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Abstract: Structured illumination microscopy (SIM) is widely applied due to its high temporal and
spatial resolution imaging ability. sCMOS cameras are often used in SIM due to their superior
sensitivity, resolution, field of view, and frame rates. However, the unique single-pixel-dependent
readout noise of sCMOS cameras may lead to SIM reconstruction artefacts and affect the accuracy of
subsequent statistical analysis. We first established a nonuniform sCMOS noise model to address
this issue, which incorporates the single-pixel-dependent offset, gain, and variance based on the
SIM imaging process. The simulation indicates that the sCMOS pixel-dependent readout noise
causes artefacts in the reconstructed SIM superresolution (SR) image. Thus, we propose a novel
sCMOS noise-corrected SIM reconstruction algorithm derived from the imaging model, which can
effectively suppress the sCMOS noise-related reconstruction artefacts and improve the signal-to-noise
ratio (SNR).

Keywords: SIM; superresolution; sCMOS camera; noise correction

1. Introduction

Superresolution (SR) microscopy enables biological researchers to see nanoscale im-
ages of intracellular structures. Various SR fluorescence microscopy techniques, such
as stimulated emission depletion (STED) [1–3], photoactivated localization microscopy
(PALM) [4–6], stochastic optical reconstruction microscopy (STORM) [7–9], and structured
illumination microscopy (SIM) [10–15], have come to the fore during the past 20 years.
These SR technologies can break the optical diffraction limit and achieve a spatial resolu-
tion of approximately 20~100 nm compared to the ~200 nm of conventional microscopes.
SR SIM has a relatively high temporal resolution and long-term imaging ability and is a
promising SR imaging technique for live-cell imaging [16–18].

Although an electron-multiplying charge-coupled device (EMCCD) can detect signals
with sufficient SNR and sensitivity for SR SIM, its readout speed is slow and it has small
sensor areas [19]. Therefore, scientific-grade complementary metal-oxide-semiconductor
(sCMOS) cameras are a better choice for offering sufficient quantum efficiency and much
faster readout speed, significantly increasing the data acquisition rate and improving
the temporal resolution [20–22]. With the sCMOS camera, Hessian-SIM was developed
to increase the temporal resolution and image rapidly moving vesicles or loops in the
endoplasmic reticulum with a temporal resolution of 188 Hz [23].

Generally, images captured from sCOMS contain two kinds of typical noises: shot
noise and readout noise. For the former, which comes from the arrival of photons at
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the camera sensor and is a stochastic process, we usually constitute shot noise following
Poisson counting statistics. Shot noise equals the square root of the input signal and is
always present due to its physical essence. For the latter, the readout noise comes from
nonuniform pixel characteristics due to the process variation in the on-pixel amplifier
circuitry and column-based readout structures [20]. This results in unique sCMOS pixel-
dependent noise, which negatively impacts the image reconstruction and creates single-
molecule localization errors in PALM/STORM and artefacts in SIM reconstruction. To
correct the pixel-independent readout noise in the raw images, Huang et al. proposed
a simplified sCMOS noise model incorporating single-pixel-dependent offset, gain, and
variance. They developed a noise-corrected SMSN reconstruction algorithm [24] and a
noise-correction algorithm for an sCMOS camera for a broad spectrum of microscopes [25].
By combining camera physics and sparsely layered filtering, Biagio et al. proposed a
content-adaptive algorithm to automatically correct sCMOS-relatedd noise (ACsN) for
fluorescence microscopy, which reduces the most relevant noise sources in the sCMOS
camera while preserving the fine details of the signal [26]. Xue et al. developed a Hessian-
based SMLM (Hessian-SMLM) method to correct the single-pixel variance, gain, and offset
and effectively eliminated the pixel-dependent readout noise, especially under conditions
of low signal-to-noise ratios [27]. Lin et al. presented a nonuniform noise model of sCMOS
cameras that incorporates pixel-specific read-noise, offset, and sensitivity variation. Thus,
they developed a new weighted least squared (WLS) fitting method designed to remove
the heterogeneity of sCMOS pixels [20]. Li et al. developed the photon transfer curve
(PTC) method to fully assess the performance of low-light cameras, including the sCMOS
camera [28].

Despite all of these correction algorithms developed for the sCMOS cameras, correcting
artefacts due to heterogeneous pixel noise in SIM reconstruction remains unexplored.
However, the different offset and variance in each pixel causes artefacts in reconstructed
SIM images (especially in hot pixels). To minimize these artefacts caused by readout noise,
we propose an sCMOS noise model based on SIM imaging and present a novel noise-
corrected algorithm for SIM reconstruction. The reconstruction is conducted in the spatial
domain based on the stable bi-conjugate gradients descent algorithm (Bi-CGSTAB) [29]
and split Bergman algorithm (SB) [30]. In all simulation experiments, the algorithm can
effectively suppress the sCMOS pixel-dependent readout noise-related reconstruction
artefacts, improve the SNR, and slightly increase the contrast of the reconstructed SR image
using various regularized constraints.

2. Methods
2.1. SIM Imaging Model

Compared to conventional wide-field fluorescence microscopy, SIM can double the
spatial resolution by illuminating the observed sample with pattern illumination generated
by the interference of two beams of light (Figure 1a). Without considering noise, the
fluorescence emission distribution In detected by the camera can be expressed as:

In(
→
r k) = [s(

→
r l) · pn(

→
r l)]⊗ h(

→
r k −

→
r l), (1)

where
→
r l and

→
r k are the spatial coordinate vectors of the sample and camera, respectively,

s
(→

r l

)
is the fluorophore spatial distribution in the sample, pn

(→
r l

)
is the intensity distri-

bution according to the illumination pattern sequence n, h
(→

r k −
→
r l

)
is the point spread

function, and ⊗ represents the convolutional operation. The model can be discretized and
expressed as:

In
k = ∑

l
sl pn

l hkl (2)

where l and k are the discrete spatial coordinates as substitutes for the continuous spatial
coordinate vectors

→
r l and

→
r k.
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Figure 1. Diagram of sCMOS camera noise in SIM. (a) Schematic diagram of the SIM setup. PBS,
polarization beam splitter; AOTF, acousto-optic tunable filters; HWP, half wave-plate; DM, dichroic
mirror; SLM, spatial light modulator; PR, polarization rotator; L1–L5, lenses. (b) SIM imaging model
and sCMOS camera noise model.

2.2. sCMOS Camera Noise Model

In SIM imaging, the acquired raw image contains noise from the camera. sCMOS
camera noise primarily consists of shot noise and readout noise. While shot noise stems
from the photon detection process, readout noise originates from the electronics built
around the detector chip [24]. When photons are detected on the sensor chip, the camera’s
analogue-to-digital unit (ADU) count output follows a probability distribution described
here by the convolution of a Poisson distribution and a Gaussian distribution. The Poisson
distribution represents the shot noise of photon detection, and the Gaussian distribution re-
sults from the readout noise (Figure 1b). Then, the pixel-dependent conditional probability
density function (PDF) of the sCMOS camera can be expressed as:

P(dn
k |I

n
k ) = A

∞

∑
qn

k=0

1
qn

k
e−In

k (In
k )

qn
k

1√
2πσk

e
−

(dn
k−gkqn

k−ok)
2

2σ2
k (3)

where dn
k is the specific counts obtained by the sCMOS in the kth pixel when the sample

is illuminated by the nth pattern (in units of ADU). A is the normalization constant, qn
k

is the number of fluorescence photoelectrons as a random variable (in units of e−), and
In
k is the number of expected fluorescence photoelectrons (in units of e−) and defined by

Equation (2), σ2
k is the readout noise variance in the kth pixel (in units of ADU2), gk is the

amplification gain of the kth pixel (in units of ADU/e−), and ok is the readout noise mean
(offset) of the kth pixel (in units of ADU).

For the convenience of later deduction, the distribution of random variables dn
k can be

equivalently expressed as:
dn

k = Pn
k + Gk + ok (4)
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where random variable Pn
k follows the Poisson distribution with mean value and variance

value equal to gk In
k :

Pn
k ∼ P(gk In

k ) (5)

Random variable Gk follows the Gaussian distribution with mean value equal to zero
and variance value equal to σ2

k :

Gk ∼ N
(

0, σ2
k

)
(6)

Due to the noise, pixels on sCMOS cameras appear to flicker even when there are
no expected incident photons. This noise level changes drastically across pixels from
1~2 ADU2 to 1000~2000 ADU2 [25]. This noise drastically reduces the image SNR and
makes quantitative analysis a challenge.

2.3. sCMOS Camera Characterization

To characterize the readout noise of the sCMOS camera, the offset, gain, and variance
values need to be measured (Figure 2). The offset value describes a constant level of ADUs
pre-engineered into the readout process to prevent negative ADUs caused by the readout
noise [24]. After acquiring a series of images in an environment with zero expected incident
photons, the offset value ok and the variance value σ2

k of the kth sCMOS pixel can be
calculated as:

ok =
1
M

M

∑
m=1

am
k (7)

σ2
k =

1
M

M

∑
m=1

(am
k )

2 −
(

1
M

M

∑
m=1

am
k

)2

(8)

where am
k is the ADU count at the mth frame for the kth pixel and M is the total number of

dark frames acquired.
By illuminating the camera with quasi-uniform stationary intensity patterns and

recording a series of image sequences at different average intensity levels, the gain value gk
of the kth sCMOS pixel can be calculated as:

gk = argmin
g

∑
i

{[(
σi

k

)2
− σ2

k

]
− g
(

oi
k − ok

)}
(9)

where:

oi
k =

1
Mi

Mi

∑
m=1

bim
k (10)

The variance value
(
σi

k
)2 can be defined as:

(
σi

k

)2
=

1
Mi

Mi

∑
m=1

(
bim

k

)2
−
(

1
Mi

Mi

∑
m=1

bim
k

)2

(11)

where bim
k is the ADU count at the ith illuminating intensity and the mth frame for the kth

pixel, and Mi is the total frame number acquired at the ith illuminating intensity.
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2.4. sCMOS Noise-Corrected SIM Reconstruction Algorithm

Based on the deduction in Section 2.2., a new random variable Zn
k can be defined and

expressed as:

Zn
k =

dn
k − ok

gk
+

σ2
k

g2
k

(12)

The mean value of the Gaussian distribution equals its variance value. When the mean
of a Poisson distribution is large, it becomes similar to a Gaussian distribution. Then, the
distribution of random variable Zn

k approximately follows the Gaussian distribution and
can be expressed as:

Zn
k ∼ N

(
σ2

k
g2

k
+ In

k ,
σ2

k
g2

k
+ In

k

)
(13)
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For simplification, the In
k term in the variance value of Zn

k is ignored, and then the
approximate CPDF of Zn

k can be expressed as:

P(Zn
k |I

n
k ) =

gk√
2πσk

e
−

(g2
k Zn

k −g2
k In

k −σ2
k )

2

2g2
k σ2

k (14)

The approximate CPDF of dn
k can be calculated by substituting Zn

k into Equation (14)
with Equation (12) and expressed as:

P(dn
k |I

n
k ) =

gk√
2πσk

e
−

(dn
k−gk In

k −ok)
2

2σ2
k (15)

The sample fluorophore spatial distribution s is determined by maximizing the poste-
rior probability P(s|d) defined as:

P(s|d) = ∏
n

∏
k

P(s|dn
k ) (16)

where P
(
s
∣∣dn

k
)

can be calculated with Bayes’ rule and expressed as:

P(s|dn
k ) =

P(dn
k

∣∣s)P(s)
P
(
dn

k
) ∝ P(dn

k |s) (17)

For operational convenience, the merit function E(s) is defined as the logarithm of
P(s|d) and calculated by combining Equations (2) and (15)–(17). The simplified form of
E(s) can be expressed as:

E(s) = ∑
n

∑
k

 g2
k

σ2
k

(
dn

k − ok

gk
−∑

l
sl pn

l hkl

)2
 (18)

The regularization constraint can assist optimization convergence and prevent overfit-
ting. The Tikhonov regularization term RT(s), high-frequency suppression regularization
term RHP(s), and nonnegativity regularization term RNN(s) are appended to the merit
function, and the whole constrained optimization problem can be expressed as:

min
s ∑

n
∑
k

 g2
k

σ2
k

(
dn

k − ok

gk
−∑

l
sl pn

l hkl

)2
+ αRT(s) + βRHP(s) + RNN(s) (19)

where α and β are the weights of the corresponding regularization terms, and the definition
of each regularization term can be expressed as:

RT(s) = ∑
l

ws2
l (20)

RHP(s) = ∑
k

(
∑

l
slh

hp
kl

)2

(21)

RNN(s) = ∏(s ≥ 0) (22)

where w is the parameter of the Tikhonov regularization term and hhp is the parameter
of the high-frequency suppression regularization term as a tunable high-pass filter. The
matriculated representation of Equation (19) can be expressed as:

min
s ∑

n
‖Ans− bn‖2

2 + αsTCs + βsT DT Ds + ∏(s ≥ 0) (23)
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where s is the fluorophore spatial distribution in the sample as a column vector, An is
the illumination by the nth pattern and PSF convolution operation as a matrix, bn is the
image obtained by the sCMOS as a column vector, C and D are the Tikhonov parameter
matrix and high-pass filter matrix, respectively, and [·]T represents the conjugate transpose
operation.

The constrained optimization problem defined by Equation (23) can be solved by the
combination of the stable bi-conjugate gradients descent algorithm (Bi-CGSTAB) and the
split Bergman algorithm (SB). The Bi-CGSTAB algorithm can minimize convex differen-
tiable functional such as the L2-functional in Equation (23) and avoid severe cancellation
effects caused by the irregular convergence behavior of the conventional gradients’ descent
algorithm [29]. The SB algorithm allows for the minimization of convex nondifferentiable
functional efficiency and leads to a solution update for which L2-functional and the non-
negativity functions are decoupled and solved separately [30]. Using the Bergman method,
the equivalent formulation of Equation (23) can be expressed as:

(sk+1, vk+1) = argmin
s,v

∑
n
‖Ans− bk

n‖2
2 + δ‖s− v + µk

v‖2
2 + αsTCs + βsT DT Ds + ∏(v ≥ 0)

bk+1
n = bk

n + bn − Ansk+1

µk+1
v = µk

v + sk+1 − vk+1

(24)

with b0
n = bn, s0 = 0, v0 = 0. The variables sk+1 and vk+1 can be solved separately due to

the decoupled relationship between them:

sk+1 = argmin
s

∑
n
‖Ans− bk

n‖2
2 + δ‖s− vk + µk

v‖2
2 + αsTCs + βsT DT Ds (25)

vk+1 = argmin
v

δ‖sk+1 − v + µk
v‖2

2 + ∏(v ≥ 0) (26)

The elements of vk+1 in Equation (26) are solved independently using a shrinkage
formula due to the decoupled relationship between them:

vk+1 = max
(

sk+1 + µk
v, 0
)

(27)

To solve the variable sk+1 in Equation (25) with the Bi-CGSTAB algorithm, the merit
function can be expanded as:

argmin
s

sT Ms− sTn + p (28)

where M is a matrix, n is a column vector, and p is a scalar and can be calculated as:

M = ∑
n

AT
n An + δI + αC + βDT D (29)

n = ∑
n

AT
n bk

n + δ
(

vk − µk
v

)
(30)

p = ∑
n

{
−
(

bk
n

)T
Ans + δ

(
bk

n

)T
bk

n

[(
µk

v

)T
−
(

vk
)T
](

s− vk + µk
v

)}
(31)

where I is the unit matrix. According to convex optimization theory, the solution ŝ of
Equation (28) satisfies the following equation:

Mŝ = n (32)

which can be solved by the Bi-CGSTAB algorithm (Algorithm 1).
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Algorithm 1. Pseudocode of the Bi-CGSTAB algorithm.

Bi-CGSTAB algorithm

Input: M, n
Initialization:
s0 = 0, r0 = n−Ms0, r̂0 = r0, ρ0 = ω0 = α = 1,v0 = p0 = 0
Iteration:
For k = 1, 2, 3 · · ·
ρk =

(
r̂0, rk−1

)
,β =

(
αρk
)

/
(

ρk−1ωk−1
)

pk = rk−1 + β
(

pk−1 −ωk−1vk−1
)

vk = Mpk

α = ρk/
(

r̂0, vk
)

b = rk−1 − αvk

t = Mb
ωk = (t, b)/(t, t)
sk = sk−1 + αpk + ωkb
if ‖sk − sk−1‖2

2 ≤ δ
Terminating.
Else
rk = b−ωkt
End
Output:s = sk

3. Results

Compared with the conventional Wiener algorithm, and not considering the sCMOS
noise, our proposed sCMOS noise-corrected SIM reconstruction algorithm can suppress
the sCMOS noise-related spatial punctiform artefact in the SR reconstructed image, espe-
cially in the background area (Figure 3a–c). The punctiform artefact within the SR image
reconstructed by the conventional algorithm is widely distributed (Figure 3a) and can
be observed within the zoomed-in image (left in Figure 3c). After the proposed sCMOS
noise-correction algorithm, the punctiform artefact is eliminated globally (Figure 3b) and
invisible to human eyes (right in Figure 3c). The statistical box plot (Figure 3d) shows
that the SNR of the SR image reconstructed by the conventional algorithm is ~16.8 and
improved to ~17.7 by the proposed sCMOS noise-corrected SIM reconstruction algorithm,
which is consistent with the phenomenon of punctiform artefact elimination above.

Furthermore, the intensity fluctuation standard deviation in each pixel over time,
which reflects the temporal pixel fluctuation map, is shown in Figure 3e–g. The bright
and punctiform structures within the temporal pixel fluctuation map corresponding to
the conventional algorithm (Figure 3e and left in Figure 3g) indicate that the intensity
fluctuation standard deviation of the corresponding pixels is relatively large. That is, the
temporal fluctuation noise level of these pixels is relatively high. These structures reflecting
high noise levels almost completely disappear (Figure 3f, and right in Figure 3g) with
the proposed sCMOS noise-corrected SIM reconstruction algorithm. Hence, the temporal
fluctuation noise is suppressed effectively. The statistical histogram of the temporal pixel
fluctuation map (Figure 3h) confirms the conclusion above. The pixel intensity fluctuation
standard deviation distribution corresponding to the conventional algorithm moves left
globally after the sCMOS noise correction. The mode interval of the pixel intensity fluctua-
tion standard deviation corresponding to the noise-corrected algorithm is ~4.75, which is
30% lower than the ~6.75 of the conventional algorithm.
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Figure 3. Performance improvement of the sCMOS noise-corrected SIM reconstruction algorithm.
(a) The conventional algorithm reconstructs the SR image. (b) The noise-corrected algorithm recon-
structs the SR image. (c) Zoomed-in images of selected subregions i and ii in (a,b). (d) The SNR
of the SR image reconstructed by conventional and noise-corrected algorithms. (e) Temporal pixel
fluctuation map (standard deviation in each pixel over time) over 80 SR images reconstructed by
the conventional algorithm. (f) Temporal pixel fluctuation map over 80 SR images reconstructed by
the noise-corrected algorithm. (g) Zoomed-in ROI of selected subregions i and ii in (e,f). (h) The
distribution of pixel fluctuation standard deviation corresponds to conventional and noise-corrected
algorithms.

The punctiform artefact and high pixel intensity fluctuation standard deviation may
result in negative impacts on the data analysis. For example, the dynamic analysis of the
organelle structures and functions in the living cell is likely to be misleading when the
sCMOS noise-related pixel intensity fluctuation is severe in the SR reconstructed images.
Such possible mistakes can be avoided by the proposed sCMOS noise-corrected SIM
reconstruction algorithm.

To further verify the robustness of our method, we validated our approach with
different SNRs. We found that the SNR of the SR image reconstructed by the proposed
algorithm is robust under various shot noise and readout noise levels (Table 1). The average
improvement percentage of the SNR is ~22%, and the maximum improvement percentage
of the SNR is ~30% when the shot noise level and the readout noise level are equal to
100 and 30, respectively. The robustness of the proposed algorithm guarantees broad
applicability in the reconstruction of the raw data at various noise levels. The simulated
ground truth image is identical to Figure 3. The shot noise level is quantified by the
parameter representing the total photon count of each emitter on the simulated samples.
The read out noise level is quantified by the parameter multiplied to the variance map of
the sCMOS camera. For example, if the read out noise level is set as L, the variance of the
ith pixel in the sCMOS camera variance map is V. Then, the variance of Gauss noise is
added to the ith pixel is set as LV when we generate the simulation SIM raw noisy data.
For all of the reconstructions, only the Tikhonov regularized constraint is used and the
regularized term weight parameter α is set as 2.
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Table 1. SNR of the SR reconstructed image under various noise levels.

Shot Noise
Level Readout Noise Level

SNR

Conventional Noise-Corrected

100

10 11.167 13.349

20 10.336 12.942

30 9.627 12.521

150

10 12.280 14.338

20 11.432 13.865

30 10.852 13.496

200

10 11.149 13.363

20 8.734 10.562

30 5.294 6.460

The proposed algorithm can also combine regularization to further suppress the
noise. The SR images reconstructed by the noise-corrected SIM reconstruction algorithm
with nonnegativity, high-frequency suppression, and Tikhonov regularized constraint are
compared in Figure 4.
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Figure 4. Performance comparison of the noise-corrected SIM reconstruction algorithm with different
regularized constraints. (a) Ground truth image. (b) The SR image reconstructed by the noise-
corrected algorithm with a nonnegativity regularized constraint. (c) The SR image reconstructed
by the noise-corrected algorithm with a high-frequency suppression regularized constraint. (d) The
SR image reconstructed by the noise-corrected algorithm with the Tikhonov regularized constraint.
(e) The horizontal profile averaged along the vertical direction of (a). (f) The horizontal profile
averaged along the vertical direction of (b). (g) The horizontal profile averaged along the vertical
direction of (c). (h) The horizontal profile averaged along the vertical direction of (d).

The ground truth image contains the chirped line structure (Figure 4a). The shot noise
level and read out noise level of SIM raw data are 150 and 10, respectively. Within all of the
reconstructed SR images (Figure 4b–d), the reconstruction with a nonnegativity regularized
constraint exhibits the highest contrast (Figure 4b). The grey value range of the profile
corresponding to the nonnegativity regularized constraint is from ~96 to ~174 (Figure 4f),
which is ~30% and ~16% wider than the high-frequency suppression regularized constraint
(Figure 4g) and Tikhonov regularized constraint (Figure 4h). However, the reconstruction
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with the nonnegativity regularized constraint still produces severe artefacts. Thus, the
nonnegativity regularized constraint is usually not used alone as denoising regularization
in the reconstruction of low SNR raw images.

In contrast, the reconstruction of the high-frequency suppression regularized constraint
has the lowest artefact level compared with those of the other two methods (Figure 4c). The
smoothness of profiles provides additional evidence of artefact suppression (Figure 4g). How-
ever, the two lines are indistinguishable in reconstructing the high-frequency suppression
method (Figure 4c, white arrow), which means the resolution decreased for reconstructing
the high-frequency suppression regularized constraint. In addition, the average full width
at half maximum (FWHM) of the ten spikes on the right of the profile corresponding to the
high-frequency suppression regularized constraint (Figure 4g) is ~3 pixels, which is ~33%
larger than the ground truth profile (Figure 4e).

The resolution, artefact level, and contrast level of the SR image reconstructed with
Tikhonov regularization (Figure 4d) are the most moderate within all three reconstructed SR
images (Figure 4b–d). Additionally, the profile is also the closest to the ground truth profile
(Figure 4e,h). Therefore, the Tikhonov regularized constraint is a more general choice
than the nonnegativity regularized constraint and high-frequency suppression regularized
constraint.

4. Discussion

Although quite a few sCMOS noise-correction algorithms for various imaging tech-
nologies have been developed, the sCMOS noise-correction algorithm in SIM reconstruction
has never been presented to date as far as we know. The experiment shows that the pro-
posed sCMOS noise-corrected SIM reconstruction algorithm can suppress the sCMOS
readout noise-related spatial punctiform artefact and temporal fluctuation noise caused
in the SR reconstructed images and improve the SNR by 22%, which is validated by the
simulation experiments.

We combined the proposed sCMOS noise-corrected reconstruction with three regular
terms. The combination with the nonnegativity regularized constraint can be suitable
for raw data with a relatively high SNR, while the combination with high-frequency
suppression regularization is more appropriate for raw data with a low SNR. As the
most general method, the sCMOS noise-corrected SIM reconstruction algorithm with
Tikhonov regularization provides the most moderate reconstructed SR images in terms of
the resolution, artefact level, and contrast level.

5. Conclusions

A nonuniform sCMOS noise model in the SIM imaging process is established and
a novel sCMOS noise-corrected SIM reconstruction algorithm is proposed based on the
imaging noise model. The sCMOS noise causes artefacts in the reconstructed SR image and
the novel algorithm can effectively suppress the artefacts and improve the SNR.
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agreed to the published version of the manuscript.

Funding: Please add: This research was funded by the National Natural Science Foundation of
China grant nos. (81925022, 92054301, 91750203, 31821091, 62103071), the National Key Research
and Development Programme of China grant nos. (SQ2016YFJC040028), the Beijing Natural Science
Foundation grant nos. (Z200017, Z201100008420005, Z20J00059), the National Science and Technology
Major Project Programme grant nos. (2016YFA0500400), the Natural Science Foundation of Chongqing
grant nos. (cstc2021jcyj-msxmX0526), and the Science and Technology Research Programme of
Chongqing Municipal Education Commission grant nos. (Grant No. KJQN202100630).



Photonics 2022, 9, 172 12 of 13

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hell, S.; Wichmann, J. Breaking the Diffraction Resolution Limit by Stimulated-Emission: Stimulated-Emission-Depletion

Fluorescence Microscopy. Opt. Lett. 1994, 19, 780–782. [CrossRef] [PubMed]
2. Dyba, M.; Jakobs, S.; Hell, S. Immunofluorescence stimulated emission depletion microscopy. Nat. Biotechnol. 2003, 21, 1303–1304.

[CrossRef] [PubMed]
3. Gao, P.; Prunsche, B.; Zhou, L.; Nienhaus, K.; Nienhaus, G.U. Background suppression in fluorescence nanoscopy with stimulated

emission double depletion. Nat. Photonics 2017, 11, 163–169. [CrossRef]
4. Betzig, E.; Patterson, G.H.; Sougrat, R.; Lindwasser, O.W.; Olenych, S.; Bonifacino, J.S.; Davidson, M.W.; Lippincott-Schwartz, J.;

Hess, H.F. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science 2006, 313, 1642–1645. [CrossRef] [PubMed]
5. Hess, S.T.; Girirajan, T.P.K.; Mason, M.D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy.

Biophys. J. 2006, 91, 4258–4272. [CrossRef] [PubMed]
6. Errico, C.; Pierre, J.; Pezet, S.; Desailly, Y.; Lenkei, Z.; Couture, O.; Tanter, M. Ultrafast ultrasound localization microscopy for

deep super-resolution vascular imaging. Nature 2015, 527, 499–502. [CrossRef]
7. Huang, B.; Wang, W.; Bates, M.; Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction

microscopy. Science 2008, 319, 810–813. [CrossRef]
8. Linde, S.; Löschberger, A.; Klein, T.; Heidbreder, M.; Wolter, S.; Heilemann, M.; Sauer, M. Direct stochastic optical reconstruction

microscopy with standard fluorescent probes. Nat. Protoc. 2011, 6, 991–1009. [CrossRef]
9. Rust, M.J.; Bates, M.; Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat.

Methods 2006, 3, 793–795. [CrossRef]
10. Gustafsson, M.G.L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Short

Commun. J. Microsc. 2000, 198, 82–87. [CrossRef]
11. Cragg, G.E.; So, P. Lateral resolution enhancement with standing evanescent waves. Opt. Lett. 2000, 25, 46–48. [CrossRef]

[PubMed]
12. Frohn, J.T.; Knapp, H.F.; Stemmer, A. True optical resolution beyond the Rayleigh limit achieved by standing wave illumination.

Proc. Natl. Acad. Sci. USA 2000, 97, 7232–7236. [CrossRef] [PubMed]
13. Günther, B.; Hehn, L.; Jud, C.; Hipp, A.; Dierolf, M.; Pfeiffer, F. Full-field structured-illumination super-resolution X-ray

transmission microscopy. Nat. Commun. 2019, 10, 2494. [CrossRef] [PubMed]
14. York, A.; Parekh, S.; Nogare, D.; Fischer, R.; Temprine, K.; Mione, M.; Chitnis, A.; Combs, C.; Shroff, H. Resolution doubling in

live, multicellular organisms via multifocal structured illumination microscopy. Nat. Methods 2012, 9, 749–754. [CrossRef]
15. Mudry, E.; Belkebir, K.; Girard, J.; Savatier, J.; Le Moal, E.; Nicoletti, C.; Allain, M.; Sentenac, A. Structured illumination microscopy

using unknown speckle patterns. Nat. Photonics 2012, 6, 312–315. [CrossRef]
16. Kner, P.; Chhun, B.B.; Griffis, E.R.; Winoto, L.; Gustafsson, M.G.L. Super-resolution video microscopy of live cells by structured

illumination. Nat. Methods 2009, 6, 339–342. [CrossRef]
17. Shao, L.; Kner, P.; Rego, E.H.; Gustafsson, M.G.L. Super-resolution 3D microscopy of live whole cells using structured illumination.

Nat. Methods 2011, 12, 1044–1046. [CrossRef]
18. Fiolka, R.; Shao, L.; Rego, E.H.; Davidson, M.W.; Gustafsson, M.G.L. Time-lapse two-color 3D imaging of live cells with doubled

resolution using structured illumination. Proc. Natl. Acad. Sci. USA 2012, 109, 5311–5315. [CrossRef]
19. Diekmann, R.; Till, K.; Müller, M.; Simonis, M.; Schüttpelz, M.; Huser, T. Characterization of an industry-grade CMOS camera

well suited for single molecule localization microscopy-high performance super-resolution at low cost. Sci. Rep. 2017, 7, 14425.
[CrossRef]

20. Lin, R.; Clowsley, A.H.; Jayasinghe, I.D.; Baddeley, D.; Soeller, C. Algorithmic corrections for localization microscopy with sCMOS
cameras-characterisation of a computationally efficient localization approach. Opt. Express 2017, 25, 11701–11716. [CrossRef]

21. Zhang, Z.; Wang, Y.; Piestun, R.; Huang, Z. Characterizing and correcting camera noise in back-illuminated sCMOS cameras. Opt.
Express 2021, 29, 6668–6690. [CrossRef] [PubMed]

22. Saurabh, S.; Maji, S.; Bruchez, M.P. Evaluation of sCMOS cameras for detection and localization of single Cy5 molecules. Opt.
Express 2012, 20, 7338–7349. [CrossRef] [PubMed]

23. Huang, X.; Fan, J.; Li, L.; Liu, H.; Wu, R.; Wu, Y.; Wei, L.; Mao, H.; Lal, A.; Xi, P.; et al. Fast, long-term, super-resolution imaging
with Hessian structured illumination microscopy. Nat. Biotechnol. 2018, 36, 451–459. [CrossRef] [PubMed]

24. Huang, F.; Hartwich, T.; Rivera-Molina, F.; Lin, Y.; Duim, W.; Long, J.; Uchil, P.; Myers, J.; Baird, M.; Mothes, W.; et al. Video-rate
nanoscopy using sCMOS camera-specific single-molecule localization algorithms. Nat. Methods 2013, 10, 653–658. [CrossRef]

25. Liu, S.; Mlodzianoski, M.; Hu, Z.; Ren, Y.; McElmurry, K.; Suter, D.; Huang, F. sCMOS noise-correction algorithm for microscopy
images. Nat. Methods 2017, 14, 760–761. [CrossRef]

26. Mandracchia, B.; Hua, X.; Guo, C.; Son, J.; Urner, T.; Jia, S. Fast and accurate sCMOS noise correction for fluorescence microscopy.
Nat. Commun. 2020, 11, 94. [CrossRef]

http://doi.org/10.1364/OL.19.000780
http://www.ncbi.nlm.nih.gov/pubmed/19844443
http://doi.org/10.1038/nbt897
http://www.ncbi.nlm.nih.gov/pubmed/14566345
http://doi.org/10.1038/nphoton.2016.279
http://doi.org/10.1126/science.1127344
http://www.ncbi.nlm.nih.gov/pubmed/16902090
http://doi.org/10.1529/biophysj.106.091116
http://www.ncbi.nlm.nih.gov/pubmed/16980368
http://doi.org/10.1038/nature16066
http://doi.org/10.1126/science.1153529
http://doi.org/10.1038/nprot.2011.336
http://doi.org/10.1038/nmeth929
http://doi.org/10.1046/j.1365-2818.2000.00710.x
http://doi.org/10.1364/OL.25.000046
http://www.ncbi.nlm.nih.gov/pubmed/18059777
http://doi.org/10.1073/pnas.130181797
http://www.ncbi.nlm.nih.gov/pubmed/10840057
http://doi.org/10.1038/s41467-019-10537-x
http://www.ncbi.nlm.nih.gov/pubmed/31175291
http://doi.org/10.1038/nmeth.2025
http://doi.org/10.1038/nphoton.2012.83
http://doi.org/10.1038/nmeth.1324
http://doi.org/10.1038/nmeth.1734
http://doi.org/10.1073/pnas.1119262109
http://doi.org/10.1038/s41598-017-14762-6
http://doi.org/10.1364/OE.25.011701
http://doi.org/10.1364/OE.418684
http://www.ncbi.nlm.nih.gov/pubmed/33726183
http://doi.org/10.1364/OE.20.007338
http://www.ncbi.nlm.nih.gov/pubmed/22453414
http://doi.org/10.1038/nbt.4115
http://www.ncbi.nlm.nih.gov/pubmed/29644998
http://doi.org/10.1038/nmeth.2488
http://doi.org/10.1038/nmeth.4379
http://doi.org/10.1038/s41467-019-13841-8


Photonics 2022, 9, 172 13 of 13

27. Xue, F.; He, W.; Xu, F.; Zhang, M.; Chen, L.; Xu, P. Hessian single-molecule localization microscopy using sCMOS camera. Biophys.
Rep. 2018, 4, 215–221. [CrossRef]

28. Li, L.; Li, M.; Zhang, Z.; Huang, Z. Assessing low-light cameras with photon transfer curve method. J. Innov. Opt. Health Sci. 2016,
9, 1630008. [CrossRef]

29. van der Vorst, H.A. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear
Systems. Siam J. Sci. Stat. Comput. 1992, 13, 631–644. [CrossRef]

30. Abascal, P.; Chamorro-Servent, J.; Aguirre, J. Fluorescence diffuse optical tomography using the split Bregman method. Med.
Phys. 2011, 38, 6275–6284. [CrossRef]

http://doi.org/10.1007/s41048-018-0065-z
http://doi.org/10.1142/S1793545816300081
http://doi.org/10.1137/0913035
http://doi.org/10.1118/1.3656063

	Introduction 
	Methods 
	SIM Imaging Model 
	sCMOS Camera Noise Model 
	sCMOS Camera Characterization 
	sCMOS Noise-Corrected SIM Reconstruction Algorithm 

	Results 
	Discussion 
	Conclusions 
	References

