the two above schemes [4,9] are both used to realize the noiseless signal amplification for
the one-way case (one input–one output) using a direct intensity detection method.

The FWM process in an atomic vapor cell as a phase-insensitive amplifier can be
used to amplify the signal beam, and a new beam called the idler beam is generated
on the other side of the pump beam at the same time [11–14]. In this sense, the FWM
process is a promising candidate for realizing two-way (one input–two outputs) signal
amplification [15–17]. From this point of view, multiple-way (one input–multiple outputs)
signal amplification compared with the one-way case can also be obtained by cascading
more FWM processes. As shown in Figure 1a, four-way signal amplification from a
symmetrical cascaded FWM process may be realized [18,19]. To analyze the performance
of noiseless signal amplification in Figure 1a, the input–output relation in Figure 1a can be
expressed as

Ĉ1 =
√

G1G2 â1 +
√

G2g1v̂†
0 +
√

g2v̂†
2,

Ĉ4 =
√

G1g2 â†
1 +
√

g1g2v̂0 +
√

G2v̂2,

Ĉ2 =
√

G2g1 â†
1 +

√
G1G2v̂0 +

√
g2v̂†

1,

Ĉ3 =
√

g1g2 â1 +
√

G1g2v̂†
0 +

√
G2v̂1, (1)

where â1 is the coherent input signal beam, ν̂0, ν̂1, and ν̂2 are the vacuum inputs, G2 = G3
is assumed for the sake of simplicity, and gi (i = 1, 2) has a relation gi = Gi − 1 with Gi.
As can be seen from Equation (1), the intensities of the four output beams Ĉ1, Ĉ4, Ĉ2, and Ĉ3
are amplified by a factor of G1G2 > 1, G1g2 > 1, G2g1 > 1, and g1g2 > 1, respectively, if
and only if G1 and G2 are both larger than 1. G1 and G2 are both set to 3 in the following
analysis. After the signal amplification has been discussed, the noise performance should
also be calculated. A measure of the amplifier noise performance is characterized by NF,
which is defined as the ratio between the SNRs of the input signal (SNRIN) and the output
signal (SNROUT),

NF =
SNRIN

SNROUT
, (2)

where the SNR is defined as the ratio between the signal 〈N〉2 and the noise 〈(∆N)2〉.
In general, the NF value is greater than 1 because the amplifier cannot preferentially
amplify the signal over the noise. Noiseless signal amplification can be realized if the value
of NF is equal to 1 [20]. For the specific case in Figure 1a, the NF values for the four output
beams ĉ1, ĉ4, ĉ2, and ĉ3 can be obtained from Equation (1) and written as

NF(a)
1 =

2G1G2 − 1
G1G2

, NF(a)
4 =

2G1g2 + 1
G1g2

,

NF(a)
2 =

2G1G2 − 1
G2g1

, NF(a)
3 =

2G1g2 + 1
g1g2

, (3)

respectively, where the superscript and subscript for NF(k)
j represent the different schemes.

We have three schemes throughout the whole discussion, i.e., symmetrical cascaded FWM
processes (Figure 1a), a correlation injection scheme based on Figure 1b, a two-beam phase-
sensitive amplifier scheme based on Figure 1c in Figure 1, and the jth (j = 1, 4, 2, and 3)
beam in the three schemes, respectively. As can be seen from Equation (3), the NF values
of the four beams Ĉ1, Ĉ4, Ĉ2, and Ĉ3 all eventually saturate at the value of 2 in the high
gain limit (G1, G2 → ∞), i.e., 3 dB penalty for the phase-insensitive amplifier. This means
that the SNR values of the four output beams from Figure 1a can be halved as the coherent
signal â1 passes through the FWM1, FWM2, and FWM3 processes sequentially. In addition,
the NF values of the four output beams Ĉ1, Ĉ4, Ĉ2, and Ĉ3 for the case of G1 = G2 = 3 are
1.89, 2.17, 2.83, and 3.25, respectively.
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Figure 1. The schemes for the generation of four-way noiseless signal amplification from a sym-
metrical cascaded FWM process (a), with a correlation injection scheme (b), and with a two-beam
phase-sensitive amplifier scheme (c). â1 and b̂1 are the coherent input signal beam and the coherent
input idler beam, respectively. ν̂0, ν̂1, and ν̂2 are the vacuum inputs, and ĉ1, ĉ2, ĉ3, and ĉ4 are the four
output beams, respectively. S and I represent the signal and idler beams, respectively. Gi (i = 1–3)
is the power gain in the individual FWMi process, and Φ1, Φ2, and Φ are the phases of the FWM2

process, FWM3 process, and pre-amplifier in (c), respectively. T1 and T2 are the transmission ratios
for signal and idler beams, respectively, generated from the FWM1 process.

2. Symmetrical Cascaded FWM Process with Correlation Injection Scheme

As discussed above, compared with the impossibility of noiseless signal amplification
in the symmetrical cascaded FWM process as shown in Figure 1a, the possibility of the
realization of four-way noiseless signal amplification based on the correlation injection
scheme will be discussed. As shown in Figure 1b, the signal and idler beams generated from
the FWM1 process with the reflective ratios of R1 and R2 are seeded into the dark ports in the
FWM3 and FWM2 processes, respectively [21]. To be more specific, the signal (idler) beam
with the reflective ratio of R1 (R2) and the idler (signal) beam with the transmission ratio of
T2 (T1) are both seeded into the FWM3 (FWM2) process, and the FWM2 and FWM3 processes
will become the phase-sensitive amplifiers due to the double seed configuration [22–27].
To obtain the NF values and gain values of this scheme, the input–output relation of the
symmetrical cascaded FWM process with correlation injection scheme in Figure 1b can be
given by

Ĉ(b)
1 = C11 â1 + C12ν̂†

0 + C13ν̂1 + C14ν̂†
2 ,

Ĉ(b)
4 = C41 â†

1 + C42ν̂0 + C43ν̂†
1 + C44ν̂2,

Ĉ(b)
2 = C21 â†

1 + C22ν̂0 + C23ν̂†
1 + C24ν̂2,

Ĉ(b)
3 = C31 â1 + C32ν̂†

0 + C33ν̂1 + C34ν̂†
2 , (4)
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with

C11 =
√

G1G2T1 −
√

g1g2R2eiΦ1 , C12 =
√

G2g1T1 −
√

G1g2R2eiΦ1 ,

C13 =
√

G2R1, C14 =
√

g2T2eiΦ1 , C41 =
√

G1g2T1eiΦ1 −
√

G2g1R2,

C42 =
√

g1g2T1eiΦ1 −
√

G1G2R2, C43 =
√

g2R1eiΦ1 , C44 =
√

G2T2,

C21 =
√

G2g1T2 −
√

G1g2R1eiΦ2 , C22 =
√

G1G2T2 −
√

g1g2R1eiΦ2 ,

C23 =
√

g2T1eiΦ2 , C24 =
√

G2R2, C31 =
√

g1g2T2eiΦ2 −
√

G1G2R1,

C32 =
√

G1g2T2eiΦ2 −
√

G2g1R1, C33 =
√

G2T1, C34 =
√

g2R2eiΦ2 , (5)

where Φ1 and Φ2 are the phases of the phase-sensitive FWM2 and FWM3 processes, respec-
tively. Based on Equations (4) and (5), the NF values and gain values of the four output
beams Ĉ1, Ĉ4, Ĉ2, and Ĉ3 can be calculated analytically and expressed as

NF(b)
1 =

(2G1 − 1)(G2T1 + g2R2) + G2R1 + g2T2 − 4α

G1G2T1 + g1g2R2 − 2α
,

NF(b)
4 =

(2G1 − 1)(G2R2 + g2T1) + G2T2 + g2R1 − 4α

G1g2T1 + G2g1R2 − 2α
,

NF(b)
2 =

(2G1 − 1)(G2T2 + g2R1) + G2R2 + g2T1 − 4β

G2g1T2 + G1g2R1 − 2β
,

NF(b)
3 =

(2G1 − 1)(G2R1 + g2T2) + G2T1 + g2R2 − 4β

G1G2R1 + g1g2T2 − 2β
, (6)

and

G(b)
1 = G1G2T1 + g1g2R2 − 2α, G(b)

4 = G1g2T1 + G2g1R2 − 2α,

G(b)
2 = G2g1T2 + G1g2R1 − 2β, G(b)

3 = g1g2T2 + G1G2R1 − 2β, (7)

respectively, where α =
√

G1G2g1g2T1R2 cos Φ1 and β =
√

G1G2g1g2T2R1 cos Φ2. Equa-
tion (6) will be reduced to Equation (3) when we set T1 = T2 = 1 and Φ1 = Φ2 = 0, corre-
sponding to the case of the symmetrical cascaded FWM process without the correlation
injection scheme in Figure 1a. As can be calculated from Equation (6), the minimum value of
NF(b)

1 (1) (NF(b)
4 (2.04)) can be obtained for the case of T1 = 1, T2 = 0, and Φ1 = 0 (Φ1 = π).

This means that the signal and idler beams generated from the FWM1 process are totally
seeded into the FWM2 process. As shown in Figure 2, the dependence of NF(b)

1 and NF(b)
4

on Φ1 for the case of T1 = 1 and T2 = 0 is shown in Figure 2a,b, respectively; the regions
(0 < Φ1 < 1.23 and 5.05 < Φ1 < 2π) and (1.05 < Φ1 < 5.24) smaller than 1.89 (trace B in
Figure 2a) and 2.17 (trace B in Figure 2b), respectively, are the regions in which the values
of NF(b)

1 and NF(b)
4 can be optimized compared with the corresponding ones, respectively,

in Figure 1a. Here, the optimal phase point Φ1 = π instead of Φ1 = 0 for NF(b)
4 is because

the denominator of NF(b)
4 is equal to 0 for the case of Φ1 = 0; in this sense the value of

NF(b)
4 will tend to infinity.

Next the dependence of the NF values and gain values of the two beams Ĉ1 and Ĉ4
on T1 and T2 with the optimal phase points will be discussed. Under the condition of
Φ1 = 0, the region A in Figure 2c (right side of orange dashed line) is the region in which
the NF value reduction and the gain value deamplification for the beam Ĉ1 can be realized
simultaneously because the gain values G(b)

1 in Figure 2e are all smaller than G1G2 = 9. By
contrast, the NF value reduction and the gain value amplification for the beam Ĉ4 can be
realized simultaneously in the region A in Figure 2d (right side of orange dashed line)
because the region B in Figure 2f (right side of red dashed line) contains the region A in
Figure 2d. In this sense, the correlation injection scheme can only reduce the value of NF(b)

1
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to 1 without amplifying its signal, because the value of G(b)
1 is equal to 1 under the condition

of T1 = 1, T2 = 0, and Φ1 = 0. From the physical point of view, the above condition means
that the configuration in Figure 1b is reduced to an SU(1,1) interferometer [22–24], and the
special case of Φ1 = 0 also implies that the SU(1,1) interferometer is operated on its dark
fringe caused by destructive interference, in which quantum noise is canceled.

(a) (c)

1.89

(b) (d) (f)

2.17

(e)

A

A
B

6

Figure 2. The dependence of NF(b)
1 and NF(b)

4 in Equation (6) on Φ1 under the condition of T1 = 1
and T2 = 0 (traces A in (a,b)), and T1 and T2 under the condition of Φ1 = 0 (Φ1 = π) in (c,d).
The dependence of G(b)

1 and G(b)
4 in Equation (7) on T1 and T2 under the condition of Φ1 = 0

(Φ1 = π) in (e,f). The orange and red dashed lines in all the figures are the NF values and gain
values, respectively, from the symmetrical FWM processes without the correlation injection scheme
in Figure 1a. The vertical blue dashed lines in (a,b) are Φ1 = (1.23, 5.05) and Φ1 = (1.05, 5.24),
respectively. All the above figures are obtained for the case of G1 = G2 = 3.

Similarly, for the two beams Ĉ2 and Ĉ3, the minimum value of NF(b)
2 (2.04) (NF(b)

3 (1))
can be obtained for the case of T1 = 0, T2 = 1, and Φ2 = π (Φ2 = 0), meaning that
the signal and idler beams generated from the FWM1 process are totally seeded into the
FWM3 process. As shown in Figure 3a,c,e, the NF value NF(b)

2 reduction and the gain

value G(b)
2 amplification for the beam Ĉ2 can be realized simultaneously in the region B

in Figure 3e (left side of red dashed line) because the region A in Figure 3c (left side of
orange dashed line) contains the region B in Figure 3e for the case of Φ2 = π, while the NF
value NF(b)

3 reduction and the gain value G(b)
3 amplification for the beam Ĉ3 can be realized

simultaneously in the region B in Figure 3f (left side of red dashed line) because the region
A in Figure 3d (left side of orange dashed line) contains the region B in Figure 3f for the
case of Φ2 = 0. However, the correlation injection scheme can also reduce the value of
NF(b)

3 to the noiseless level without amplifying its signal, because the value of G(b)
3 is equal

to 1 under the condition of T1 = 0, T2 = 1, and Φ2 = 0. To sum up, the correlation injection
scheme can only realize one-way noiseless signal amplification for the two beams Ĉ1 or
Ĉ3 without an amplification effect, because the conditions for realizing noiseless signal
amplification ((T1 = 1, T2 = 0, and Φ1 = 0) and (T1 = 0, T2 = 1, and Φ2 = 0), respectively),
are incompatible. Meanwhile, the NF values of the remaining two beams Ĉ2 and Ĉ4 are
still bounded by the 3 dB penalty.
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(a) (c)

2.83

(b) (d) (f)

3.25

(e)

A

A

B
4

6

B

Figure 3. The dependence of NF(b)
2 and NF(b)

3 in Equation (6) on Φ2 under the condition of T1 = 0
and T2 = 1 (traces A in (a,b)), and T1 and T2 under the condition of Φ2 = π (Φ2 = 0) in (c,d). The
dependence of G(b)

2 and G(b)
3 in Equation (7) on T1 and T2 under the condition of Φ2 = π (Φ2 = 0) in

(e,f). The vertical blue dashed lines in (a) are Φ2 = (1.05, 5.24). See Figure 2 for others.

3. Symmetrical Cascaded FWM Process with Two-Beam Phase-Sensitive
Amplifier Scheme

Because only one-way noiseless signal amplification can be realized by using the
correlation injection scheme as shown in Figure 1b, the possibility of the realization of
four-way noiseless signal amplification based on the two-beam phase-sensitive amplifier
scheme in Figure 1c will be investigated in this section. As shown in Figure 1c, the coherent
input signal beam â1 and the other coherent input idler beam b̂1 are simultaneously and
symmetrically crossed in the center of the atomic vapor cell with power gain G, and this
interaction mechanism can be described as the form of

√
Gâ1 +

√
gb̂†

1eiΦ (Φ is the phase in
this process). This process can be understood as two individual phase-insensitive FWM
processes seeded only by the signal or idler beam interfering with each other, while it is
totally different from the single phase-insensitive FWM process [26,27]. Each FWM process
produces its own output beams, respectively, then the two output beams with the same
frequency overlap spatially, thus the two output beams are phase-sensitive. Following
similar procedures, the input–output relations can be expressed as

Ĉ(c)
1 =

√
GG1G2 â1 +

√
gG1G2eiΦ b̂†

1 +
√

G2g1v̂+0 +
√

g2v̂†
2,

Ĉ(c)
4 =

√
GG1g2 â†

1 +
√

gG1g2e−iΦ b̂1 +
√

g1g2v̂0 +
√

G2v̂2,

Ĉ(c)
2 =

√
GG2g1 â†

1 +
√

gG2g1e−iΦ b̂1 +
√

G1G2v̂0 +
√

g2v̂†
1,

Ĉ(c)
3 =

√
Gg1g2 â1 +

√
gg1g2eiΦ b̂†

1 +
√

G1g2v̂†
0 +
√

G2v̂1, (8)

Based on the above expressions, the NF values and gain values for the two-beam
phase-sensitive amplifier scheme can be expressed by

NF(c)
1 = Ω[2G− 1

G1G2
],

NF(c)
4 = Ω[2G +

1
G1g2

],

NF(c)
2 = Ω[2G +

2G2 − 1
G2g1

],

NF(c)
3 = Ω[2G +

2G2 − 1
g1g2

], (9)
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and

G(c)
1 =

G1G2

Ω
, G(c)

4 =
G1g2

Ω
,

G(c)
2 =

G2g1

Ω
, G(c)

3 =
g1g2

Ω
, (10)

respectively. Where Ω = λ

Gλ+g+2
√

Ggλ cos Φ
and λ is the intensity ratio between the two

beams â1 and b̂1. Equation (9) will also be reduced to Equation (3) when we set G = 1,
corresponding to the case of the symmetrical cascaded FWM process without the two-beam
phase-sensitive amplifier scheme in Figure 1a. The value of Ω is smaller than 1 if and only if
G > 1 and Φ = 0; in this sense, the NF value reduction and the gain value amplification for
all the four output beams in this scheme compared with the corresponding ones in Figure 1a
may be realized simultaneously. Furthermore, it can be seen from Equation (10) that the gain
values are always larger than the corresponding ones in the symmetrical cascaded FWM
process without the two-beam phase-sensitive amplifier scheme, thus only the dependence
of NF values on G, λ, and Φ will be discussed. As shown in Figure 4a, the regions on the
bottom side of the orange dashed (C1), cyan dashed (C4), red dashed (C2), and magenta
dashed (C3) lines in Figure 4a are the regions in which the values of NF(c)

1 , NF(c)
4 , NF(c)

2 ,

and NF(c)
3 , respectively, are all smaller than 1, meaning that this scheme can preferentially

amplify the signal over the noise for all the four output beams, and four-way noiseless signal
amplification can be realized in the smallest overlapping region A in Figure 4a. The physical
mechanism of the realization of noiseless signal amplification from the two-beam phase-
sensitive amplifier scheme can be explained as follows. Due to the introduction of the two-
beam phase-sensitive amplifier as the pre-amplifier compared with the case in Figure 1a, its
operating mechanism will be discussed firstly for the simplicity of explanation. According

to the above NF definition NF = 〈Nin〉2

〈(∆Nin)2〉/
〈Nout〉2

〈(∆Nout)2〉 = 〈Nin〉
〈(∆Nin)2〉

〈(∆Nout)
2〉

〈Nout〉
〈Nin〉
〈Nout〉 , where

the first and second terms are the reciprocal of the noise level of the input signal and the
noise level of the output signal, respectively. Moreover, the noise level is defined as the
ratio between the noise power and the standard quantum limit; thus the noise level of the
input coherent signal is 1, and the noise level of the output amplified signal is 2G− 1. In
this sense, the noise level of the coherent input signal â1 is amplified by a factor of 2G− 1
after experiencing the amplification process, which is obviously independent of intensity
ratio λ and phase Φ. The third term, on the other hand, i.e., the signal amplification factor
G(c)

1 = 1/Ω (G1 = G2 = 1) from Equation (10), is obviously dependent on the intensity
ratio λ and phase Φ; thus the correct choice of these working parameters can guarantee its
signal amplification over the noise amplification and thus an NF value less than 1. Then,
this amplified signal is seeded into the sequential FWM processes to generate the four-way
output signals, and their noiseless signal amplification performance will inevitably be
slightly modified, as shown in Equation (9).

(a) (b)

A

Figure 4. The dependence of Equation (9) on G and λ for the case of Φ = 0 in (a), and Φ for the case of
G = 3 and λ = 1 in (b). The purple dashed line is 1, and the vertical dashed lines are Φ = (−1.1, 1.1).
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Similarly, this interesting phenomenon of an NF value less than 1 can also be seen
in [9], in which the effect of loss on the NF value of both a phase-insensitive amplifier and
a phase-sensitive amplifier is investigated. Here the loss is modeled by a beam splitter in
the path of the beam before the detection but after the amplification process. The analytical
results show that the NF value of phase-sensitive amplifier is always below 1 because the
SNR of a shot-noise-limited input is degraded more with loss than the SNR of the amplified
output, while the NF value of the phase-insensitive amplifier is below 1 only for the smaller
loss value. Besides the theoretical analysis, the related experimental results can also be seen
in this study. Another example is shown in [22], when the internal mode was correlated
with the input mode and thus the amplifier was in an entangled state, the input SNR value
was 5.4 dB, while the output SNR value was 6.6 dB. This also meant that the SNR of the
amplified output was larger than the input SNR by 1.2 dB, i.e., the NF value was smaller
than 1.

In addition, when the values of G and λ are set to 3 and 1, respectively (the results
are shown in Figure 4b), the minimum values for NF(c)

1 (orange solid line C1), NF(c)
4 (cyan

solid line C4), NF(c)
2 (red solid line C2), and NF(c)

3 (magenta solid line C3) are 0.59, 0.62,
0.69, and 0.73, respectively. The green overlapping region in between the blue dashed
lines −1.1 < Φ < 1.1 is a region where four-way NF values below 1 can be realized in the
phase region.

Next, a natural question about the minimum values of Equation (9) has to be answered.
Firstly, the minimum values of Equation (9) are all equal to 0 when we set λ = 0, which
is evidently impossible because λ = 0 requires the intensity of the beam b1 to be infinite.
Secondly, λ = 1 is always chosen due to the experimental operability [26,27]. In this sense
the minimum values of Equation (9) are all equal to 0.5 in the high power gain limit, as
shown in Figure 5; therefore, the ultimate minimum NF values obtained by the two-beam
phase-sensitive amplifier scheme are all bounded by 0.5, while the intensities of all the four
beams are also amplified by a factor of 4G. Overall, the two-beam phase-sensitive amplifier
scheme can lead to four-way NF values less than 1.

Figure 5. The dependence of Equation (9) on G for the case of λ = 1 and Φ = 0. The black dashed
line is 0.5.

4. Conclusions

In conclusion, we theoretically analyzed the possibility of the realization of four-
way noiseless signal amplification by using both a correlation injection scheme and a
two-beam phase-sensitive amplifier scheme. The correlation injection scheme can only
realize one-way noiseless signal amplification in some extreme cases, while the two-beam
phase-sensitive amplifier scheme can lead to four-way NF values less than 1. Obviously,
the two-beam phase-sensitive amplifier scheme we report here can also be readily extended
to multiple-way noiseless signal amplification by cascading more FWM processes or by
seeding an FWM process with a spatially structured pump [28–33]. These results also prove
that the two-beam phase-sensitive amplifier is of great interest for several fields, including
optical communications, such as the improvement in NF value [34], quantum information
processing, e.g., the realization of quantum information tap [35–37] and the quantum
non-demolition measurement [38–42], etc. In particular, if the two-beam phase-sensitive
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amplifier can support multiple spatial modes, it could perform the noiseless amplification
of images and lead to an enhancement of optical resolution, which is an important goal in
imaging research [9].
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