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Abstract: Line-structured light three-dimensional (3D) measurement is apt for measuring the 3D
profile of objects in complex industrial environments. The light-plane calibration, which is a crucial
link, greatly affects the accuracy of measurement results. This paper proposes a novel calibration
method for line-structured light 3D measurement based on a simple target, i.e., a single cylindrical
target (SCT). First, the line-structured light intersects with the target to generate a light stripe.
Meanwhile, the camera captures the calibration images, extracts the refined subpixel center points of
the light stripe (RSCP) and detects the elliptic profiles of the two ends of the cylindrical target (EPCT).
Second, two elliptical cones defined by the EPCT and the camera optical center are determined.
Combining the two defined elliptical cones and the known radius of the SCT, we can uniquely solve
the axis equation of the SCT. Finally, because the coordinates of RSCP in the camera coordinate system
fulfill both the camera model and the cylindrical equation, these coordinates can be solved and used
to obtain the optimal solution of the light-plane equation. The results of simulations and experiments
verify that our proposed method has higher accuracy and effectiveness.

Keywords: line-structured light; three-dimensional measurement; light-plane calibration; three-
dimensional calibration target; cylindrical projection

1. Introduction

Three-dimensional (3D) measurements are widely performed in industrial automa-
tion quality verification, industrial reverse design, surface-deformation tracking, and 3D
reconstruction for object recognition [1–3]. Commonly, 3D measurement methods can be
divided into two categories, namely contact measurements and noncontact measurements.
With the rapid development of industrial production, noncontact measurement is more
important, especially vision measurement. Among the many vision-measurement methods,
the light-structured vision-measurement method plays an important role in some industrial
environments, such as online pipeline product inspection, noncontact reverse engineering,
and computer animation, because of its advantages of being noncontact, nondestructive,
rapid, full-field, and high-precision [4–6]. According to the type of projected light, there
are three categories of light-structured vision-measurement method: the point-structured
light method, line-structured light method, and coded-structured light method. The point-
structured light method can obtain one-dimensional data, i.e., a single measurement can
obtain the distance of a point, which is commonly suitable for range measurement. If 3D
measurement based on the point-structured light method is required, a precision mechan-
ical motion is essential (e.g., Leica 3D DISTO). The coded-structured light method [7–9]
adopts a projector to cast the coding patterns, and meanwhile, a camera captures the
patterns distorted by the surface of the object. Because of the limited power of the projector,
the coded-structured light method is not suitable for complex industrial environments,
especially metallic surfaces. In recent years, with the rise of intelligent driving and in-
dustry, laser-scanning-measurement technology (e.g., laser-scanning measurement with
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galvanometer scanners) [10,11] has developed greatly, which is to measure the one- or
two-dimensional information by the precise movement of a laser beam. The technology is
suitable for large scene measurement, as well as for desktop precise measurement. How-
ever, this technology usually requires precision mechanical structures, which brings harsh
manufacturing difficulty and tedious training procedures. The line-structured light method
involves the use of a large-power line laser and a camera to construct a 3D optical sensor.
The line-structured light method aided by laser triangulation can measure the 3D profile of
the object in complex industrial environments, such as weld-quality inspection, chip-pin
detection, and printed circuit-board (PCB)-quality inspection. Moreover, the line-structured
light method also has the advantages of simplicity, high precision, and high measurement
speed [12].

In the line-structured light method, the essence is how to convert the two-dimensional
(2D) light-stripe information into 3D-coordinate information. This means that the system
calibration, which is a crucial link, greatly affects the accuracy of the measurement results.
The system calibration consists of the camera calibration and the light-plane calibration.
Among them, the camera calibration is mainly to obtain the intrinsic parameters of the
camera, and many related studies have been published in the past [13–17]. In our research,
we assume that the camera has been calibrated, i.e., the intrinsic parameters of rhe camera
are known. Thus, the focus of this paper is the calibration of light-plane parameters.
Depending on the form of the calibration target, the one-dimensional (1D)-, 2D-, and
3D-target light-plane methods are widely reported [18–27]. For the 1D-target method,
Wei, et al. [18] proposed a calibration method based on a 1D target. The series of intersecting
points between the light plane and the 1D target were determined using the known distance
between the characteristic points of the 1D target. Liu et al. [19] reported a calibration
method using a free-moving 1D target. The intersections between the free-moving 1D
target and the light plane were solved according to the cross-ratio invariance, and the light
plane was fitted using the obtained intersections. For the 2D-target method, Zhou et al. [20]
proposed an on-site calibration method based on a planar target, and the calibration
points were obtained through repeated target movements. Zhang et al. [21] also reported a
higher-precision calibration method using a planar target, where the line of light stripes was
described utilizing the Plück matrix. The existing 1D and 2D targets are easy to manufacture
and simple to maintain, but the methods based on the 1D and 2D target cannot be calibrated
to depend only on one image. For the 3D-target method, the 3D-constraint relationship
of calibration can utilize the 3D target itself. Some researchers [22–24] introduced a 3D
target to determine the light-plane calibration points based on the cross-ratio invariability,
but these kinds of methods were complex and low-precision. Liu et al. [25] developed
a calibration method using a single-ball target. The method is based on the fact that
the profile of the ball target is unaffected by its position and posture of the ball target.
Liu et al. [26] also proposed a calibration method based on a parallel cylindrical target.
The line-structured light intersects the parallel cylindrical target to solve a minor axis of
the auxiliary cone, thereby obtaining the light-plane Equation. Liu’s two methods have
the simple calibration process and the 3D-constraint stability in a complex environment.
However, neither the standard ball target nor the parallel cylindrical target are easy to
manufacture. Zhu et al. [27] proposed a calibration method based on an SCT. The calibration
target used in the method is a cylinder, which is very simple. However, the method took
advantage of the symmetry of the cylinder, that is, the position and posture of the target
have special requirements.

In this paper, we present a novel calibration method for line-structured light 3D
measurement through utilizing a simple target, i.e., a single cylindrical target (SCT). The
main reasons for selecting a cylinder as the calibration object are its ease of manufacture
and low cost. Compared with the method using a SCT reported in literature [27], the
position and posture of the calibration target in our study is free. Firstly, the line-structured
light 3D-measurement model is established. Secondly, the principle of the light-plane
calibration with a SCT is presented, and the main contents include the following: (1) the



Photonics 2022, 9, 218 3 of 18

refined subpixel centerpoints (RSCP) are extracted by the introduced Steger’s method
and the elliptic profiles of the two ends of the cylindrical target (EPCT) are detected
with the introduced “revisited arc-support line segment (RALS) method”. (2) The two
elliptical cones defined by the two end circles of the SCT and the camera optical center
are determined. Combining the two defined elliptical cones and the known radius of the
SCT, we can uniquely solve the axis equation of the SCT. (3) The coordinates of the RSCP in
the camera coordinate system should satisfy two conditions: the camera model and the
cylindrical equation. Then, the light-plane equation is calculated by utilizing nonlinear
optimization. Finally, the accuracy and effectiveness of our proposed method are verified
through simulations and experiments.

The paper is organized as follows: Section 2 presents the line-structured light 3D-
measurement model. Section 3 outlines the principle of the light-plane calibration based
on the SCT. Sections 4 and 5 describe simulations and experiments. Section 6 concludes
the study. Finally, in the Appendix A, we derive two geometry conclusions used in
this paper.

2. Line-Structured Light 3D-Measurement Model

Figure 1 shows the schematic diagram of the model for the line-structured light 3D-
measurement with an SCT. A line laser is cast onto the SCT by the laser projector, after
which the camera captures the light-stripe images distorted by the cylinder surface. Finally,
the 3D coordinates of the points on the light stripe are determined. In Figure 1, Oc(Ow) is the
optical center. (Ow; Xw, Yw, Zw) and (Oc; Xc, Yc, Zc) represent the world coordinate system
(WCS) and the camera coordinate system (CCS), respectively. Here, for the simplicity of
analysis, WCS and CCS are set to identical. In the CCS, there is an arbitrary point, pc, on the
intersection of the light plane and the surface of the measured object. pc is projected onto
the normalized image plane to generate pn. The lens distortion of the camera will affect
pn, especially in the radial direction, which causes the shift from pn to pd. Therefore, the
camera model can be expressed as u

v
1

 = A·

 xd
yd
1

 = A· fd

 xc/zc
yc/zc

1

, k1, k2

, (1)

where (u, v) represent the coordinates of the undistorted image point puv; (xd, yd) denote
the coordinates of the distorted physical image point pd in the normalized image coor-
dinate system; fd[.] presents the distortion model; (xc, yc, zc) express the coordinates of
pc in the CCS; (k1, k2) are the radial distortion parameters; and A denotes the camera
intrinsic matrix:

A =

 fu 0 u0
0 fv v0
0 0 1

, (2)

where fu and fv are the horizontal and vertical focal lengths, respectively; and u0 and v0 are
the coordinates of the principal point of the camera.

From the geometric viewpoint, Equation (1) represents a ray passing through pc and
puv, which is one constraint that determines pc. The light plane serves as the other constraint:
pc is on the light plane, i.e., pc should satisfy the following equation:

αxc + βyc + γzc + δ = 0, (3)

where (α, β, γ, δ) represent the four parameters of the light-plane equation.
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Figure 1. Schematic diagram of the model for the line-structured light 3D measurement based on
a SCT.

3. Calibration Principle

As the premise of this study, the camera intrinsic matrix and the radius of the SCT
are known. The camera captures several calibration images. During the calibration-image
processing, the RSCP are extracted and the EPCT are detected (see Section 3.1). Then, the
axis of the SCT is determined by combining the two defined elliptical cones and the known
radius of the SCT. Next, based on the constraint of two conditions—the camera model and
the cylindrical equation—the coordinates of the RSCP in the CCS are solved (see Section 3.2)
and finally nonlinearly optimized to generate the light-plane equation (see Section 3.3). The
calibration flowchart is shown in Figure 2.
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3.1. Calibration-Image Processing

Figure 3 shows a captured image of the SCT during calibration. In the calibration-
image processing, there are two contents: (1) the RSCP must be extracted, (2) the EPCT need
to be detected. Because of high brightness and contrast of the light stripe, the first content
is to process the light stripe with Steger’s method [28], and there are three main steps.
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Step 1. Image preprocessing and solving the normal vector:
In order to approximate the ideal model of the light-stripe section, a Gaussian filter

is applied to preprocess the image. In addition, the normal vector of the center line of the
light stripe is solved through the Hessian matrix.

Step 2. Determining the subpixel points:
The gray distribution function is obtained by Taylor polynomial expansion along the

normal vector, and then the subpixel centerpoints of the light stripe are determined.
Step 3. Refining the subpixel points:
According to the theoretical derivation (see Appendix A), the subpixel points should

be on an ellipse. Thus, the subpixel points can be fitted to an ellipse, and then the ellipse is
resampled to obtain refined subpixel points, as shown in Figure 3a.

After the RSCP extraction, a minimum enveloping rectangular of the light stripe masks
the current image to prevent the light stripe from affecting subsequent image processing.
The second content is to detect the EPCT, and its purpose is ellipse detection. There are
several conventional methods for ellipse detection, e.g., Hough transform [29] and edge-
following [30] methods. Unfortunately, they have shortcomings of being less robust or
more time-consuming. Therefore, a novel ellipse-detection method, which is called the
RALS method [31], is introduced. The RALS method consists of two main steps:

Step 1. Initial ellipse-set generation:
According to the direction and polarity of the arc geometric cues, arc-support LS

prunes the straight LS. Meanwhile, several arc-support LS that share the similar geometric
properties are iteratively linked to form a group by satisfying the continuity and convexity
conditions. The linked arc-support LS are called an “arc-support group”. Then, from the
local and global perspectives, the initial ellipse set is generated from the arc-support groups.
A detailed description can be found in ref. [32].

Step 2. Ellipse clustering and candidate determination:
Owing to the presence of duplicates in the initial ellipse, a hierarchical ellipse-clustering

method [33] is proposed. Moreover, ellipse-candidate determination, which incorporates
the stringent regulations for goodness measurements and elliptic geometric properties for
refinement, is conducted. Finally, the EPCT are obtained, as shown in Figure 3b.
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3.2. Position and Posture Determination of the SCT

According to space analytic geometry, if the radius of a cylinder is known, the axis
equation of the cylinder can uniquely determine the cylinder. Therefore, the following
focuses on the solution of the axis equation of the SCT. As shown in Figure 4, Oc is the optical
center of the camera; (Oc; Xc, Yc, Zc) represents the CCS matching the WCS; (Ouv; u, v) is
the camera pixel coordinate system (CPCS). The SCT is projected into the CPCS. The two
end circles C1,2 of the SCT in the CCS should correspond to the EPCT E1,2 in the CPCS, and
the equations of E1,2 can be expressed as

a1,2u2
1,2 + b1,2v2

1,2 + c1,2u1,2v1,2 + d1,2u1,2 + e1,2v1,2 + f1,2 = 0, (4)

where (a1,2, b1,2, c1,2, d1,2, e1,2, f 1,2) are the equation parameters of E1,2, and (u1,2, v1,2) denote
the pixel coordinates of E1,2 in the CPCS. Equation (4) can also be rewritten as

(
u1,2 v1,2 1

)
E1,2

 u1,2
v1,2

1

 = 0. (5)

E1,2 denote a 3 × 3 symmetric matrix:

E1,2 =

 a1,2 c1,2/2 d1,2/2
c1,2/2 b1,2 e1,2/2
d1,2/2 e1,2/2 f1,2

. (6)
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Subsequently, E1,2 and Oc can determine two elliptic cones, Q1,2, whose equations can
be solved by using the back-perspective projection model of the camera and are described as

A1,2x2
1,2 + B1,2y2

1,2 + C1,2x1,2y1,2 + D1,2x1,2z1,2 + E1,2y1,2z1,2 + F1,2z2
1,2 = 0, (7)

where (A1,2, B1,2, C1,2, D1,2, E1,2, F1,2) are the equation parameters of Q1,2, and (x1,2, y1,2,
z1,2) denote the 3D coordinates of spatial points on Q1,2 in the CCS. The above Equation (7)
can also be rewritten as

(
x1,2 y1,2 z1,2

)
W1,2

 x1,2
y1,2
z1,2

 = 0. (8)
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W1,2 denote a 3 × 3 symmetric matrix:

W1,2 =

 A1,2 C1,2/2 D1,2/2
C1,2/2 B1,2 E1,2/2
D1,2/2 E1,2/2 F1,2

. (9)

According to the back-perspective projection, the following relation can be established:

AT
I E1,2AI =

[
W1,2 0

0 0

]
, (10)

where AI = A[I 0] represents the auxiliary camera matrix, and A is the camera intrinsic matrix.
In order to simplify calculation, the CCS needs to be transformed to the standard

coordinate system (SCS). As shown in Figure 5, (Os; Xs, Ys, Zs) represents the SCS. The SCS
and CCS have the same origin of the coordinate system. The Zs axis points to the center
of the end circle of the SCT. The Xs and Ys axis conform to the right-handed coordinate
system. Namely, the transformation between the SCS and CCS only involves rotation, and
the relation can be expressed as x1,2

y1,2
z1,2

 = R1,2·

 x′1,2
y′1,2
z′1,2

, (11)

where R1,2 are the rotation matrixes of coordinate transformation, and (x′1,2, y′1,2, z′1,2) denote
the 3D coordinates of spatial points on Q1,2 in the SCS. Substituting Equation (11) into
Equation (8), we can obtain

(
x′1,2 y′1,2 z′1,2

)
·R−1

1,2 W1,2R1,2·

 x′1,2
y′1,2
z′1,2

 = 0. (12)

Photonics 2022, 9, x FOR PEER REVIEW 7 of 18 
 

 

1,2 1,2 1,2

1,2 1,2 1,2 1,2

1,2 1,2 1,2

2 2
2 2 .
2 2

A C D
C B E
D E F

 
 =  
  

W  (9)

According to the back-perspective projection, the following relation can be estab-
lished: 

1,2
1,2

0
,

0 0I
T  

=  
 

I

W
A E A  (10)

where AI = A[I 0] represents the auxiliary camera matrix, and A is the camera intrinsic 
matrix. 

In order to simplify calculation, the CCS needs to be transformed to the standard 
coordinate system (SCS). As shown in Figure 5, (Os; Xs, Ys, Zs) represents the SCS. The SCS 
and CCS have the same origin of the coordinate system. The Zs axis points to the center of 
the end circle of the SCT. The Xs and Ys axis conform to the right-handed coordinate sys-
tem. Namely, the transformation between the SCS and CCS only involves rotation, and 
the relation can be expressed as 

1,2 1,2

1,2 1,2 1,2

1,2 1,2

,
x x
y y
z z

′   
   ′= ⋅   
   ′   

R   (11)

where R1,2 are the rotation matrixes of coordinate transformation, and (x’1,2, y’1,2, z’1,2) de-
note the 3D coordinates of spatial points on Q1,2 in the SCS. Substituting Equation (11) into 
Equation (8), we can obtain 

( )
1,2

1
1,2 1,2 1,2 1,2 1,2 1,2 1,2

1,2

0.
x

x y z y
z

−

′ 
 ′ ′ ′ ′⋅ ⋅ = 
 ′ 

R W R   (12)

 
Figure 5. Schematic diagram of diagonalization. 

It is important to note that in order to transform Q1,2 to the SCS, the following rela-
tionships should be satisfied: 

Figure 5. Schematic diagram of diagonalization.

It is important to note that in order to transform Q1,2 to the SCS, the following rela-
tionships should be satisfied:

R−1
1,2 W1,2R1,2 =

 λa,1,2 0 0
0 λb,1,2 0
0 0 λc,1,2

. (13)
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Hence, through solving the eigenvalue decomposition of W1,2, we can obtain R1,2 and
the corresponding eigenvalues (λa,1,2, λb,1,2, λc,1,2). The equations of the elliptic cone Q1,2
in the SCS can be written as

λa,1,2x′21,2 + λb,1,2y′21,2 + λc,1,2z′21,2 = 0, (14)

where the order of (λa,1,2, λb,1,2, λc,1,2) needs to be adjusted based on the following rules:
(λa,1,2 < λb,1,2 < 0, λc,1,2 > 0) or (λa,1,2 > λb,1,2 > 0, λc,1,2 < 0).

As shown in Figure 5, it should be noted that there are two planes that intersect the
elliptic cones Q1,2 to form the circles C1,2 (i.e., green dotted and black solid circles) with
the radius R of the SCT. In ref. [34], the expressions of the center and normal vector of C1,2,
which are related to (λa,1,2, λb,1,2, λc,1,2) and R, are reported.

(
x′axis,1,2, y′axis,1,2, z′axis,1,2

)
=

(
±R
√
|λc,1,2|(|λa,1,2|−|λb,1,2|)
|λa,1,2|(|λa,1,2|+|λc,1,2|) , 0, R

√
|λa,1,2|(|λb,1,2|+|λc,1,2|)
|λc,1,2|(|λa,1,2|+|λc,1,2|)

)
(

n′axis,x,1,2, n′axis,y,1,2, n′axis,z,1,2

)
=

(
±
√
|λa,1,2|−|λb,1,2|
|λa,1,2|+|λc,1,2| , 0,−

√
|λb,1,2|+|λc,1,2|
|λa,1,2|+|λc,1,2|

) , (15)

where (x′axis,1,2, y′axis,1,2, z′axis,1,2) and (n′axis,x,1,2, n′axis,y,1,2, n′axis,z,1,2) express the center coor-
dinates and normal vector of C1,2, respectively. Obviously, Equation (15) is ambiguous,
and cannot calculate the axis equation of the SCT. Fortunately, the SCT has two end cir-
cles, whose normal vectors are the same. Therefore, the center coordinates and normal
vectors of C1,2 can be uniquely determined. Next, in order to unify the coordinate sys-
tem, (x′axis, y′axis, z′axis) and (n′axis,x, n′axis,y, n′axis,z) need to be converted back into the CCS
according to the following relationships:

 xaxis,1,2
yaxis,1,2
zaxis,1,2

 = R1,2

 x′axis,1,2
y′axis,1,2
z′axis,1,2


 naxis,x,1,2

naxis,y,1,2
naxis,z,1,2

 = R1,2

 n′axis,x,1,2
n′axis,y,1,2
n′axis,z,1,2


. (16)

For more precision, the axis vector of the SCT is taken as the average of the vector
formed by the centers of C1,2 and the normal vectors of C1,2. The midpoint of the center
coordinates of C1,2 serves as a special point on the axis of the SCT. The expression is
written as:

(
xaxis yaxis zaxis

)
= mean

[(
xaxis,1 yaxis,1 zaxis,1

)
,
(

xaxis,2 yaxis,2 zaxis,2
)]

(
naxis,x naxis,y naxis,z

)
= mean


(

xaxis,1 − xaxis,2 yaxis,1 − yaxis,2 zaxis,1 − zaxis,2
)
,(

naxis,x,1 naxis,y,1 naxis,z,1
)
,(

naxis,x,2 naxis,y,2 naxis,z,3
)

 , (17)

where mean [.] represents average operator, and (xaxis, yaxis, zaxis) and (naxis,x, naxis,y, naxis,z)
are a special point on the axis and the axis vector of the SCT, respectively. Finally, the axis
equation of the cylindrical target can be expressed as

xc − xaxis
naxis,x

=
yc − yaxis

naxis,y
=

zc − zaxis
naxis,z

. (18)

3.3. Nonlinear Optimization of the Light-Plane Equation

According to Section 3.1, the RSCP of the light stripe is extracted. The coordinates of
the RSCP should satisfy the following camera model:
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A−1·

 uRSCP
vRSCP

1

 =

 xc,RSCP
yc,RSCP
zc,RSCP

, (19)

where (uRSCP, vRSCP) represents the coordinates of the RSCP in the CPCS, and (xc,RSCP,
yc,RSCP, zc,RSCP) denotes the coordinates of the corresponding points of the RSCP on the
intersection of the light plane and the SCT in the CCS.

The distance from the points (xc,RSCP, yc,RSCP, zc,RSCP) to the axis of the cylindrical
target should be the radius R of the SCT, i.e., there is the following relation: xc,RSCP − xaxis

yc,RSCP − yaxis
zc,RSCP − zaxis

×
 naxis,x

naxis,y
naxis,y

2

= R2. (20)

Essentially, Equation (20) expresses a cylinder equation. By combining Equations (19)
and (20), the coordinates (xc,RSCP, yc,RSCP, zc,RSCP) can be solved. However, there is a
phenomenon that needs to be highlighted and specifically addressed: From the geometric
viewpoint, Equation (19) is a ray equation. If a ray intersects a cylinder, there should be
two points of intersection (e.g., p1 and p2 in Figure 6). Obviously, one of both (e.g., p2 in
Figure 6) is not in the light plane. In other words, if our proposed method is used directly,
two solutions for p1 and p2 can be obtained, which will cause ambiguity.
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Here, we devise a strategy to eliminate the ambiguity. Figure 7 is taken as an example
to illustrate. Firstly, two endpoints (endp_1 and endp_2) of the light stripe are extracted.
Then, the label of the current point pcurrent on the RSCP is determined based on the follow-
ing policy:

i f (pcurrent is on the light stripe)&(Dis1,2 > T)
flag = 0;

else i f (pcurrent is not on the light stripe)&(Dis1,2 > T)
flag = 1;
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where Dis1,2 represent the distances from pcurrent to endp_1 and endp_2, and T is a threshold
used to enhance robustness. “flag” represents the label of pcurrent. Next, there is iteration
over all points in the RSCP and labels are marked. The points of flag = 0 correspond
to the points on the intersection of the light plane and the cylindrical target, and these
points are expressed as asterisks. Similarly, the points of flag = 1 and their corresponding
points are expressed as circles. From the measurement-system layout, the corresponding
points of flag = 0 on the intersection are closer to the camera. Therefore, when flag = 0, the
coordinates of the current point should be the ones with the smaller z-coordinate value;
and when flag = 1, vice versa.
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After the coordinates on the intersection of the light plane and the SCT calculation,
the following optimal objective function, which minimizes the distance from the points to
the light plane, is established:

plane(α, β, γ, δ) = min

(
n

∑
i

m

∑
j

αxc,RSCP,i,j + βyc,RSCP,i,j + γzc,RSCP,i,j + δ√
α2 + β2 + γ2

)
(21)

where (xc,RSCP,i,j, yc,RSCP,i,j, zc,RSCP,i,j) denote the coordinates of the jth point on the inter-
section of the light plane and the cylindrical target when the cylindrical target is placed
at the ith position in the CCS. The optimal solution of Equation (21) is derived through a
nonlinear procedure (e.g., Levenberg–Marquardt).

4. Simulations

This section simulates the influences of the number of target placements and cylindrical-
target radiuses on the calibration accuracy. In the simulation, the lens focus is set to 8 mm,
the camera resolution is 1280 pixels × 960 pixels, and the pixel size of the image sensor is
3.75 um × 3.75 um. The simulated light-plane equation is −0.2500x + 0.2588y − 0.9330z +
320.9310 = 0. The calibration accuracy is evaluated with the relative errors of the coefficients
of the light-plane equation.
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Simulation 1. Influence of cylindrical-target radiuses.

Gaussian noise (σ = 0.2 pixels) is incorporated into the simulated calibration images.
The cylindrical target is placed twice, and its radius varies from 15 to 40 mm at an interval
5 mm. The relative errors of the coefficients and the average relative error at different target
radiuses are presented in Figure 8a. The curves (especially the average relative error) show
that the error decreases with increasing target radiuses from 15 to 25 mm, and is almost
constant at a target radius above 25 mm. Therefore, considering economy, a SCT with a
radius of 25 mm is manufactured and used in the physical experiment.
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Simulation 2. Inference of the number of target placements.

The number of target placements is varied from 1 to 7. The radius of the target is set to
25 mm, and the noise level is σ = 0.2 pixels. Figure 8b depicts the relative error curves of
the coefficients at different placement numbers, and clearly shows that calibration accuracy
increases with the increasing number of target placements. In addition, the relative error
tends to stabilize when the number of target placements reaches four. Thus, considering
efficiency, the number of target placements can be set to four in the physical experiment.

5. Experiments
5.1. Experimental-System Setup

The experimental system is composed of a digital charge-coupled device (CCD) camera
(MV-CE013-50GM) and a laser projector. The CCD camera (resolution 1280 pixels × 960 pixels)
attaches to an 8 mm focal-length megapixel lens (Computer MP0814-MP2). The laser projector
casts a single-line laser (minimum linewidth 0.2 mm). The radius of the cylindrical target is
25 mm, and its accuracy of manufacture is 0.01 mm. The measurement distance of the system
is approximately 350 mm. Figure 9 displays the experimental-system setup.

5.2. Experimental Procedure

Step 1: The camera intrinsic matrix and the radial distortion parameters are obtained
through utilizing the MATLAB toolbox provided by Bouguet [35]: k1 =−0.1006, k2 = 0.1506 and

A =

 2223.4912 0 6493.2807
0 2223.9354 526.1537
0 0 1

.
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Step 2: The camera captures a calibration image when the cylindrical target is placed
at an appropriate position. Meanwhile, the captured image is undistorted. Then, according
to the calibration-image processing in Section 3.1, the RSCP is extracted, and the EPCT are
detected.

Step 3: As described in Section 3.2, combining the obtained EPCT, the calibrated
camera parameters, and the known radius of the SCT, the axis equation of the SCT at the
current position is solved.

Step 4: The coordinates of the corresponding points in the RSCP on the intersection of
the light plane and the SCT in the CCS are calculated through utilizing the camera model
[see Equation (19)] and the cylindrical equation [see Equation (20)].

Step 5: Step 2 to 4 are repeated. The camera captures several calibration images when
the SCT is placed at other positions. Several groups of the coordinates of the corresponding
points in the RSCP are obtained after Step 4. Then, by using these points, the light-plane
equation is nonlinearly optimized.
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5.3. Comparison Evaluation

In order to verify the effectiveness of our proposed method, a comparative evaluation
experiment was performed between the method proposed in ref. [20] and our proposed
method. First, the experimental system was calibrated with the method proposed in ref. [20].
A chessboard as a two-dimensional calibration target was placed at the appropriate position
four times. The size of the grid is 10 mm × 10 mm and its accuracy of manufacture is
0.01 mm. The four calibration images are shown in Figure 10. The calibration result is

0.0029x− 0.7712y− 0.6366z + 220.7429 = 0. (22)

Then, the experimental system was calibrated with our proposed method. The cylin-
drical target was placed at the appropriate position four times. The calibration images are
shown in Figure 11. We calculated the light-plane equations when the cylindrical target
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was at one time (one of four times selected) and four times, and their calibration results,
respectively, are

0.0035x− 0.7731y− 0.6358z + 220.6950 = 0, (23)

0.0033x− 0.7727y− 0.6360z + 220.5770 = 0. (24)
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Table 1. 3D coordinates of four measurement points on four images computed with Zhou’s method 
and our proposed methods (one time and four times), respectively (Unit: mm). 

Img. 
No. 

Pt. 
No. 

3D Coordinates with Zhou’s 
Method 

3D Coordinates with Our Pro-
posed Method (One Time) 

3D Coordinates with Our Pro-
posed Method (Four Times) 

1 

1  −64.8947  −6.1514  353.9093  −64.9559  −6.1572  354.2431  −64.9035  −6.1522  353.9570  
2  −30.0231  −6.3441  354.3015  −30.0544  −6.3507  354.6705  −30.0291  −6.3453  354.3725  
3  5.8525  −6.3470  354.4686  5.8592  −6.3543  354.8726  5.8541  −6.3487  354.5629  
4  49.2086  −6.3507  354.6705  49.2706  −6.3587  355.1169  49.2256  −6.3529  354.7929  

2 
1  −62.6991  −9.7994  358.3387  −62.7616  −9.8092  358.6959  −62.7101  −9.8012  358.4016  
2  −19.1331  −1.8554  348.9135  −19.1524  −1.8573  349.2668  −19.1364  −1.8557  348.9745  
3  15.3191  4.2758  341.6428  15.3349  4.2802  341.9938  15.3218  4.2766  341.7029  

Figure 10. Four calibration images of the chessboard used for Zhou’s method [16].
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Figure 11. Four calibration images of the SCT used for our proposed method.

Finally, we selected four images, which contained light stripes, to verify the effec-
tiveness. Four measurement points need be specified on the light stripe of each image.
The coordinates of these measurement points were calculated with the line-structured
light 3D-measurement model. It is noted that the light-plane equations of the model were
respectively calculated with Zhou’s method and our proposed methods (one time and four
times), i.e., Equations (22)–(24). The calculated results are listed in Table 1. The first and
second columns express the image and point number, respectively. The 3D coordinates
of the four measurement points on four images, calculated with Zhou’s method and our
proposed methods (one time and four times), respectively, are shown from the third to fifth
columns in Table 1. Furthermore, the result of Table 1 shows that (1) the light plane can
be calibrated with our proposed method when the calibration target is at one time; (2) the
effectiveness of light-plane calibration with our proposed method and the comparison
method is approximate and unanimous when the calibration target is at four times.

Table 1. 3D coordinates of four measurement points on four images computed with Zhou’s method
and our proposed methods (one time and four times), respectively (Unit: mm).

Img.
No.

Pt.
No.

3D Coordinates with Zhou’s
Method

3D Coordinates with Our
Proposed Method (One Time)

3D Coordinates with Our
Proposed Method (Four Times)

1

1 −64.8947 −6.1514 353.9093 −64.9559 −6.1572 354.2431 −64.9035 −6.1522 353.9570
2 −30.0231 −6.3441 354.3015 −30.0544 −6.3507 354.6705 −30.0291 −6.3453 354.3725
3 5.8525 −6.3470 354.4686 5.8592 −6.3543 354.8726 5.8541 −6.3487 354.5629
4 49.2086 −6.3507 354.6705 49.2706 −6.3587 355.1169 49.2256 −6.3529 354.7929

2

1 −62.6991 −9.7994 358.3387 −62.7616 −9.8092 358.6959 −62.7101 −9.8012 358.4016
2 −19.1331 −1.8554 348.9135 −19.1524 −1.8573 349.2668 −19.1364 −1.8557 348.9745
3 15.3191 4.2758 341.6428 15.3349 4.2802 341.9938 15.3218 4.2766 341.7029
4 51.4641 10.4954 334.2729 51.5179 10.5063 334.6223 51.4733 10.4973 334.3328
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Table 1. Cont.

Img.
No.

Pt.
No.

3D Coordinates with Zhou’s
Method

3D Coordinates with Our
Proposed Method (One Time)

3D Coordinates with Our
Proposed Method (Four Times)

3

1 −66.7849 6.8915 338.1001 −66.8362 6.8968 338.3598 −66.7844 6.8915 338.0978
2 −45.9074 12.9892 330.8081 −45.9417 12.9989 331.0549 −45.9058 12.9888 330.7964
3 −23.9047 4.4499 341.2532 −23.9267 4.4540 341.5663 −23.9071 4.4504 341.2868
4 −30.6853 9.4680 335.1432 −30.7109 9.4759 335.4226 −30.6863 9.4683 335.1536

4

1 −79.4441 −53.2654 410.9187 −79.7660 −53.4812 412.5834 −79.4944 −53.2991 411.1786
2 −40.6191 1.4219 344.8453 −40.7086 1.4251 345.6052 −40.6232 1.4221 344.8802
3 −27.2117 7.2410 337.8570 −27.2590 7.2535 338.4440 −27.2134 7.2414 337.8778
4 −3.4644 7.0703 338.1719 −3.4680 7.0778 338.5268 −3.4647 7.0711 338.2080

5.4. Accuracy Evaluation

In order to verify the accuracy of our proposed method, an accuracy-evaluation
experiment was performed between our proposed method and the methods proposed
in refs. [20,27]. The chessboard was placed inside the measured volume, and its external
parameter could be obtained. OT is the origin of the chessboard. The coordinates of OT in
the target coordinate system (TCS) are (0, 0, 0), and in the CCS can be solved according to
the external parameter of chessboard. Here, the principle of cross-ratio invariance (CRI)
is introduced to calculate the coordinates of the point D in the target coordinate system
(TCS). The distance dt (from D to OT in the TCS) is considered as the ideal evaluation
distance. Meanwhile, the coordinates of the testing point D in the CCS were also calculated
with the light-structured light 3D-measurement model, where the light-plane equations
were respectively solved with Zhou’s method [20], Zhu’s method [27], and our proposed
methods (one time and four times). Similarly, the distance dm (from D to OT in the CCS) are
measured distances. The coordinates of the ideal points and the testing points are listed
in Table 2, i.e., the second column shows the 3D coordinates of CRI in the TCS, which is
regarded as 3D data of the ideal points; and the 3D coordinates of testing points with Zhou’s
method, Zhu’s method, and our proposed methods (one time and four times), respectively,
are shown from the third to sixth columns. The distance data and the corresponding
accuracy-analysis results are shown in Table 3, where the dt column represents the ideal
evaluation distance and the dm1 . . . 4 columns show the measured distances with Zhou’s
method, Zhu’s method, and our proposed methods (one time and four times), respectively.
The last four columns are absolute errors (between dm1 . . . 4 and dt), and their corresponding
root-mean-square (RMS) errors. In Table 3, using Zhou’s method, Zhu’s method, and
our proposed methods (one time and four times), the root-mean-square (RMS) errors are
0.0568 mm, 0.0589 mm, 0.0681 mm, and 0.0406 mm, respectively. The calibration accuracy
with our proposed method is comparable to that with the method of the chessboard target
(i.e., Zhou’s method) and the SCT under non-free posture (i.e., Zhu’s method).

Table 2. 3D coordinates of the ideal points and testing points (Unit: mm).

Img.
No.

3D
Coordinates
of CRI in the

TCS

3D Coordinates of Testing
Points with Zhou’s Method

3D Coordinates of Testing
Points with Zhu’s Method

3D Coordinates of Testing
Points with Our Proposed

Method (One Time)

3D Coordinates of Testing
Points with Our Proposed

Method (Four Time)

1
35.3298 50 0 7.5092 3.3665 342.7088 7.4988 3.3567 343.3210 7.5168 3.3700 343.0576 7.5104 3.3671 342.7673
35.4605 70 0 26.7451 6.9766 338.4231 26.7235 6.9654 338.5439 26.7725 6.9837 338.7694 26.7496 6.9778 338.4804

2
45.5751 30 0 −8.8570 7.2698 337.9057 −8.8498 7.2659 338.1598 −8.8651 7.2765 338.2172 −8.8579 7.2705 337.9400
44.7668 60 0 21.2191 7.5686 337.6807 21.2145 7.5839 338.1210 21.2403 7.5762 338.0185 21.2224 7.5698 337.7325

3
35.5497 30 0 −18.8642 −6.5621 354.7166 −18.8598 −6.5705 355.0120 −18.8684 −6.5636 354.6956 −18.8844 −6.5692 354.9977
36.0057 70 0 21.1461 −6.5656 354.8030 21.1821 −6.5801 355.1356 21.1712 −6.5734 355.2233 21.1524 −6.5675 354.9081
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Table 3. Statical results of the Table 2. (Unit: mm).

Img. No. dt dm1 dm2 dm3 dm4 ∆(dt, dm1) ∆(dt, dm2) ∆(dt, dm2) ∆(dt, dm3)

1
61.2225 61.2170 61.2626 61.2583 61.2238 0.0055 0.0401 −0.0358 −0.0013
78.4694 78.4230 78.4011 78.4566 78.4285 0.0464 −0.0683 0.0128 0.0409

2
54.5627 54.6404 54.6696 54.6774 54.6443 −0.0777 0.1069 −0.1147 −0.0816
74.8603 74.8623 74.9039 74.9106 74.8697 −0.0020 0.0436 −0.0503 −0.0094

3
46.5165 46.4330 46.5333 46.4220 46.5131 0.0835 0.0168 0.0945 0.0034
78.7173 78.6527 78.7481 78.7595 78.6793 0.0646 0.0308 −0.0422 0.0380

RMS error 0.0568 0.0589 0.0681 0.0406

6. Conclusions

In this study, a novel calibration method for a line-structured light 3D-measurement
method based on an SCT is proposed. The SCT can be easily manufactured and move
freely in calibration processing. In calibration-image processing, the RSCP are extracted
with Steger’s method and the EPCT are detected with the RALS method. Combining two
defined elliptical cones, which are defined by the two end circles of the SCT and the camera
optical center, and the known radius of the SCT, the axis equation of the SCT is solved.
Based on the camera model and the cylindrical equation, the coordinates of RSCP in the
CCS can calculated to nonlinearly optimize the light-plane equation. The effectiveness
of the proposed method is verified by simulations and experiments, and its calibration
accuracy (RMS value) is about 0.04 mm.
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Appendix A

First, the conic-judgement theorem [36] is introduced, i.e., a binary quadratic equation
can represent a general conic:{

a11x2 + 2a12xy + a22y2 + 2a1x + 2a2y + a3 = 0
a2

11 + a2
12 + a2

22 6= 0
, (A1)

where a11, a12, a22, a1, a2, and a3 are the equation coefficients. In addition, we set

I1 = a11 + a22,

I2 =

∣∣∣∣ a11 a12
a12 a22

∣∣∣∣,
I2 =

∣∣∣∣∣∣
a11 a12 a1
a12 a22 a2
a1 a2 a3

∣∣∣∣∣∣,
K =

∣∣∣∣ a22 a2
a2 a3

∣∣∣∣+ ∣∣∣∣ a3 a1
a1 a11

∣∣∣∣.
(A2)
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Therefore, the type of the conic represented by Equation (A1) can be judged through
I1, I2, I3, and K, as shown in Table A1.

Table A1. Conic-type determination based on I1, I2, I3, and K.

Conditions of I1, I2, I3, and K Conic Types

I2 > 0
I3 6= 0

I1I3 < 0 Ellipse

I1I3 > 0 Imaginary ellipse

I3 = 0 Point

I2 < 0
I3 6= 0 Hyperbola

I3 = 0 Metamorphosis hyperbola

I2 = 0

I3 6= 0 Parabola

I3 = 0

K < 0 Parallel line

K > 0 Imaginary parallel line

K = 0 Overlap line

Then, we use the theorem introduced above to derive (1) the intersection of the light
plane and that the cylindrical target is an ellipse; (2) that the ellipse captured by camera
is still an ellipse. As shown in Figure A1, the equation of the cylindrical target in the
(O1; X1, Y1, Z1) coordinate system is expressed as

x2
1 + y2

1 − R2
a = 0. (A3)

where Ra is the radius of the cylindrical target. The equation of the light plane in the
(O2; X2, Y2, Z2) coordinate system can be denoted as

z2 = 0. (A4)
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The rotation matrix and offset vector between the (O1; X1, Y1, Z1) coordinate system
and the (O2; X2, Y2, Z2) coordinate system are represented by R1 and T1, i.e., there is the
following relation: x2

y2
z2

 = R1·

 x1
y1
z1

+ T1 ⇒

 x1
y1
z1

 = R−1
1 ·

 x2
y2
z2

− T1

. (A5)

Substituting Equation (A5) into Equation (A3), we can achieve a binary quadratic
equation, as Equation (A1). I1, I2, and I3 are calculated, and they satisfy the conditions
I2 > 0, I3 6= 0 and I1I3 < 0, which show that the conic is an ellipse. That is to say, the
intersection of the light plane and the cylindrical target is an ellipse.

Next, the ellipse is projected (i.e., captured by the camera) in the CPCS, and according
to the camera model, we can obtain u

v
1

 = A·

R2·

 x2
y2
z2

+ T2

, (A6)

where A is the camera intrinsic matrix; R2 and T2 are the external parameters. Similarly, a
binary quadratic equation of (u, v) as Equation (A1), is established, and according to I1, I2
and I3, the equation is an ellipse. In other words, the ellipse captured by the camera is still
an ellipse in the CPCS.

Note: The derivation above rides on the Matlab Symbolic Operation Function.
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