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Abstract: Digital holography assisted with inline phase-shifting methods has the benefit of a large
field of view and a high resolution, but it is limited in dynamic imaging due to sequential detection of
multiple holograms. Here we propose and experimentally demonstrate a single-shot phase-shifting
digital holography system based on a highly stable on-axis Fizeau-type polarization interferometry.
The compact on-axis design of the system with the capability of instantaneous recording of multiple
phase-shifted holograms and with robust stability features makes the technique a novel tool for
the imaging of complex-valued dynamic objects. The efficacy of the approach is demonstrated
experimentally by complex field imaging of various kinds of reflecting-type static and dynamic
objects. Moreover, a quantitative analysis on the robust phase stability and sensitivity of the technique
is evaluated by comparing the approach with conventional phase-shifting methods. The high phase
stability and dynamic imaging potential of the technique are expected to make the system an ideal
tool for quantitative phase imaging and real-time imaging of dynamic samples.

Keywords: digital holography; interferometry; phase-shifting; polarization; complex field imaging;
quantitative phase imaging

1. Introduction

The applied domains of digital holography (DH) have an urge of interest in recent
times with advancements in high resolution image sensors and modulators with poten-
tial applications in the areas of interferometry, microscopy, quantitative phase imaging
(QPI), three-dimensional (3D) imaging, ultra-fast imaging, imaging through scattering
medium, ghost imaging, etc. [1–8]. DH can achieve the demand of simultaneous imaging
or of the characterization of multidimensional information, such as 3D structure, am-
plitude, phase, polarization, etc., by making use of either inline or off-axis DH based
approaches [9–13]. However, the quality of image restoration in holographic techniques
suffers from undesirable zero order and twin image occupancy in the hologram. The
evolution of computational techniques in the last two decades, with the introduction of
phase retrieval algorithms [14–16] and machine learning [17,18] approaches, brings forth
the high-quality imaging in DH, but it may be limited in some imaging scenarios due to the
phase convergence issue, computational time, learning mechanisms, etc. Alternatively, the
integration of phase-shifting in DH has prominent advantages, as the reconstructed image
is free from the undesired terms of zero order and from conjugate terms with the cost of a
sequential multiple recording of the phase-shifted holograms for the reliable reconstruction
of the image [19,20]. Thus, the phase-shifting approaches permit the implementation of an
inline geometry with full space-bandwidth utilization of the camera, and thereby provide a
large field of view and a high spatial resolution to the imaging system. Usually, the sequen-
tial phase modulation is achieved by the utilization of piezoelectric mirrors, spatial light
modulators, rotating retarders, acousto-optic or electro-optic modulators, etc. Although
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phase-shifting digital holography (PSDH) has its full potential in 3D complex field image
reconstruction, the sequential multiple recording of the holograms limits the execution of
the system in dynamic object imaging.

Owing to the dynamic imaging challenge in PSDH techniques, a parallel-PSDH tech-
nique, with the potential feature of instantaneous recording of the multiple phase-shifted
holograms, is demonstrated by using the phase-shifting array device in the reference
arm of the holography system [21,22]. Later, the parallel phase-shifting approaches were
extended to high-speed imaging with the utilization of sophisticated spatial light modula-
tors [23,24] and a polarized camera [24]. Subsequently, the effectiveness of the polarized
camera in combination with phase-shifting approaches was demonstrated by develop-
ing a simultaneous polarization Mirau interferometer [25], by the imaging of flow and
sound [26,27], by a snapshot diffraction microscope [28], etc. In addition, the potential of
parallel phase-shifting techniques with polarized image sensors is exploited to develop
a single-shot incoherent digital holography system and to develop a further extension to
microscopy [29–31]. Later, the imaging of dynamic objects with parallel phase-shifting
approaches was demonstrated with the help of two-channel holography schemes [32,33],
dual polarization imaging cameras [34], etc. However, the two-channel configurations may
suffer from spatial and temporal phase stability issues due to external vibrations in the
medium and due to the aberrations in the optical components as the beam propagation
occurs through a different optical path.

In the present work, we propose and experimentally demonstrate a single-shot on-axis
phase-shifting digital holography system that utilizes a Fizeau-type polarization interfer-
ometry technique for complex-valued dynamic object imaging. The developed system
relies on the Fizeau-type interferometry scheme, in which the orthogonal polarization com-
ponents for the object and reference beams were facilitated by using a wire grid polarizer
(WGP). The technique makes use of the parallel phase-shifting approach with space divi-
sion multiplexing for the development of high-speed instantaneous recording of multiple
phase-shifted holograms. This is realized by using the combination of a quarter wave plate
(QWP) and a micro polarizer array with different orientations encoded in the polarized
camera to detect polarized light fields from the Fizeau polarization system. The compact
on-axis design makes the system robust to external vibrations and provides high spatial
and temporal stability to the holography scheme. Furthermore, the applicability of the pro-
posed technique is experimentally demonstrated for simultaneous complex field imaging
of various static and dynamic complex-valued objects. Additionally, a quantitative analysis
is performed to evaluate the phase stability and sensitivity of the system in comparison
with conventional phase-shifting methods.

2. Principles and Methods
2.1. Fizeau Polarization Phase-Shifting Digital Holography (FP-PSDH)

The FP-PSDH system makes use of a highly stable Fizeau-polarization interferometry
scheme for the generation of on-axis near common-path propagating orthogonal reference
and object beams. The compact on-axis design of the polarization interferometry technique
is facilitated by employing a wire grid polarizer (WGP) consisting of an array of metallic
wires. A conceptual schematic of the orthogonal polarized beam generation with a WGP
is represented in Figure 1a. The illumination of a linearly 45◦ polarized beam relative to
the wire grid on the WGP results in a reflected beam with the polarization component
parallel to the direction of the wire grid (s-polarized) and in a transmitted beam with the
polarization component perpendicular to the wire grid (p-polarized). In our proposed
scheme, the s-polarized component serves as the reference beam, and the p-polarized
component serves as the object beam for polarization phase-shifting. The back-scattered
p-polarized object beam propagates along with the reference beam in a common path
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after interacting with the object. The resulting common-path propagating light fields are
given by,

Ep(r̂) = Ap(r̂) exp(iφp(r̂))
Es(r̂) = As(r̂) exp(iφs(r̂))

(1)

where Ap(r̂) and As(r̂) are the amplitude information, and where φp(r̂) and φs(r̂) are
the phase information of the object modulated p-polarized and reference s-polarized
beams, respectively.
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Figure 1. (a) Conceptual schematic of orthogonal polarized beam generation with the wire grid polar-
izer (WGP); (b) Schematic of the space division multiplexing mechanism with QWP and polarization
filters in the polarized camera for single-shot detection of multiple phase-shifted holograms.

To implement a single-shot recording of the multiple phase-shifting holograms, we
utilized the space division multiplexing technique with the combination of a QWP and
a polarized camera [29]. A conceptual schematic of the multiplexing implementation in
the proposed approach is demonstrated in Figure 1b. The on-axis propagating reference
and object beams passed through the QWP with its fast axis at 45◦ with respect to the
common-path propagating polarized beams, thereby changing the polarization state to
the respective circularly polarized beams and reaching the polarized camera sensor plane.
The camera sensor comprises unique nano-wire grid arrays with four separate polarizing
filters angled at 0◦, 45◦, 90◦, and 135◦ positioned in a systematic pattern across the sensor.
The electric field components of the circularly polarized beams at the exit plane of the
polarizing filters of the sensor plane are given by,

Ek(r) =
1√
2

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)(
1 i
i 1

)
Ek(r̂) (2)

where k = p or s, the matrices represent the Jones matrices corresponding to the polarizer
filters at θ orientations and the QWP with its fast axis at 45◦, respectively, and Ek(r̂)
represents the p or s polarized beams with the respective Jones representation. Therefore,
the intensity distribution I(r) = E∗k (r)Ek(r) at the sensor plane is expressed by,

I(r) =
1
2

[
A2

p(r) + A2
s (r) + 2Ap(r)As(r) cos(2θ − ∆φ(r))

]
(3)

where ∆φ(r) = φp(r)− φs(r) is the phase difference between the object and the reference
field at the sensor plane. The space-division multiplexing, resulting from the interaction
of circularly polarized object and reference beams with the polarization filters at specific
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angles, produces four phase-shifting holograms: I(r; 0), I(r; π/2), I(r; π) & I(r; 3π/2)
with π/2 phase-shift represented in the conceptual schematic of Figure 1b. The single-shot
detection of the multiple phase-shifted holograms at the sensor plane provides the flexible
advantage of extraction of the complex field distribution of the object modulated informa-
tion using the conventional phase-shifting interferometry relation, which is expressed as,

E(r) = (I(r; 0)− I(r; π)) + i(I(r; 3π/2)− I(r; π/2)) (4)

The retrieval of the complex field distribution at the sensor plane gives the provision
for the recovery of the amplitude and phase distribution of the complex-valued object at
any arbitrary plane by using the digital backpropagation approaches [35].

2.2. Experimental Design

A schematic sketch of the experimental design of FP-PSDH is shown in Figure 2. A
vertically polarized He-Ne laser source (CVI Melles Griot-25-LHP-928-230) of wavelength
632.8 nm, which is converted in to a linearly 45◦ polarized by a half wave plate (HWP),
acts as the source beam for the proposed Fizeau polarization system. The beam is spatially
filtered and collimated to generate a uniform beam with a plane wavefront. The transmitted
beam from a non-polarizing beam splitter (BS) illuminates the WGP (ThorLab-WP50L-VIS)
and produces two orthogonal polarization components from the input polarized beam,
where the reflected beam (s-polarized) acts as the reference beam and where the transmitted
beam (p-polarized) acts as the object beam for the Fizeau polarization interferometry. The
p-polarized beam interacts with the desired object, and the backscattered object beam
transmits again through the WGP and propagates in an on-axis common-path with the
s-polarized beam. The object and the reference beam from the WGP propagate in an
on-axis geometry and are reflected from the BS. These on-axis propagated polarized light
fields transmit through the QWP with their fast axis oriented at 45◦ before reaching the
monochrome polarization camera. The camera is 5.1 megapixels with a Sony IMX250MZR
CMOS polarized sensor (active pixels 2464 × 2056 with pixel size 3.45 µm and having
74 frames per second). The systematic arrangement of polarization filters with orientations
of 0◦, 45◦, 90◦, and 135◦ in the polarized camera is represented in the inset of Figure 2.
The polarized camera records the raw intensity distribution of the hologram, and then
simultaneously extracts the four multiple phase-shifted holograms without any spectral
trade-offs.
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Figure 2. Experimental geometry of FP-PSDH: He-Ne laser: Helium-Neon laser source; HWP: Half
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Wire Grid Polarizer; QWP: Quarter Wave Plate. In inset, the polarization filter arrangements in the
polarized camera and respective orientation angles are represented.
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3. Results and Discussion
3.1. Complex-Valued and Dynamic Object Imaging

The performance and applicability of the FP-PSDH technique was experimentally
tested for various objects and imaging conditions. To demonstrate the complex-valued
imaging potential of the technique, we utilized the spatial light modulator (SLM) to intro-
duce various complex-valued and pure phase objects. The complex-valued objects utilized
for validating the technique were introduced using the phase-only SLM (PLUTO-VIS,
Holoeye with total pixels 1920 × 1080, pixel pitch of 8µm, and an image frame rate of
60 Hz). A complex-valued object was designed to encode the SLM using the checkerboard
method [36,37], in which the alternate pixels were assigned with a uniform binary phase
value of 0 and π (see Supplementary S1). We designed a complex object of Chinese char-
acters ‘Hua (
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)’ with a phase distribution,
each consisting of size 3.9 mm × 3.9 mm as shown in Figure 3a. The polarization camera
recorded a single-shot hologram of the object, and the recorded intensity of the hologram
is shown in Figure 3b. Consequently, the four phase-shifted holograms were extracted
from the single-shot hologram, and the complex amplitude distribution of the object at the
sensor plane was successfully retrieved from these phase-shifted holograms by utilizing
Equation (4). The retrieved amplitude and phase distribution at the sensor plane are shown
in Figures 3c,d, respectively. The recovery of the complex field distribution at the sensor
plane using the phase-shifting technique provided the flexibility to reconstruct the object
information at the desired plane using digital propagation based on the angular spectrum
method [35]. The focused object information retrieved from the proposed technique is
shown in Figure 3e,f. The amplitude distribution in Figure 3e shows a focused recon-
struction of the amplitude ‘
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Figure 3. Complex field reconstruction results: (a) complex-valued object encoded in the SLM;
(b) single-shot intensity of hologram recorded; (c) retrieved amplitude distribution at the sensor
plane; (d) retrieved phase distribution at the sensor plane; (e) reconstructed amplitude distribution at
the object plane; (f) reconstructed phase distribution at the object plane. Scale bar is 1.0 mm.

Additionally, the potential of the technique is demonstrated for real-time imaging of
dynamic sample by utilizing the single-shot imaging capability of the FP-PSDH. A dynamic
phase object (running fox of size 7.2 mm × 3.6 mm) is designed and projected into the
system using the SLM. A single-shot recording captures the hologram of the object in an
instant, and further digital processing retrieves the four phase-shifted holograms. The
phase object at the desired plane is reconstructed using the phase-shifting interferometry
technique. To demonstrate the real time imaging of the moving target, we have recorded
several intensity images in the sensor plane with a time interval of 0.1 s. The reconstructed
motion pictures at different instants of time of the moving phase object are shown in
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Figure 4. The reconstructed dynamic phase distribution of the object is presented in
Visualization S1.

Photonics 2022, 9, x FOR PEER REVIEW 6 of 10 
 

 

 

Figure 3. Complex field reconstruction results: (a) complex-valued object encoded in the SLM; (b) 

single-shot intensity of hologram recorded; (c) retrieved amplitude distribution at the sensor plane; 

(d) retrieved phase distribution at the sensor plane; (e) reconstructed amplitude distribution at the 

object plane; (f) reconstructed phase distribution at the object plane. Scale bar is 1.0 mm. 

Additionally, the potential of the technique is demonstrated for real-time imaging of 

dynamic sample by utilizing the single-shot imaging capability of the FP-PSDH. A dy-

namic phase object (running fox of size 7.2 mm × 3.6 mm) is designed and projected into 

the system using the SLM. A single-shot recording captures the hologram of the object in 

an instant, and further digital processing retrieves the four phase-shifted holograms. The 

phase object at the desired plane is reconstructed using the phase-shifting interferometry 

technique. To demonstrate the real time imaging of the moving target, we have recorded 

several intensity images in the sensor plane with a time interval of 0.1 s. The reconstructed 

motion pictures at different instants of time of the moving phase object are shown in Fig-

ure 4. The reconstructed dynamic phase distribution of the object is presented in Visuali-

zation S1. 

 

Figure 4. Experimental results for dynamic pure phase objects: (a–f) reconstructed motion picture 

phase distribution at the sensor plane for various instants of time. Scale bar is 0.86 mm. 

3.2. Weakly Reflective Object Imaging 

Furthermore, we have investigated the image reconstruction quality of the FP-PSDH 

system for the case of real-world weakly reflective type objects. As the light reflection from 

these objects are comparatively weak, we integrated a 4f-imaging geometry along with 

the system to grab the light from the object surface to the sensor plane. Experiments were 

carried out for butterfly wings and a standard USAF negative (reflective) target, and the 

respective experimental results are shown in Figure 5. Figure 5a and Figure 5d represent 

the single-shot raw intensity distribution of the recorded hologram corresponding to the 

butterfly wing and resolution test target, respectively. Subsequently, the multiple phase-

shifted holograms were extracted from the single-shot recorded hologram, and the respec-

tive complex amplitude distribution of the object at the sensor plane was successfully 

Figure 4. Experimental results for dynamic pure phase objects: (a–f) reconstructed motion picture
phase distribution at the sensor plane for various instants of time. Scale bar is 0.86 mm.

3.2. Weakly Reflective Object Imaging

Furthermore, we have investigated the image reconstruction quality of the FP-PSDH
system for the case of real-world weakly reflective type objects. As the light reflection from
these objects are comparatively weak, we integrated a 4f-imaging geometry along with
the system to grab the light from the object surface to the sensor plane. Experiments were
carried out for butterfly wings and a standard USAF negative (reflective) target, and the
respective experimental results are shown in Figure 5. Figure 5a,d represent the single-shot
raw intensity distribution of the recorded hologram corresponding to the butterfly wing
and resolution test target, respectively. Subsequently, the multiple phase-shifted holograms
were extracted from the single-shot recorded hologram, and the respective complex am-
plitude distribution of the object at the sensor plane was successfully retrieved from these
multiple phase-shifted holograms using Equation (4). The reconstructed amplitude and
phase distributions of butterfly wings is shown in Figures 5b,c, respectively. The phase
distribution of butterfly wings shows a clear distinction between the discal cell and inner
margin. In a similar way, the amplitude and phase distribution of the USAF resolution
test target were reconstructed from digitally extracted multiple phase-shifted holograms,
and the corresponding results are shown in Figures 5e,f, respectively. The system had a
good resolving ability up to group 5 element 6 of the USAF resolution test target, which
corresponds to 57.0-line pairs/mm.

3.3. Quantitative Analysis of System Stability and Sensitivity

To evaluate the robustness of the system in environmental fluctuations and other noise
mechanisms, we estimated the phase stability and sensitivity of the FP-PSDH system and
compared it with other phase-shifting based methods. The performance was evaluated
using time sequential detection of single-shot holograms in FP-PSDH, and it was compared
with the two configurations of the Mach Zehnder interferometry (MZI) based phase-shifting
scheme, namely multiple-shot phase-shifting MZI (MP-MZI) and single-shot polarization
phase-shifting MZI (PP-MZI) (see Supplementary S1). In the case of FP-PSDH and PP-
MZI, the sequential detections of 50 single-shot holograms with a polarized camera in
sample-free configuration were carried out with a time interval of 0.1 s, and the phase
map was recovered from respective digitally processed multiple phase shifted holograms.
On the other hand, in the case of MP-MZI, the sequential detections of 50 holograms for
each of the four phase-shifted holograms were recorded manually using a monochrome
camera, and the respective phase was recovered. To evaluate the temporal stability, we
estimated the phase fluctuation of a specific point in the recovered phase map with respect
to the same point in the entire 50 recovered phase maps. The corresponding plot of the
phase fluctuations with respect to the time sequential measurements is shown in Figure 6a.
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The estimation of standard deviation (STD) from the phase fluctuations shows that the
proposed FP-PSDH technique has a lower STD (4.02 mRad) in comparison to MP-MZI
(STD of 18.95 mRad) and PP-MZI (STD of 12.20 mRad). Furthermore, we also estimated
the spatial sensitivity, which is the minimum detectable phase change in a recovered phase
map for a particular measurement [38]. We evaluated the STD corresponding to total pixels
in each of the 50 recovered phase maps for the respective phase-shifting based approaches.
The box plot corresponding to all three configurations are shown in Figure 6b. The estimated
STD for FP-PSDH is low in comparison to other techniques, which can be attributed to
the high spatial sensitivity of the proposed technique. A quantitative comparison of the
FP-PSDH system performance to MZI-based on-axis techniques is summarized in Table 1.
The plots in Figure 6a,b and the quantitative evaluation in Table 1 manifest the dominance
of on-axis single-shot FP-PSDH in complex-valued dynamic object imaging over other
techniques in the noise-assisted environments.
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Figure 5. Experimental results: Butterfly wing; (a) raw intensity distribution of single-shot recorded
hologram; (b) reconstructed amplitude distribution; (c) reconstructed phase distribution. USAF
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Table 1. Quantitative comparison of FP-PSDH system performance with MP-MZI and PP-
MZI techniques.

Interferometry
Scheme

Type of
Geometry

Detection
Scheme

Temporal
Stability
(mRad)

Spatial
Sensitivity

(mRad)

MP-MZI double path four-shot 18.95 27.76
PP-MZI double path single-shot 12.20 24.86

FP-PSDH single path single-shot 4.02 17.47
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Figure 6. Quantitative evaluation of system stability and sensitivity: (a) Temporal stability evaluation
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and the line in each box represents the median value.

4. Conclusions

In conclusion, we have developed a single-shot on-axis PSDH technique based on a
Fizeau polarization interferometry approach for complex-valued static and dynamic object
imaging. The adoption of the space division multiplexing along with the utilization of a
polarized camera provides the potential realization in the development of a highly stable
real-time complex field imaging system. The effectiveness of the technique is experimentally
demonstrated by imaging different kinds of reflecting-type complex-valued samples. The
compact design of FP-PSDH with on-axis geometry exhibits the dominance of the proposed
technique over conventional phase-shifting techniques for the imaging of dynamic events.
Moreover, the near common-path single-shot phase-shifting technique utilized in the
FP-PSDH system enhances the space-bandwidth in comparison to the existing off-axis
digital holography systems with its unique compact on-axis design. In addition, the high-
stability feature resulting from on-axis interferometry geometry provides the possible
integration of an optical microscopy system for the development of a robust quantitative
phase microscopy system for dynamic phase measurements.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/photonics9030126/s1, The digital reconstruction scheme (Figure S1), complex-valued object
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