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Abstract: Depolarization has been found to be a useful contrast mechanism in biological and medical
imaging. The Mueller matrix can be used to describe polarization effects of a depolarizing material.
An historical review of relevant polarization algebra, measures of depolarization, and purity spaces
is presented, and the connections with the eigenvalues of the coherency matrix are discussed. The
advantages of a barycentric eigenvalue space are outlined. A new parameter, the diattenuation-
corrected purity, is introduced. We propose the use of a combination of the eigenvalues of coherency
matrices associated with both a Mueller matrix and its canonical Mueller matrix to specify the
depolarization condition. The relationships between the optical and polarimetric radar formalisms
are reviewed. We show that use of a beam splitter in a reflectance polarization imaging system gives
a Mueller matrix similar to the Sinclair–Mueller matrix for exact backscattering. The effect of the
reflectance is canceled by the action of the beam splitter, so that the remaining features represent
polarization effects in addition to the reflection process. For exact backscattering, the Mueller matrix
is at most Rank 3, so only three independent complex-valued measurements are obtained, and there
is insufficient information to extract polarization properties in the general case. However, if some
prior information is known, a reconstruction of the sample properties is possible. Some experimental
Mueller matrices are considered as examples.

Keywords: polarization; polarization imaging; Mueller matrix

1. Introduction

There is growing interest in polarization imaging in optical systems such as micro-
scopes, as polarization is a powerful contrast mechanism. Often these systems have
a reflectance geometry and include methods such as reflectometry [1], reflectance mi-
croscopy [2–4], confocal microscopy [5,6], low-coherence interferometry [7], and optical
coherence tomography [8–10]. Depolarization has been found to be a useful contrast
mechanism in biological and medical imaging [5,11–13]. For a depolarizing material,
the most powerful approach to investigate polarization effects is in terms of the Mueller
matrix, as this provides the complete polarization information. An aim of this article was
to reevaluate how the depolarization properties of the sample can be interpreted.

Reflectance polarization-sensitive systems often incorporate a beam splitter. In this
review, we also examine the effects of the beam splitter on the measured polarization.
A layer can also be imaged in transmission by placing the sample on a mirror and observing
in a reflection geometry [14,15]. This approach has been used in confocal transmission
microscopy to cancel out movement of the confocal spot, which is caused by refractive
effects in the sample.
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An advantage of the Mueller matrix formalism is that a Stokes vector is transformed
simply by premultiplication by the Mueller matrix. Thus a cascaded system is represented
by successive matrix premultiplications. However, this is also a cause of one of the disad-
vantages of the Mueller matrix: even multiplication of two matrices results in a Mueller
matrix, where, in general, each element depends on all of the elements of the original ma-
trices. This means that interpretation of the Mueller matrix is not at all trivial. The Mueller
matrix represents the overall polarization state of an optical system or medium, which
could be generated by many alternative combinations of systems or media. So, different
decompositions of the Mueller matrix should be viewed as different representations of the
overall effect, rather than describing the real form of the system or medium.

We start with a review of relevant developments in polarization algebra, in order to
review the theory and describe our notation.

2. Literature Review of Polarization Theory

The historical development of polarization theory is complicated by the fact that
advances have been made in many different disciplines, including the optics of polarization
elements, scattering by particles, terrestial and planetary magnetism, ellipsometry, physical
chemistry of optical activity in solutions, and polarimetric radar, each having their own
terminology and notation. In addition, the theory is closely connected with quantum
mechanics and relativity. With particular relevance to our discussion, optical polarization
systems are usually considered as sequential elements (in series), whereas in scattering by
particles, or in polarimetric radar, there is usually a parallel superposition of components.

In this review, we introduce our terminology. We use bold lowercase font for vectors
and bold uppercase font for matrices. Indices for three/four dimensional (3 or 4D) matrices
run from 1 or 0 to 3, respectively. A list of symbols is given at the end of the text.

2.1. The Early Years; 1852–1957

Stokes showed that the polarization of natural light can be described by four mea-
surable parameters, now called the Stokes parameters [16]. These can be written as a
four-element column vector, s = (I, Q, U, V)T , where T represents the transpose operation.
The first parameter is the intensity. The remaining three parameters can be written as
a three-vector.

Verdet discussed and reinterpreted the Stokes parameters [17].
Poincaré showed that the parameters describing a polarization ellipse can be repre-

sented by points on the surface of a sphere, now called the Poincaré sphere [18].
Soleillet established the connection between the Stokes parameters and the Poincaré

sphere [19]. He showed that the Stokes vector does not have the transformation properties
of a four-vector and that the Stokes vector can be transformed by a real transformation
matrix, now called the Mueller matrix, M, so that s′ = Ms, where a prime denotes the
output wave. An important property of the Mueller matrix is that successive elements
M1, M2 in series give a product of Mueller matrices: M = M2M1. He pointed out that the
gain of a Mueller matrix depends on both the matrix itself and the input Stokes vector.
He also introduced the differential Mueller analysis for propagation through a uniform
optical medium.

Jones introduced the Jones matrix J, a 2× 2 complex matrix that describes the de-
terministic transformation of the electric-field column vector in the standard, Cartesian,
basis [20]. There are thus eight independent parameters, including the absolute phase and
the intensity. This was the first of his eight studies on properties of the Jones matrix.

Perrin considered the form of the Mueller matrix for scattering from random orienta-
tions of identical particles [21].

Jones described the use of Mueller matrices for nondeterministic systems [22]. The gen-
eral Mueller matrix contains 16 independent parameters. For the deterministic case, there
are seven independent parameters, so that there are nine identities between the Mueller-
matrix parameters.
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Chandrasekhar introduced the phase matrix, which is a transformation matrix for
Stokes vectors in a different basis, sC = (Ix, Iy, U, V)T [23].

Parke was a graduate student of Mueller. In his thesis, he discussed scattering in terms
of the Mueller matrix [24]. He also described the properties of the Mueller matrix written in
the standard, Cartesian (lexicographic), basis, which he called the complex Mueller matrix,
but which is sometimes called the Parke matrix, Q. The Parke matrix is the transformation
matrix for polarization matrices P when written in vector form, p′ = Qp. He described
how the polarization coherency matrix is transformed after passing through a deterministic
optical system, P′ = JPJ†, where † represents the conjugate transpose.

Jones discussed the differential Jones matrix, for propagation through a continuous
deterministic medium [25]. The Jones matrix for a uniform medium of finite thickness is
then given by an exponential of a matrix. Conversely, the differential matrix is given by a
logarithm of the matrix for a particular thickness of medium.

For the backscattering geometry, a different coordinate system is often used to account
for the fact that the reflected wave is traveling in the opposite direction to the incident
wave, called the backward scattering alignment (BSA). Sinclair introduced the Jones matrix
in this BSA, now called the Sinclair matrix, JS [26]. The corresponding Mueller matrix is
then the Mueller–Sinclair matrix, MS.

Falkoff and MacDonald discussed the density matrix approach for partial polarization,
equivalent to a trace-normalized polarization matrix (polarization coherency matrix, P),
and showed that the elements are simple linear combinations of the Stokes parameters [27].
He also showed that I2 − Q2 −U2 − V2 = 4 det P ≥ 0, where det is the determinant of
a matrix.

Kennaugh introduced a transformation of the Mueller matrix, different from the
Mueller–Sinclair matrix and now called the Kennaugh matrix, K, which has the property
that it is symmetric for the backscattering geometry [28].

van de Hulst gave an explicit form for the Mueller matrix for given Jones matrix
elements [29]. He considered the form of both the Jones matrix and the Mueller matrix
for scattering by clouds of particles. The particles were assumed to be far enough apart
that their contributions summed incoherently. Thus, the Mueller matrix is a convex sum
of deterministic Mueller matrices. In particular, he showed that the Mueller matrix for
a random distribution of asymmetric particles has 10 independent parameters, rather
than 16 for the most general Mueller matrix. For backscattering, the Jones matrix is
antisymmetric, and the Mueller matrix also has 10 independent parameters (but with
different symmetry from the case of a random distribution). For a random distribution of
particles in backscattering, there are four parameters.

2.2. The Lorentz Group and the Spin Equation of Quantum Mechanics; 1963–1987

Barakat pointed out that group-theoretic methods employing the Lorentz group can
be applied to the coherency matrix [30]. He obtained the condition for a Jones matrix to
be passive.

Marathay, in a chapter of a book authored by O’Neill, gave an expression for the
Mueller–Jones matrix M = Λ(J⊗ J∗)Λ−1, where ⊗ denotes the Kronecker product, ∗ the
complex conjugate, and Λ is a transformation matrix defined in terms of the elements of the
Pauli spin matrices [31,32]. So P = (J⊗ J∗), for the deterministic case. He also proposed
to define entropy as a measure of partial polarization, in terms of the eigenvalues of the
polarization matrix P.

Sekera showed that the Mueller matrix Mrev for propagation in the reverse direction
through a system is Mrev = ∆2MT∆2, where ∆2 is a diagonal matrix equal to an identity
matrix with the elements given by the subscript made negative [33].

Go extended the differential Mueller matrix to the nondeterministic case [34].
Schmieder described using the spin equation of quantum mechanics to calculate

polarization changes upon propagation through a determinstic medium, showing the
connection between the Mueller matrix and a three-dimensional (3D) rotation matrix [35].
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Huynen studied polarimetric radar and expressed the Jones vector in terms of ex-
ponentials of the Pauli matrices [36]. He also expressed the Stokes vector as a 4× 4 real
matrix of Rank 3, equivalent to rotations on the Poincaré sphere. He used the BSA and
showed that for backscattering the elements of a deterministic Kennaugh matrix satisfy
three equations. Much of his work in his thesis was previously published in the early 1950s.

Whitney continued to develop the relationship with the spin equation of quantum
mechanics [37]:

“The topics to which some contribution is here added include the concatenation
of optical operators, the polar decomposition of 2× 2 matrices, the properties
of non-perfect polarizers, the measurability of polarization states and optical
operators, the decomposability of arbitrary optical systems into sequences of
standard ones, and parallel combinations of operators” .

She showed that any nonsingular Jones matrix, even if it is nondiagonizable, can be
written in the form of a matrix exponential and hence can easily be raised to a power.
A singular Jones matrix can also be directly raised to a power. She derived the polar
decomposition of a Jones matrix for a deterministic system, even if it is singular, into the
product of a unitary matrix, representing a phase shifter (including rotators and retarders),
and an Hermitian matrix representing a general polarizer. She showed that for a Jones
matrix to be passive, the condition on the Hermitian component automatically ensures that
phase correlations are not created by the Jones matrix.

Samson presented an expression for the degree of polarization P, 0 ≤ P ≤ 1, for a
correlation matrix with arbitrary number of dimensions, n [38]. For 4D, this is the degree
of polarimentric purity P∆. He went on to describe the characteristic decomposition of an
Hermitian matrix for n = 2, 3. These are applicable to Mueller matrices with associated
Hermitian matrices of Rank 2 or 3.

Robson described partitioning the Mueller matrix into a scalar m00, two 3× 1 vectors,
and a 3× 3 matrix [39]. After normalization by m00, the vectors are the polarizance vector
p and the diattenuation vector d, respectively, and the matrix is Ms.

Jensen and Schellman et al. investigated polarization by chemical solutions [40,41].
They gave explicit expressions for the Mueller matrix for propagation through a uniform
deterministic medium described by its elementary polarization properties. Schönhofer et al.
also investigated polarization by solutions [42]. They expressed the exponential of a matrix
in terms of its eigenvalues. They showed that an optical system with a nonideal modulator
can result in a spurious circular diattenuation signal. They investigated the symmetry of
the Mueller matrix [43].

2.3. Deterministic Mueller Matrices and Physical Mueller Matrices; 1981–2000

Barakat showed that MTGM = − 1
2 tr(MTGM)G, where G = diag(1,−1,−1,−1) = ∆123

is the Minkowski (Lorentz) metric and is a necessary condition for a non-singular M to be deter-
ministic; they went on to derive nine relationships between the Mueller matrix elements [44].

Fry and Kattawar also derived the nine independent equations satisfied by the ele-
ments of the Mueller matrix for a deterministic system [45]. They showed that six of these
equations could be added to give the necessary condition 4m2

00 = ∑i,j m2
ij; i, j = 0, 1, 2, 3.

They showed that these equations become inequalities for a nondeterministic system, so in
general 4m2

00 ≥ ∑i,j m2
ij.

Simon showed that the complex Mueller matrix (Parke matrix) Q = (J ⊗ J∗) can
be converted into an Hermitian matrix, having real eigenvalues, by rearranging the el-
ements [46]. This procedure can be generalized to the case of a general Mueller matrix.
The Hermitian matrix is often called the correlation matrix, H. Simon went on to show that
a necessary and sufficient condition for a Mueller matrix to be deterministic is that H has a
single non-zero positive eigenvalue and that H = tr(H)H, where tr is the trace of a matrix.
He also showed that MTGM = − 1

2 tr(MTGM)G is a necessary, but not sufficient, condition
for M to be deterministic. The case when the condition is satisfied but the Mueller matrix is
not deterministic, corresponds to a class of singular Jones matrices.
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Gil and Bernabeu showed that tr(MTM) = ∑i,j m2
ij and that a necessary condition for a

Mueller matrix to be deterministic is that 4m2
00 = tr(MTM) [47]. They went on to claim that

this is also a sufficient condition. In another study, they showed that the degree of polarimetric
purity of a Mueller matrix, 0 ≤ P∆ ≤ 1, is given by 3m2

00P2
∆ = tr(MTM)−m2

00 [48]. They
also showed that for a deterministic Mueller matrix, the polarizance p = |p| is equal to the
diattenuation d = |d|. In a further study, Gil and Bernabeu described the polar decomposition
of a deterministic Mueller matrix into the product of a symmetric matrix, representing a pure
polarizer, and an orthogonal matrix, representing a pure retarder [49].

Cloude showed that an Hermitian matrix C (coherency matrix) can be generated
from an arbitrary Mueller matrix by expansion into a set of components using 16 unitary
4× 4 basis matrices, analogous to the Pauli spin matrices in 2D [50]. These basis matrices
are a generalization of the Dirac matrices of quantum electrodynamics. The eigenval-
ues of the coherency matrix are nonnegative, and a pure Mueller matrix has only one
nonzero eigenvalue. He discussed using the entropy S = −∑3

j=0 λj log4 λj, defined by the
eigenvalues of the coherency matrix, as a measure of depolarization.

Kim et al. showed that tr(J†J) = 2m00, and that tr(MTM) = [tr(J†J)]2, thus rederiving
the result of Gil and Barnabeu [49,51]. They introduced the ensemble average of the product
of two Jones matrices to describe a general Mueller matrix.

Barakat showed that the condition for a Jones matrix to be passive is that 0 ≤ σ2
1 σ2

2 =
det(J†J) ≤ 1, where σj are the singular values of J, the square roots of the positive eigenval-
ues of J†J [52]. He also showed that s†Gs = I2 −Q2 −U2 −V2 ≥ 0.

Simon showed that trH = 2m00 and that trH2 = tr(MTM) [53]. (So, also, trC2 =
tr(MTM).) He argued that Gil and Bernabeu’s condition for a Mueller matrix to be deter-
ministic is necessary but not sufficient. He gave examples where the condition is satisfied
but the associated Mueller matrix is nondeterministic, corresponding to cases where the
correlation matrix H has a negative eigenvalue.

Chipman discussed the properties of the coherency vector, whose elements are those
of the Jones matrix written in the Stokes basis, which we denote z [54]. He described how
the coherency vector is transformed by a 4× 4 polarization coupling matrix, Z, which
contains elements of z and some zeroes.

Holm and Barnes applied the characteristic decomposition of the covariance matrix
for exact backscattering, where it is Rank 3 [55].

Cloude showed that C and H are related to each other by a similarity transforma-
tion [56]. So, tr C = tr H = 2m00. By considering the physical case of scattering by a
random medium, he argued that C and H are positive semidefinite, i.e., their eigenval-
ues are all nonnegative, so that this is a necessary and sufficient condition for physical
realizability. Then, a general Mueller matrix is given by a convex sum of up to four deter-
ministic Mueller matrices. He proposed the filtering of experimental coherency matrices,
to eliminate nonphysical errors.

Simon pointed out that deterministic systems (where the Mueller matrix corresponds
to a Jones matrix) can depolarize, i.e., decrease the degree of polarization, and that nonde-
terministic systems can polarize, i.e., increase the degree of polarization [57]. He therefore
suggested that a deterministic system should not be called nondepolarizing and that a
nondeterministic system should not be called depolarizing. A Mueller–Jones matrix is a
deterministic Mueller matrix.

Silverman and Badoz investigated theoretically specular reflection of light from a
naturally chiral, birefringent medium and showed that there is no circular birefringence
or diattenuation observed from an optically active material in the exact backscattering
direction [58].

Mishchenko argued that for exact backscattering the assumption of incoherent sum-
mation over particles is invalid and that, as a result, there are only nine (rather than ten)
independent parameters in the Mueller matrix [59,60]. The diagonal of the Mueller matrix
satisfies the trace condition, m00 − m11 + m22 − m33 = 0. The coherency matrix reduces
to Rank 3, while for a random distribution of particles there are three parameters. This
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treatment is based on an assumption of single scattering so is not valid in the case of
multiple scattering.

Sanjay Kumar and Simon took a valid Mueller matrix to mean one that is passive,
i.e., m00 ≥ (m2

01 + m2
02 + m2

03)
1/2, and that maps all pure-state Stokes vectors into Stokes

vectors (the Stokes condition) [61].
Xing showed that for a determinstic Mueller matrix, det M = |det J|4 ≥ 0,

tr M = |tr J|2 ≥ 0, and the real symmetric matrix N = MTGM = MGMT = |det J|2G [62].
He proposed the diagonalization of a nondeterministic Mueller matrix and then checked
that the output degree of polarization always satisfies the condition I ≥ (Q2 +U2 +V2)1/2,
i.e., it corresponds to a physical Stokes vector.

Givens and Kostinski claimed that a given Mueller matrix is not overpolarizing if and
only if the spectrum of GMTGM = GN is real and the eigenvector associated with the
largest eigenvalue is a physical Stokes vector [63].

van der Mee pointed out that not all Mueller matrices are diagonalizable [64]. He gave
necessary and sufficient conditions for a real 4× 4 matrix to satisfy the Stokes criterion,
in terms of the eigenvalues of the matrix GMTGM. He distinguished between matrices
satisfying the Stokes condition and Mueller matrices satisfying Cloude’s condition that the
eigenvalues of C are nonnegative.

Anderson and Barakat, by considering the Parke matrix Q, generalized the necessary
condition for a Mueller matrix to be deterministic, derived by Fry and Kettawar, for other
elements of the Mueller matrix [45,65]. They defined different conditions that a nominal
real matrix can be regarded as representing a Mueller matrix:

• Physically admissible; satisfies the Stokes criterion only.
• Physically acceptable; satisfies Cloude’s criterion that the eigenvalues of C are non-

negative, only.
• Physically realizable; satisfies both passivity and the Stokes criterion.
• Physically achievable; satisfies passivity and Cloude’s criterion.

They pointed out that Cloude’s filtering is effectively finding the closest physically
acceptable Mueller matrix to the measured Mueller matrix in the Frobenius norm sense.
They explained that Gil and Bernabeu’s condition is a necessary and sufficient condition
that a physically acceptable Mueller matrix be a physically acceptable Mueller–Jones matrix
but that it is not a sufficient condition for any nominal Mueller matrix [47]. Similarly,
they explain that nonnegativity of the eigenvalues of the coherency or covariance matrix
does not ensure that the Mueller matrix satisfies passivity. They point out that a valid
deterministic Mueller matrix, which must satisfy passivity and Cloude’s condition that C
has only one nonzero eigenvalue, satisfies the Stokes condition.

Sridar and Simon claimed, using the results of Givens and Kostinski, that all passive
non-singular Mueller matrices satisfying the Stokes condition can be diagonalized by a
double coset transformation, equivalent to placing a deterministic element, LTGL = G,
det L = 1, L00 > 1, before and after a canonical diagonal Mueller matrix [63,66].

Hovenier derived explicit expressions for changes of a pure Mueller matrix that are
caused by certain elementary changes of its Jones matrix, such as when its transpose,
complex conjugate, or Hermitian conjugate are taken [67]. He showed that every pure
Mueller matrix has a simple and elegant internal structure that is embodied by interrelations
that involve either only squares of the elements or only products of different elements.

Hovenier and van der Mee stated that the Mueller matrix for single scattering by an
assembly of independently scattering particles is the sum of pure Mueller matrices (SPM),
but they emphasized that a Mueller matrix (for problems involving Mueller matrices other
than for scattering) is not necessarily a sum of pure Mueller matrices [68]. They show that
the set of Mueller matrices satisfying the Cloude condition of nonnegative eigenvalues of
C is a subset of those that satisfy the Stokes condition.

Lu and Chipman generalized the polar decomposition of a Mueller matrix to the
nondeterministic case [69]. The Mueller matrix is expressed as a product of a diattenuator
MD, premultiplied by a retarder MR and premultipled by a general depolarizer (with
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polarizance) M∆. They recognized that this matrix product is not commutative. They
defined the depolarization power ∆ as 1− |trM∆|/3.

Cloude and Pottier used the Gell–Mann matrices to form a 3D coherency matrix for
the exact backscattering condition [70]. They, and also Lüneburg and Cloude, discussed
the connection between the BSA and the forward scattering alignment (FSA) [70,71].

Bolshakov et al. showed that not all Mueller matrices can be diagonalized, the nondi-
agonalizable form (Type-II canonical Mueller matrix) containing a Jordan block [72].

Gopala Rao considered further the necessary and sufficient conditions for a Mueller
matrix to satisfy the Stokes condition [73,74]. They gave canonical forms for Type-1 and
Type-II matrices. They showed that Type-II matrices can be constructed by series or parallel
combinations of Mueller matrices. They pointed out that, while every pure Mueller matrix
is necessarily of the Type-I, the converse is not always true. For example, the Mueller
matrix M = diag(1, 0, 0, 0) represents an ideal depolarizer and so is not pure. Further,
the combination of two Mueller matrices of a given type (I or 11), either in series or
in parallel, need not necessarily be a matrix of the same type. The eigenvalues of GN
are nonnegative.

Gil gave an expression for the degree of polarimetric purity in terms of the invariants
of the correlation matrix (which can also be written in terms of the coherency matrix) [75]:

P2
∆ =

4tr H2 − (tr H)2

3(tr H)2 =
4tr C2 − (tr C)2

3(tr C)2 . (1)

2.4. Purity Space and Canonical Mueller Matrices; 2005–2019

Aiello and Woerdman investigated theoretically the relationship between the degree
of polarimetric purity and entropy [76].

Cloude showed that the vector forms c, m of the coherency matrix and the Mueller
matrix are related by c = Γm, where Γ is a 16× 16 transformation matrix that is unitary
and Hermitian [77]. Cloude described in detail his approach to characterizing the Mueller
matrix, from the point of view of polarimetric radar, in a book [78].

Ossikovski proposed the symmetric decomposition, based on singular value decom-
position, of a Mueller matrix, consisting of a diagonal Type-I canonical depolarization
element, embraced by a pair of retarders, and a pair of diattenuators [79]. The decomposi-
tion “allows for a straightforward interpretation and parameterization of an experimentally
determined Mueller matrix in terms of an arrangement of polarization devices and their
characteristic parameters”.

Simon et al. showed that physical Mueller matrices for transformation of beams
or waves satisfy Cloude’s condition that the eigenvalues of the corresponding Hermi-
tian correlation matrix are nonnegative [80]. Satisfaction of the Stokes condition, where
Stokes vectors are mapped to Stokes vectors, called pre-Mueller matrices, is less restric-
tive. The set of physical Mueller matrices forms a subset of the set of pre-Mueller ma-
trices. These pre-Mueller matrices can be valid, in principle, for the transformation of
infinite plane waves. According to this study, physical Mueller matrices exhibit canon-
ical forms that fall into four types. Then, any physical Mueller matrix can be gener-
ated by a double-coset transformation, equivalent to placing an optical element before
and after the canonical Mueller matrix. The most important, and most common, Type-
I canonical form is M∆I = diag(d0, d1, d2, d3), d0 ≥ d1 ≥ d2 ≥ |d3|, with eigenvalues
represented by a four-dimensional (4D) vector d = (d0, d1, d2, d3)

T , where T represents
the transpose. Simon et al. explain that, taking d0 = 1 so that M00 = 1, for pre-
Mueller matrices, the allowed region in the Euclidean space R3 spanned by the param-
eters d1, d2, d3 is a cube with vertices at ±1,±1,±1. On the other hand, the eigenval-
ues of the covariance matrix (and the coherency matrix) are λ = (λ0, λ1, λ2, λ3)

T =
(d0 + d1 + d2 + d3, d0 + d1 − d2 − d3, d0 − d1 + d2 − d3, d0 − d1 − d2 + d3)

T/2, so that the
condition of nonnegative eigenvalues is satisfied by points inside a closed (including the
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surface) regular tetrahedron with vertices (1, 1, 1), (1,−1,−1), (−1, 1,−1), and (−1,−1, 1),
which has one third of the volume of the cube.

Ossikovski showed that all nondeterministic Mueller matrices can be reduced to only
two canonical forms, a diagonal and a non-diagonal one, the other two forms described by
Simon et al. being special cases of these two [80,81]. Both canonical forms depend only on
the eigenvalues of the matrix GN. They pointed out that Gopala Rao et al.’s Type-II canoni-
cal matrix is not G-symmetric (GMTG 6= M) and differs from that of Bolshakov et al. They
showed that these can both be represented, with a redefined double-coset transformation,
by a canonical matrix with only two parameters.

Ossikovski proposed new measures of depolarization, based on the eigenvalues of GN,
rather than the eigenvalues of C [82]. These have the advantage that they recognize systems
that strongly depolarize certain input states. He showed that GN and the canonical matrix
GN∆1 have the same Lorentz eigenvalue spectrum. The Lorentz depolarization indices are
insensitive to both the retardance and diattenuation properties of the Mueller matrix:

L2
1 =

d2
1 + d2

2 + d2
3

3d2
0

=
tr(GN)− d2

0
3d2

0
,

L2
2 =

4 ∑ d4
j − (∑ d2

j )
2

3(∑ d2
j )

2
=

tr(GN)2 − [tr(GN)]2

3[tr(GN)]2
. (2)

As L1 = 1 for a deterministic system and L1 = 0 for an ideal depolarizer, like P∆,
but L2 = 0 for a deterministic system, we prefer to redefine PL1 = L1 and PL2 as Lorentz
degrees of polarimetric purity, with

P2
L2 = 1− L2

2 =
4(∑ d2

j )
2 − 4 ∑ d4

j

3(∑ d2
j )

2
=

4[tr(GN)]2 − tr(GN)2

3[tr(GN)]2
. (3)

These Lorentz measures are also valid for the nondiagonal Type-II canonical Mueller matrix.
Ossikovski and di Martino extended the work of Go on the differential Mueller matrix

formalism for a uniform depolarizing medium [34,83]. The differential Mueller matrix is
given in terms of the logarithm of the Mueller matrix, ln M.

San José and Gil introduced a set of indices of purity, (P1, P2, P3), 0 ≤ Pj ≤ 1 that satisfy
the condition 0 ≤ P1 ≤ P2 ≤ P3 ≤ 1 [84]. These measures are based on the characteristic
decomposition of the Hermitian matrix [38,55]. They are defined as P1 = (λ0 − λ1)/2m00,
P2 = (λ0 + λ1 − 2λ2)/2m00, and P3 = (λ0 + λ1 + λ2 − 3λ3)/2m00. San José and Gil
described that any partially polarized transformation can be represented in a purity space
specified by these coordinates. They showed that the degree of polarimetric purity is
given by

P2
∆ = 1

9

(
6P2

1 + 2P2
2 + P2

3

)
. (4)

Gil proposed the components of purity [85]. In addition to the diattenuation
d = |d| and the polarizance p = |p|, the degree of spherical purity is Ps is given by
P2

s = ∑3
i,j=1 m2

i,j/3m2
00. Then

P2
∆ = 1

3

(
d2 + p2 + 3P2

s

)
. (5)

Arteaga et al. discussed the differential Mueller matrix formalism for the backscatter-
ing geometry [86]. They showed that the information about the elementary polarization
properties is presented in a different form from a transmission system. They consid-
ered backscattering from a semi-infinite slab of anisotropic material. Then, aligned linear
generalized birefringence is converted into circular generalized birefringence upon az-
imuthal rotation.
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Sheppard et al. proposed higher-order degrees of polarimetric purity, based on sums
of powers of the eigenvalues of C, which are matrix invariants [87],

Q3
∆ =

16tr C3 − (tr C)3

15(tr C)3 ; S4
∆ =

64tr C4 − (tr C)4

63(tr C)4 ; 0 ≤ Q∆, S∆ ≤ 1, (6)

and also a measure based on the product of the eigenvalues,

B2
∆ =

(tr C)4 − det C
(tr C)4 , 0 ≤ B∆ ≤ 1. (7)

Then, the eigenvalues can be calculated from these matrix invariants, and the de-
polarization state can be specified by the triplets P∆, Q∆, S∆ or P∆, Q∆, B∆. They derived
relationships between these parameters with the indices of polarimetric purity. They pro-
posed plotting the state of depolarization in a 3D barycentric (or simplex, or quaternary
concentration) eigenvalue space, based on the condition that (λ0 + λ1 + λ2 + λ3) = tr C.
The vertices of a regular tetrahedron in this space represent four pure Mueller matrices,
corresponding to each of the eigenvalues of the coherency matrix.

Tariq et al. proposed an overall purity index PI, based on the indices of purity [88]:

PI2 = 1
3

(
P2

1 + P2
2 + P2

3

)
. (8)

They showed by Monte Carlo modeling that Mie back-scatterering by spherical parti-
cles can result in anomalous depolarization.

Kuntman et al. showed that a deterministic Mueller matrix can be factored into a
product M = ZZ∗ where Z is the polarization coupling matrix introduced by Chipman,
which contains the elements of the coherency vector z [54,89]. They called Z the Z-matrix
or the state-generating matrix.

Ossikovski and Vizet proposed a 3D “natural depolarization space” with orthogonal
axes defined by the normalized eigenvalues (λ1, λ2, λ3)/tr H of the covariance matrix H,
where (λ0 + λ1 + λ2 + λ3) = tr H = 2m00 [90]. They generalized the Lorentz depolariza-
tion measures to higher orders. They distinguished between the extrinsic depolarization,
an attribute of M, and the intrinsic depolarization, characteristic of the canonical depo-
larizer M∆ (either diagonal or nondiagonal). They proposed another form of the Type-II
canonical Mueller matrix with three parameters, which can be written in a slightly different
way as:

M∆II =


d0 −(d0 − d1) 0 0

(d0 − d1) (2d1 − d0) 0 0
0 0 d2 0
0 0 0 d2

. (9)

Here, the eigenvalues of GN are {d2
1, d2

1, d2
2, d2

2} and 0 ≤ d2 ≤ d1 ≤ d0 for the eigenval-
ues of H to be nonnegative. This reduces to Ossikovski’s two-parameter canonical Mueller
matrix when d1 = d0/2 [81].

3. Discussion: Physical Mueller Matrices and the Indices of Polarimetric Purity

The state of depolarization can be represented by the eigenvalues of the coherency
(or correlation) matrix, which lead to various measures as we have outlined. Ossikovski
has pointed out that these are extrinsic measures, in contrast to intrinsic measures based
on the square roots of the eigenvalues of GN [82]. A set of intrinsic measures can also be
determined from the eigenvalues of the coherency matrix associated with the canonical
Mueller matrix.
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3.1. Canonical Mueller Matrices and Indices of Polarimetric Purity

We discuss some connections between the canonical Mueller matrices of Simon et al.
and Ossikovski and the indices of polarimetric purity [80,81]. For a canonical matrix of
Type-I, the eigenvalues of the Mueller matrix are {d0, d1, d2, d3}, where d3; |d3| ≤ d2 can
be negative. The square roots of the eigenvalues of GN are {d0, d1, d2, |d3|}. The square
roots of the eigenvalues of MTM are also {d0, d1, d2, |d3|}. The eigenvalues of the coherency
matrix are {λ0, λ1, λ2, λ3} = {d0 + d1 + d2 + d3, d0 + d1 − d2 − d3, d0 − d1 + d2 − d3, d0 −
d1 − d2 + d3}/2.

For a canonical matrix of Type-II, as in Equation (9), the eigenvalues of the Mueller ma-
trix, and also the square roots of the eigenvalues of GN, are {d1, d1, d2, d2}, i.e., independent
of d0. On the other hand, the eigenvalues of MTM are rather complicated. The eigenvalues
of the coherency matrix are {2(d0 − d1), d1 + d2, d1 − d2, 0}, i.e., the coherency matrix is
Rank 3.

Simon et al. do not mention the significance of their space {d1/d0, d2/d0, d3/d0} in
R3, which could be defined in terms of the elements or the eigenvalues of M∆I . Ossikovski
and Vizet have called it the Type-I canonical depolarization space [90]. The vertices of the
tetrahedron in this space represent four pure Mueller matrices, corresponding to each of
the eigenvalues of the correlation (or coherency) matrix, so any other point not outside the
tetrahedron represents an impure Mueller matrix given by a mixture of these. The space
can be regarded as a barycentric plot of the eigenvalues of the coherency matrix, which is
3D as a result of the condition λ0 + λ1 + λ2 + λ3 = 2d0. For the Type-I canonical Mueller
matrix, the coherency matrix is diagonal, with its eigenvalues along the diagonal. So, 2d0 is
equal to the sum of the eigenvalues and is equal to the trace of the coherency matrix, which
is 2 if m00 = 1; so, in general, d0 = m00. For Simon et al.’s Types-II, -III, or -IV canonical
Mueller matrices, the coherency matrix may contain diagonal blocks, but its trace is still the
sum of the eigenvalues, although the form of the correlation (or coherency) matrix is not so
simply related to its eigenvalues.

As a result of recognizing that the plot of Simon et al. is a barycentric coherency
eigenvalue plot, the other three types of canonical Mueller matrix can also be plotted in
this space, with physical Mueller matrices also not lying outside the tetrahedron. Type-II
Mueller matrices have two or three nonzero eigenvalues [72,81]. Simon et al.’s Type-III
Mueller matrices, representing pure polarizers, have one nonzero eigenvalue, and Type-IV
Mueller matrices have two equal nonzero eigenvalues.

3.2. Barycentric Eigenvalue Space

Such a barycentric eigenvalue space has been described as a way of representing a
general depolarizing transformation in Refs. [87,91,92]. The origin represents a perfect
depolarizer. The spherical radius is proportional to the degree of polarimetric purity P∆,

P2
∆d2

0 = 1
3 (d

2
1 + d2

2 + d2
3). (10)

This barycentric eigenvalue space is thus the same space defined by the normalized
elements of the canonical Type-1 Mueller matrix.

If we choose the eigenvalues to be arranged in order of their magnitude,
λ0 ≥ λ1 ≥ λ2 ≥ λ3, the condition of nonnegative eigenvalues is now satisfied in a
smaller nonregular tetrahedron, the principal tetrahedron, which has a volume 1/72 of
the original cube. We can introduce a new set of coordinates x = (x0, x1, x2, x3)

T aligned
with the principal tetrahedron:

x =
1√
6


√

6 0 0 0
0 0

√
3
√

3
0 2 −1 1
0
√

2
√

2 −
√

2

 d√
3 d0

, (11)

i.e., x0 = 1/
√

3, and giving P2
∆ = (x2

1 + x2
2 + x2

3).
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The geometry is illustrated in Figure 1. The regular tetrahedron AA1 A2 A3 contains all
physical states of depolarization, and the principal tetrahedron OABC contains all physical
states for ordered eigenvalues.

B
C

O

A

A1 A2

A3

x1

x3

x2

Figure 1. Barycentric eigenvalue space. In the principal tetrahedron OABC, for ordered eigenvalues,
O represents a perfect depolarizer; A represents a deterministic system; B represents a system with
two equal nonzero eigenvalues; and C represents a system with three equal nonzero eigenvalues.
Each of the triangular faces of OABC is a right-angled triangle. For unordered eigenvalues, the regular
tetrahedron AA1 A2 A3 contains all physical states of depolarization, with λ1 = λ2 = λ3 = 0 at A, etc.
The principal tetrahedron is 1/24 of the volume of the regular tetrahedron.

We find that 4× 4 matrices operating on four-vectors are useful for transforming
between different coordinate systems. The matrix together with its prefactor is orthogonal,
so its inverse is equal to its transpose, as are the following transformation matrices. This
system was chosen slightly differently from our previous studies (a uniform scaling and
ordering) [87,92]. Then, inside the principal tetrahedron,

0 ≤
√

6
2

x1 ≤
3
√

2
2

x2 ≤ 3x3 ≤ 1. (12)

The net of the principal barycentric tetrahedron, showing the directions of the compo-
nents of x, is illustrated in Figure 2.

The eigenvalues are related to the coordinates x:

λ

2d0
=

1
2


1
√

2
√

2/3 1/
√

3
1 −

√
2

√
2/3 1/

√
3

1 0 −2
√

2/3 1/
√

3
1 0 0 −

√
3

√3x
2

, (13)

where λ is the four-vector of the eigenvalues. San José and Gil defined a purity space on
their set of indices of purity, (P1, P2, P3); 0 ≤ Pj ≤ 1, 0 ≤ P1 ≤ P2 ≤ P3 ≤ 1 [84]. Their
purity space is simply the principal barycentric eigenvalue space, with our coordinates
x1, x2, x3 scaled independently, i.e., nonisotropically, along each axis: P1 = (

√
6/2)x1,

P2 = (3
√

2/2)x2, P3 = 3x3. P1 gives the relative strength of the dominant component of
the characteristic decomposition; 1− P3 gives the relative strength of the fully depolarized
component. The indices of purity have been found to be a useful contrast mechanism in
biological imaging [13]. However, the isotropic barycentric purity space has the advantages
that contours of constant degree of polarimetric purity P∆ are simply spherical surfaces
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and also that the complete regular tetrahedron can be used to represent the variation in
state with a parameter.

A

C

BOB C

P3=1

x
2

√61

1

√2

3

3
P1=0

√2

2√2

2√2
x

1

x
2

x
3

x
1

x
3

3

3

3

3

P3=P2

P2=P1

E

EB

√6

6

√6

6 √6

6

√3

3

√2
6

√2
6

√3

3

√3

3

3P1+P2=P3

Figure 2. The net of the principal barycentric tetrahedron OABC for ordered eigenvalues, viewed
from the outside. A perfect depolarizer is represented by point O and a pure system by point A. All
the faces are right-angled triangles. Triangles ABO and BCO are similar. The basis vectors x and the
lengths of the edges are shown. Sixteen of these tetrahedra combine to give the regular tetradron
(A, A1, A2, A3) for unordered eigenvalues and 72 to give the original cube defined by the Stokes
condition. The tetrahedron OABE corresponds to nonnegative g3, with g3 = 0 on the plane OBE.

The eigenvalues of an Hermitian matrix are purely real. They can be calculated using
Viète’s method, which gives a geometric solution based on the trigonometry of multi-
ple angles [93–95]. This approach has been applied to the polarization case in 3D and
4D [87,92,96,97]. The eigenvalues of the Hermitian matrix are solutions of the characteristic
equation, which is a quartic in 4D and a cubic in 3D. For scattering in the exact backscatter-
ing direction, the Hermitian matrices become of Rank 3, so there are only three nonzero
eigenvalues [56,98]. For the coherency matrix C there are, in addition, zeros along a row and
column. For this reason, and also because the coherency matrix is more simply related to the
intrinsic polarization properties, we prefer the coherency matrix C to the correlation matrix
H. For a Rank 4 coherency matrix, the characteristic equation is a quartic, which is solved
by generating the resolvent cubic, which has roots g2

1, g2
2, g2

3, where g1 ≥ g2 ≥ g3. We find
that for the canonical Type-1 Mueller matrix, we can identify that 2gj = dj, and generalizing
to 4D vectors, 2g = 2(g0, g1, g2, g3)

T = d, with 2g0 = d0 = m00. The four-vectors g, x, and d
are not true vectors. In image processing they are called homogeneous vectors, and they
project to a three-vector. On the other hand λ is a true four-vector. Equation (11) can be
easily adjusted so that it relates x to g, so we now recognize that the Euclidean space R3

spanned by d1, d2, d3 introduced by Simon et al. is, with a simple isotropic scaling, the space
of g1, g2, g3. So, the first step towards calculating the eigenvalues of the coherency matrix
corresponding to a Type-1 canonical Muller matrix, using Viète’s method, is effectively
calculating the elements of the canonical Mueller matrix.

The coordinate systems g, x and λ are rotated with respect to each other in the same
4D space. Additionally, (g1, g2, g3) and (x1, x2, x3) are rotated with respect to each other in
3D space. We then have for the degree of polarimetric purity,

P2
∆m2

00 =
4
3
(g2

1 + g2
2 + g2

3). (14)
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Hence, we see that for a Type-I canonical Mueller matrix P∆ is equal to the Lorentz po-
larization index L1 [82]. The values of the components of g within the principal barycentric
tetrahedron OABC satisfy [92]

2g0 = m00; m00 ≥ 2g1 ≥ 2g2 ≥ 2g3, g2 ≥ 0, m00 ≥ 2g3 ≥ −
m00

3
. (15)

The values of gj on the surface of the principal tetrahedron OABC were plotted
in Reference [92], and several other parameters were plotted in Reference [87]. These
surface nets can be cut out and assembled as 3D tetrahedra, to illustrate the behavior
throughout the volume. g3 is zero on the plane OBE in Figure 2, so g3 is nonnegative in
the tetrahedron OABE, for which (λ1 + λ2) ≤ m00 ≤ (λ0 + λ3), or 3P1 + P2 ≥ P3. At point
E, λ0 = m00, λ1 = λ2 = m00/2, λ3 = 0; P1 = P2 = 1/4, P3 = 1; and P∆ = 1/

√
6. If the

determinant of a Type-I canonical Mueller matrix is negative, then g3 is negative. The region
of negative g3 seems to be associated with anomalous depolarization, which is known to be
unlikely to occur but has been shown theoretically to be possible for Mie backscattering from
spherical particles [76,88,90]. The region OABE corresponds 5Q3

∆ < 3P2
∆ (Equation (6)),

or (trC)3 − 6trC trC2 + 8trC3 < 0 [87]. Although this region was first identified using
entropy, other measures of depolarization can also make it visible, so entropy itself is not
fundamentally related to anomalous depolarization [88,90].

The eigenvalues of the coherency matrix are given by the symmetric (and orthogonal)
matrix [87,92]:

λ =
1
2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

2g. (16)

The coordinate x is given by

x =
1√
6


√

6 0 0 0
0 0

√
3
√

3
0 2 −1 1
0
√

2
√

2 −
√

2

 2g√
3m00

. (17)

The degree of polarimetric purity written as a four-vector is

p4 =


2 0 0 0
0 0 1 1
0 2 −1 1
0 2 2 −2

 g
m00

. (18)

where P0 = 1 =
√

3x0, so p4 = (1, P1, P2, P3)
T . Note that the matrix in Equation (18)

is not orthogonal, because of the nonisotropic nature of p4. The (P1, P2, P3) coordinates
are, however, mutually perpendicular, so the matrix in (18) is an homogeneous matrix.
If they are extended over the regular tetrahedron, the points A0, A1, A2, A3 have (P1, P2, P3)
coordinates (1, 1, 1), (−1, 1, 1), (0,−2, 1), and (0, 0,−3).

Three-dimensional barycentric eigenvalue space can be regarded as being a subspace,
a projection, of a 4D space spanned by the four-vector λ. The coordinates (x1, x2, x3),
(g1, g2, g3) in the 3D barycentric space are orthogonal and isotropic, but the alternative
coordinate system (P1, P2, P3) is not isotropic.

A system with a Type-1 canonical Mueller matrix is represented by a point in this
barycentric space and is equivalent to a corresponding Mueller matrix with elements dj,
where dj = 2gj, and to a diagonal matrix GN with elements d2

j = 4g2
j . In our previous

studies, we plotted the variation of different depolarization measures over the surface
of the barycentric tetrahedron OABC [87,92]. These plots were intended to allow mental
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visualization of the variations over 3D principal barycentric space, rather than suggesting
that the values on the surface planes of the tetrahedron should be regarded as other than
special cases, as seemed to be interpreted by Ossikovski and Vizet [90].

3.3. Type-II Canonical Mueller Matrices

Similarly, the other types of canonical Mueller matrix can be also represented by points
in the same barycentric space, although the relationship with the elements of M and GN
are different. Type-II canonical Mueller matrices are Rank 2 or 3 and therefore reside
in the 30◦/60◦ triangle ABC, with P3 = 1, x3 = 1/3. We have for the Mueller matrix in
Equation (9), g0 = 2d0 = 2m00, g1 = 2(d0− d1 + d2), g2 = 2(d0− d1− d2), g3 = 2(d0− 2d1),

C∆II =


d1 + d2 0 0 0

0 d1 − d2 0 0
0 0 d0 − d1 −i(d0 − d1)
0 0 i(d0 − d1) d0 − d1

,

GN∆II =


d1(2d0 − d1) −2d1(d0 − d1) 0 0
2d1(d0 − d1) d1(3d1 − 2d0) 0 0

0 0 d2
2 0

0 0 0 d2
2

. (19)

The eigenvalues of C∆I I are {2(d0− d1, d1 + d2, d1− d2, 0)}. The eigenvalues of GN∆I I
are {d2

1, d1
1, d2

2, d2
2} = {(g1 + g2 − 2g3)

2, (g1 + g2 − 2g3)
2, (g1 − g2)

2, (g1 − g2)
2}/4. Then

P2
∆ =

3d2
0 − 8d0d1 + 6d2

1 + 2d2
2

3d2
0

; L2
1 =

d2
1 + 2d2

2
3d2

1
. (20)

Note that these are different for a Type-II canonical Mueller matrix. This is not
surprising as the Mueller matrix retains some diattenuation. They become equal in the
limiting case as d1 = d0, when the Type-II matrix becomes Type-I. Other parameters could
prove useful, as we discuss below: for example, Gil’s degree of spherical purity eliminates
the contribution of the diattenuation and polarizance [85],

P2
S =

d2
0 − 4d0d1 + 4d2

1 + 2d2
2

3d2
0

. (21)

For the form of Type-II canonical matrix described by Ossikovski [82], for which
d1 = d0/2, this reduces to P2

S = 2d2
2/3d2

0.
We find that

d1

d0
=

2
3
−
√

2x2

4
−
√

6x1

4
;

d2

d0
=

3
√

2x2

4
−
√

6x1

4
. (22)

Figure 3 shows the state of depolarization in barycentric eigenvalue space as functions
of the parameters d1/d0 and d2/d0. If the eigenvalues are taken as ordered, the state is
on or within the triangle ABC. Then, 3d1 + d2 ≤ 2d0 and 0 ≤ d2 ≤ d0/2. However,
an advantage of the barycentric space over the space of purity indices is that the trajectory
as the parameters are varied can include unordered eigenvalues on or within the equilateral
triangle AA1 A2. This approach was applied to the case of exact backscattering with
rotational symmetry in a previous study [92]. The expressions for the eigenvalues of C
are valid even if d2 is negative. Cases outside of the triangle ABC correspond to different
orderings of the eigenvalues, so they can be considered as being reflected into the triangle
ABC, as was described by Ossikovki and Vizet [90]. This process is reminiscent of the
Brillouin zone approach, as compared to the extended zone scheme, in solid-state physics.
For completeness, Simon et al’s Type-III is Rank 1, at point A; and Type-IV is Rank 2,
at point B [80].
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Figure 3. The state of depolarization in barycentric eigenvalue space for the coherency matrix
associated with a Type-II canonical Mueller matrix as functions of the parameters d1/d0 and d2/d0.
If the eigenvalues are taken as ordered, the state is on or within the triangle ABC. For unordered
eigenvalues, the state is on or within the equilateral triangle AA1 A2.

3.4. An Example

As an example of a diagonalizable Mueller matrix, we consider the case of a high-
temperature phase of a polycrystalline cholesteric liquid crystal reported by Flack et al. and
discussed by Ossikovski [82,99]. The Mueller matrix is

M =


1.0000 0.03838 0.1797 0.8843
0.3925 0.1932 0.1020 0.3193
−0.1855 −0.0956 0.0049 −0.1707
0.8741 0.3082 0.1462 0.8007

. (23)

The original matrix gives P∆ = 0.976 and L1 = 0.609. These are different from each
other, signifying the presence of diattenuation. The diagonal, Type-I canonical matrix gives
P∆C = 0.610 and L1C = 0.610. These are equal, as there is no diattenuation. The value of L1
is also unaltered, within numerical accuracy, as diagonalization is a similarity transforma-
tion of GN. This can be compared with an orthogonal (rotational) transformation of the
coherency matrix, to make the off-diagonal elements purely imaginary and the off-diagonal
part of the Mueller matrix skew-symmetric [100]. This operation was proposed for 3D
polarization coherency matrices but is equally valid for 4D coherency matrices. Then,
we obtained P∆R = 0.976 and L1R = 0.977; so, again, these are almost equal as there is
no diattenuation and equal to the original P∆, as the operation constitutes a similarity
transformation on C.

This comparison suggests alternative measures of purity. In Gil’s expression for
the degree of polarimetric purity P∆ in terms of the components of purity, d2 + p2 =
(|d + p|2 + |d− p|2)/2 [85,101]. Diattenuation results in a symmetric Mueller matrix, so
putting a2 = |d + p|2/2, then the parameter Pa, where

P2
a = P2

∆ −
1
3
|d + p|2 = P2

∆ −
2a2

3
, 0 ≤ Pa ≤ P∆ (24)

takes account of the diattenuation of the Mueller matrix. We call Pa the diattenuation-
corrected purity. For our example, Pa = 0.581. This value is close to L1 = 0.609, illustrating
that there is depolarization for some input polarizations, and it has the desirable properties
that it can be calculated without diagonalizing the Mueller matrix or calculating eigenvalues.



Photonics 2022, 9, 88 16 of 27

For the rotated coherency matrix (and similarly for the diagonal matrix), Pa = P∆, and so
Pa ≈ L1 within numerical error. For a Type-II canonical Mueller matrix, M∆II, as in
Equation (9), we also have Pa = P∆.

3.5. Summary

Although Ossikovski and Vizet call their space a “natural depolarization space”, their
eigenvalues are normalized by the largest eigenvalue, λ0 [90]. This has the effect of chang-
ing the relative significance of the eigenvalues. It is as though they are treating λ as an
homogeneous vector rather than a true four-vector. It is therefore perhaps more natural to
normalize by the sum of the eigenvalues, equal to 2m00. Then, the four eigenstates, repre-
sented by each of the eigenvalues being unity, can be plotted in 3D barycentric space, which
in our view is more natural: it is an isotropic projection of 4D space onto 3D space. Then,
constant values of the degree of purity P∆ are given by spherical surfaces in barycentric
space. It is a Euclidean vector space, with Euclidean norms and distances. The coordinates
λ1, λ2, λ3 are not naturally orthogonal in 3D space. Another advantage of barycentric space
is that it is also represented by the coordinates g1, g2, g3, which are intricately connected
with the geometrical model for the eigenvalue evaluation [87]. These coordinates can be
calculated directly from the third-order reduced characteristic polynomial of the coherency
matrix C. The gj’s can be plotted directly over the regular tetrahedron AA1 A2 A3 [92].
On the other hand, the coordinates xj are defined relative to the principal tetrahedron
OABC for ordered eigenvalues. This last property is also true for the coordinates Pj, so
that we have for A, A1, A2, A3 the points (1, 1, 1), (−1, 1, 1), (0,−2, 1), and (0, 0,−3), where
these coordinates can take negative values for this extended domain. It is interesting to
consider that as the cubic reduced characteristic equation gives the squares of the gj’s, it
may be related to the 6× 6 matrix representation described by Cloude [50].

Ossikovski and Vizet’s “natural depolarization space” is the 3D analogue of a 2D plot
of the eigenvalues of the polarization coherency matrix for 3D polarized light presented by
Petrucelli et al. [102]. Another way to present the data, also for 3D polarization, was pro-
posed by Qian and Eberley [103]. They recognized that as the eigenvalues are nonnegative,
then we can plot against the square roots of the eigenvalues as coordinates, in which case
a constant value of λ0 + λ1 + λ2 lies on the surface of a sphere. However, this approach
is not so useful for the 4D case, as we need to consider a hyperspherical surface in a 4D
space with coordinates and the square roots of the eigenvalues. We have mentioned before
that an analogy with the case of 3D polarization can lead to interesting results for the 4D
case [38,100], and we anticipate future results [104,105].

Ossikovski has recognized the advantage of expressing the state of depolarization
in terms of the square roots of the eigenvalues of GN, which gives information about
the intrinsic depolarization properties, rather than C [82]. The barycentric space of the
coherency matrix associated with the canonical Mueller matrix is also a useful approach
for representing the intrinsic depolarization state and exhibits the same advantages we
have described for the extrinsic depolarization properties as compared with Ossikovski
and Vizet’s canonical depolarization space [90]. The eigenvalues of GN are invariant
when performing the symmetric decomposition, but a different set is obtained for the
eigenvalues of C. For the most usual practical case of a Type-I canonical Mueller matrix,
as there is no diattenuation, constant values of the Lorentz degree of polarimetric purity
L1 are then represented by spherical surfaces in canonical barycentric eigenvalue space.
The barycentric plot of the coherency matrix eigenvalues can be plotted over the complete
regular tetrahedron AA1 A2 A3 for unordered eigenvalues. For ordered eigenvalues it is
plotted over the irregular principal tetrahedron OABC. For a Type-II canonical Mueller
matrix, λ3 is zero, and the state is represented as a point on the plane ABC, its distance from
O being given by P∆ = PD, in this case L1 being unrelated to the barycentric eigenvalue
plot. Two parameters (e.g., P1 and P2) are necessary to specify the state of depolarization.
The combination of original and canonical indices of purity thus provide more information
about the state of depolarization.
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4. Discussion: Reflectance Imaging with a Beam Splitter
4.1. Polarization in Transmittance and Reflectance

It is interesting that the development of polarization theory occurred independently in
optics and in polarimetric radar. In radar, the backward scattering alignment (BSA) is often
used [26,28,36,55,71,78], which makes many of the equations different from those in the
optical case. In optical imaging, a reflectance geometry is often used, so knowledge of the
radar work is relevant. In a recent study, we examined polarization in reflectance geometry,
using the Mueller matrix, the coherency matrix, and the coherency vector, z [98]. For a
deterministic system, the coherency matrix is C = zz† = z⊗ z∗ [106–108]. We compared
the Jones matrix with the Sinclair matrix, and we compared the Mueller, Mueller–Sinclair,
and Kennaugh matrices. We examined the effect of various mathematical operations on
the Mueller matrix and its transpose and the corresponding effects on the Jones matrix
and coherency vector, extending the work of Hovenier [67]. Here we discuss the effects of
utilizing a beam splitter in an optical system. Note that radar systems, using transmitter
and receiver antennas, are different in this respect.

The coherency matrix has a special form for exact backscattering. It has zeros along the
row and column for j = 2, the index j running 0, 1, 2, 3, and is at most of Rank 3 [29,59,60].
This results in the Mueller matrix having a particular symmetry and the Kennaugh matrix
becoming a symmetric matrix. This is only strictly true for exact backscattering from single
scattering events, when light scattered from different particles can interfere coherently.
Van de Hulst considers the case of approximate backscattering, where some symmetry
properties are evident [29]. Optical systems with low numerical aperture can satisfy the
exact backscattering condition in the limiting case.

For reflection by a perfect mirror, the Mueller matrix is MR = diag(1, 1,−1,−1), which
we denote ∆23, the suffices denoting the negative elements. The Mueller–Sinclair matrix
for reflection by a perfect mirror is the identity matrix, MSR = I4. So, the Sinclair form
effectively “undoes” the change caused by reflection, so that other features of the resulting
Mueller matrix specify polarization effects present in addition to the reflection process.
In our study, we went on to consider a polarizing layer situated on a perfect reflector,
with light being reflected back through the layer [98]. We proposed modeling reflectance
from a medium as an effective medium on a perfect reflector, and, more specifically, as a
uniform (sometimes called homogeneous) medium on a perfect reflector. This model is
different from the case of direct backscattering from a nonisotropic medium [86].

The polarization transformation represented by a deterministic Mueller matrix can be
represented by a Jones matrix J, where

J =
(

j0 j1
j2 j3

)
=

1√
2

(
c0 + c1 c2 − ic3
c2 + ic3 c0 − c1

)
, (25)

and the elements cj of the coherency vector z are the elements of the Jones matrix written
in the Pauli basis. The coherency vector for perfect reflection is

√
2(0,−1, 0, 0)T , where the

minus sign accounts for the phase change on reflection, giving for the Mueller matrix the
diagonal matrix, ∆23.

We take the Sinclair matrix (the Sinclair form of the Jones matrix) JS as [98]

JS = −
(

j0 j1
−j2 −j3

)∗
= −

(
a b
−c −d

)∗
, (26)

where a, b, c, d are the elements of the Jones matrix. Other works define it differently,
omitting the first negative sign or the complex conjugation [71]. The Sinclair form of
the Mueller matrix (the Mueller–Sinclair matrix) MS is MS = ∆2M∆3. The Kennaugh
matrix K can be formed from the Mueller matrix M by changing the sign of the penul-
timate row [71]. Then K = ∆2M = MS∆3. The Mueller matrix Mrev for light traveling
in the reverse direction through a reciprocal medium is Mrev = ∆2MT∆2 [33]. In the
corresponding coherency vector, the sign of c2 is altered, but the other elements are
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unchanged ([98], Table 1, line 11). The Mueller–Sinclair and Kennaugh matrices are
MSrev = MT∆23 = ∆3MT

S ∆3, and Krev = MT∆2 = KT . For the Sinclair system the sign of
cSrev3 is altered with respect to cS3 ([98], Table 1, line 12). For travel through a reciprocal
medium, with Mueller matrix M, and then perfect reflection back through the medium
in the exact backscattering direction, the total Mueller and Mueller–Sinclair matrices are
Mtot = MrevMRM = ∆2MT∆3M, and MStot = MT∆3M∆3 = ∆3MT

S ∆3MS [33], and the
Kennaugh matrix is Ktot = MT∆3M = KT∆3K = K∆3K [78], as the Kennaugh matrix K
for exact backscattering through a reciprocal medium is symmetric (KT = K).

4.2. Backscattering through a Reciprocal Medium

The coherency vector and Sinclair coherency vector after exact backscattering through
a reciprocal medium z = (c0, c1, c2, c3)

T are [98]

ztot = (c′0, c′1, c′2, c′3)
T = − 1√

2

[
2(c0c1 + ic2c3), c2

0 + c2
1 + c2

2 − c2
3, 0, 2(c1c3 + ic0c2)

]T
,

zStot = (c′0S, c′1S, c′2S, c′3S)
T = (c′1, c′0,−ic′3, ic′2)

†

=
1√
2

[
c2

0 + c2
1 + c2

2 − c2
3, 2(c0c1 + ic2c3), 2(c0c2 − ic1c3), 0

]†
, (27)

where the elements after backscattering are denoted by single primes. For a medium
with Mueller matrix M, for exact backscattering Mrev = M, so MT = ∆2M∆2, and for a
deterministic medium, c = −b, S is symmetric, and c2 = 0. So, C has zeros along the
penultimate row and column and is of Rank 3. The Sinclair coherency vector for exact
backscattering with reciprocity has a zero last element, and the corresponding coherency
matrix CS has zeros along the last row and column.

The trace conditions for single scattering in the exact backscattering direction are,
for M, MS, and K, m00−m11 +m22−m33 = 0, mS00−mS11−mS22 +mS33 = 0, and mK00−
mK11 −mK22 −mK33 = 0, respectively [60,78,98].

Optical systems based on reflectance geometry usually incorporate a beam splitter. We
consider two alternative arrangements, the first with reflection by the beam splitter after
light has traveled through and back through the sample and the second where the reflection
by the beam splitter occurs before the sample. For reflection by the beam splitter after the
sample (denoted by double prime), M′′tot = ∆3MT∆3M. From our table of operations on
the Mueller matrix ([98], Table 1, line 17), for a deterministic medium,

z′′tot =
1√
2
(c1tot, c0tot,−ic3tot, 0)T . (28)

Comparing with Equation (27), we see that the coherency vector is just the complex
conjugate of the Sinclair coherency vector with no beam splitter.

For reflection by the beam splitter before the sample (denoted by triple prime),
M′′′tot = ∆2MT∆3M∆23. From our table of operations on the Mueller matrix ([98], Table 1,
lines 5 or 18), for a deterministic medium,

z′′′tot =
1√
2
(c1tot, c0tot, ic3tot, 0)T . (29)

So using a beam splitter in either position has a similar effect to calculation of the
Mueller–Sinclair matrix. In particular, the zero in the coherency vector is moved from the
penultimate element to the last element.

We thus obtained for these two cases using a beam splitter, in analogy with Equation (27),
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z′′tot = (c′′0 , c′′1 , c′′2 , c′′3 )
T =

1√
2

[
c2

0 + c2
1 + c2

2 − c2
3, 2(c0c1 + ic2c3), 2(c0c2 − ic1c3), 0

]T
,

z′′′tot = (c′′′0 , c′′′1 , c′′′2 , c′′′3 )T =
1√
2

[
c2

0 + c2
1 + c2

2 − c2
3, 2(c0c1 + ic2c3),−2(c0c2 − ic1c3), 0

]T
. (30)

For a mirror with no medium, the coherency vector with a beam splitter, in both cases,
was z =

√
2(1, 0, 0, 0)T , and the Mueller matrix is the identity matrix. So, the reflection

from the mirror was canceled with the effect of the beam splitter.
For the general case, we can establish from Equation (30) the relationships, analogous

to those in our previous study [98],

c′′1 + ic′′2 = c′′′1 − ic′′′2 =
√

2(c0 + c3)(c1 + ic2),

c′′1 − ic′′2 = c′′′1 + ic′′′2 =
√

2(c0 − c3)(c1 − ic2),(
c′′20 − c′′21 − c′′22

)1/2
=
(

c′′′20 − c′′′21 − c′′′22

)1/2
=

1√
2

(
c2

0 − c2
1 − c2

2 − c2
3

)
= R,

R− c′′0 = R− c′′′0 = −
√

2
(

c2
1 + c2

2

)
,

R + c′′0 = R + c′′′0 =
√

2
(

c2
0 − c2

3

)
, (31)

where R is a constant. For a uniform medium, R =
√

2 exp(−αz) must be purely real, where
α is the amplitude absorption parameter for a single transmission through the uniform
medium, thus determining the absolute phases of c0, c′′0 , c′′′0 . The global phase change of
a polarization transformation represents the geometric phase for a path on the Poincaré
sphere, which is unmeasurable using a conventional polarimeter. For any medium, not
necessarily a uniform one, the original and final states are fixed by the values of the elements
cj, and so it can be considered to behave as an equivalent uniform medium, for which R
is real.

4.3. Some Special Cases

There are only three independent equations in Equation (31), and four unknowns, so
in general there is not enough information to solve the inverse problem. However, if we
know the medium has no circular diattenuation or retardence, i.e., c3 = 0, we find that

c0 =
1

21/4

(
R + c′′0

)1/2, c1 =
c′′1

21/4
(

R + c′′0
)1/2 , c2 =

c′′2
21/4

(
R + c′′0

)1/2 . (32)

For the case of reflection by the beam splitter before, rather than after, the sample,
then c′′′2 = −c′′2 , the remaining elements of the coherency vector being unchanged. For the
special cases of either a pure linear diattenuator or a pure linear retarder, c2

1, c2
2 are purely

real, so c0 and c′′0 are also purely real, and the measured coherency vector elements c′′1 , c′′2
correctly predict directly the orientation of the diattenuation or retardance. These can
therefore be used to calibrate the optical system [2]. However, such a simple relationship
does not hold for general linear diattenuation and retardance because of the phase of
(R + c′′0 ) in Equation (32). If there are no circular diattenuation or birefringence, then the
sample’s coherency vector is

z =

(
m00

1 + cos ∆ sin κ

)1/2

(1 + cos ∆ sin κ, cos κ cos 2φD + i sin ∆ sin κ cos 2φB,

cos κ sin 2φD + i sin ∆ sin κ sin 2φB, 0)T , (33)

where D = cos κ is the diattenuation; ∆ is the retardance; and φD and φB are the orientations
of the diattenuation and birefringence, respectively. Then, m00 =

(
|c0|2 + |c1|2 + |c2|2

)
/2,
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which should be distinguished from m′′00, and the parameters D, ∆, φD, and φB can be
determined from the components of the coherency vector. The retardance and diattenuation
apply for a single pass through the sample, whereas the measured signal is for a reflection
back through the sample.

For a medium aligned with the horizontal axis, for which c2 = 0,

c0 = −
ic′′1

21/4
(

R− c′′0
)1/2 , c1 =

i
21/4

(
R− c′′0

)1/2, c3 =
c′′2

21/4
(

R− c′′0
)1/2 . (34)

For a medium aligned with the ±45◦ directions, for which c1 = 0,

c0 = − ic′′2
21/4

(
R− c′′0

)1/2 , c2 =
i

21/4

(
R− c′′0

)1/2, c3 = −
c′′1

21/4
(

R− c′′0
)1/2 . (35)

For a weakly polarizing medium, e.g., in the limit of an optically thin layer (so that
second-order terms can be neglected), c0 ≈ 21/4

√
R, and we have the first order of small

quantities, c1 = c′′1 /23/4
√

R, c2 = c′′2 /23/4
√

R. In this case, c3 cannot be determined as any
c3 just changes the value of c0 that is predicted by the measured R, by using Equation (31).
In general for a medium with no linear diattenuation or retardance, for which c1 = c2 = 0,
then c′′1 = c′′2 = 0, and c′′0 = (c2

0 − c2
3)/
√

2, and c3 and c0 cannot be separately determined.
The trace conditions for exact backscattering with reflection by a beam splitter, for re-

flection after or before the sample become m′′00 − m′′11 − m′′22 + m′′33 = 0 and m′′′00 − m′′′11 −
m′′′22 + m′′′33 = 0, respectively, i.e., in both cases the condition is the same as for the Mueller–
Sinclair matrix for a system without a beam splitter.

4.4. Some Numerical Examples

We continue by examining some experimental Mueller matrices published in the
literature. The first is a birefringent tape, used as a sample in a reflectance polarization
imaging system [3]. The Mueller matrix, after correction for the microscope optics, and the
corresponding coherency matrix were

M′′ =


1.0000 0.0247 0.0033 −0.0586
0.1299 1.0018 0.0958 0.1946
−0.0266 −0.1549 1.0209 0.1473
−0.1214 −0.0339 −0.1690 0.9281



C′′ =


1.98 0.08− 0.16i −0.01 + 0.11i −0.09− 0.13i

0.08 + 0.16i 0.03 + 0.03i −0.03 0.08− 0.01i
−0.01− 0.11i −0.03− 0.03i 0.05 −0.01− 0.05i
−0.09 + 0.13i 0.08 + 0.01i −0.01 + 0.05i −0.05

. (36)

The elements of C′′ are given to two decimal places here, but more places were kept in
the subsequent manipulations. The trace sum was m′′00−m′′11−m′′22 +m′′33 = −0.09, which is
close to zero. The eigenvalues of the coherency matrix were 2.010, 0.108,−0.003, and−0.115
to three decimal places. The negative eigenvalues must result from experimental error and
were set to zero, giving a depolarization index P of 0.93.

The normalized Mueller matrix for the dominant pure component was

M′′ =


1.000 0.081 0.005 −0.077
0.071 0.982 0.117 0.124
−0.018 −0.137 0.972 0.157
−0.085 −0.109 −0.171 0.976

, (37)
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and the corresponding coherency vector is (1.402, 0.054 + 0.117i,−0.005− 0.083i,−0.058 +
0.091i)T . However, there is a small nonzero c′′3 component, which is recognized as experi-
mental error. We chose to set the elements of the last row and column of C to zero, to give
a valid Mueller matrix for a reflectance system with a beam splitter, which then gives a
renormalized Mueller matrix

M′′ =


1.000 0.076 −0.011 0.031
0.076 0.956 −0.029 0.112
−0.011 −0.029 0.974 0.154
−0.031 −0.112 −0.154 0.930

. (38)

The depolarization index was then 0.96, 3% greater than for the original Mueller matrix
with the negative eigenvalues set to zero. The renormalized Mueller matrix of the dominant
pure component was

M′′ =


1.000 0.080 −0.010 0.004
0.080 0.993 −0.010 0.119
−0.010 −0.010 0.984 0.160
−0.004 −0.119 −0.160 0.977

. (39)

Note that these last two Mueller matrices automatically satisfy the trace condition for
a reflectance system with a beam splitter and also exhibit the correct symmetry properties,
m′′01 = m′′10, m′′02 = m′′20, m′′12 = m′′21, m′′03 = −m′′30, m′′13 = −m′′31, m′′23 = −m′′32. The corre-
sponding coherency vector is z′′ = (1.406, 0.057+ 0.114i,−0.007− 0.085i, 0)T . If we assume
that there is no circular birefringence or diattenuation, we can use Equation (32) to obtain
the coherency vector of the sample z = (1.412, 0.028 + 0.057i,−0.004− 0.042i, 0)T . We
obtained D = 0.040, ∆ = 5.78◦, φD = −3.67◦, and φB = −18.34◦. The diattenuation was
weak. The retardance and birefringence orientation (for a single pass) agreed quite well
with those determined by Lu–Chipman decomposition [3].

The second example we considered was a linear polarizer (LP ColorPol VISIR, Codixx,
contrast > 100,000:1), which is also used as a sample in a reflectance polarization imaging
system [2]. The value of m00 for an ideal polarizer is 1/2. The Mueller matrix, after correc-
tion for the microscope optics, and the corresponding coherency matrix were

M′′ =
1
2


1.000 1.001 −0.006 −0.036
0.960 0.959 −0.003 −0.033
0.011 0.009 −0.003 0.000
−0.015 −0.018 −0.005 −0.004



C′′ =
1
2


0.98 0.98 −0.01i −0.03 + 0.01i
0.98 0.98 −0.01i −0.03 + 0.01i
0.01i 0.01i 0.02 0.02i

−0.03− 0.01i −0.03− 0.01i −0.02i 0.02

. (40)

We see that all the elements of the penultimate and last rows and columns are weak.
The trace sum was m′′00 −m′′11 −m′′22 + m′′33 = 0.02, which is close to zero. The eigenvalues
of the coherency matrix were 0.980, 0.021, 0.000, and −0.001 to three decimal places, all
non-negative to two decimal places. Setting the negative eigenvalue to zero, the calculated
depolarization index P was 0.86.

The normalized Mueller matrix for the dominant deterministic component was

M′′ =
1
2


1.000 0.999 −0.005 −0.035
1.000 0.999 −0.005 −0.035
0.010 0.010 −0.004 0.002
−0.017 −0.017 −0.003 −0.003

, (41)
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and the corresponding coherency vector was (0.706, 0.708 + 0.002i, 0.002 + 0.006i,−0.019−
0.005i)T . Again there was a nonzero c′′3 component, and we chose to set the elements of the
last row and column of C′′ to zero. This gives a renormalized Mueller matrix

M′′ =
1
2


1.000 0.990 0.003 −0.011
0.990 0.979 0.003 −0.008
0.003 0.003 0.007 0.003
0.011 0.008 −0.003 −0.014

. (42)

The depolarization index P was again found to be equal to 0.86. The renormalized
Mueller matrix of the dominant pure component was

M′′ =
1
2


1.000 1.000 0.003 −0.009
1.000 1.000 0.003 −0.009
0.003 0.003 0.004 0.003
0.009 0.009 −0.003 −0.004

. (43)

The corresponding coherency vector was z′′ = (0.706, 0.708+ 0.002i, 0.002+ 0.007i, 0)T .
If we assume that there is no circular birefringence or diattenuation, we can use

Equation (32) to obtain the coherency vector of the sample, z = (0.718, 0.695+ 0.062i, 0.001+
0.007i, 0)T . We obtained D = 0.996, ∆ = 72.15◦, φD = 0.06◦, and φB = 3.05◦. The diattenua-
tion was close to aligned along the axis. The result for ∆ was not very accurate, as it was
calculated as a ratio of two small quantities.

5. Conclusions

Depolarization has been found to be a useful contrast mechanism in imaging [4,13,88].
A full description of depolarization requires three parameters, so the degree of polarimetric
purity P∆, or the depolarization power, ∆, while giving averaged measures of depolariza-
tion, do not give full details. Several different combinations of measures, constituting a 3D
depolarization space, have been proposed. In addition to P∆ [38,48], the entropy S [50]; the
higher-order degrees of purity Q∆, S∆, and B∆ [87,90]; and the overall purity index PI [88]
are functions of the eigenvalues of the coherency matrix. Other measure that give rise
to depolarization spaces are the indices of purity [84] and the components of purity [85].
Other purity spaces include the “natural” depolarization space [90] and the barycentric
eigenvalues space [87]. Some of the parameters are not independent variables for the almost
ideally depolarized or almost pure cases. For example, for nearly deterministic systems,
96P2

∆ ≈ (80Q3
∆ + 16) ≈ (63S4

∆ + 33) and B∆ ≈ 1 [87]. For systems approximating an ideal
depolarizer, 36P2

∆ ≈ 60Q3
∆ ≈ 126S4

∆ ≈ 6B2
∆ [87]. For systems with two approximately

equal largest eigenvalues, 24P2
∆ ≈ 40Q3

∆ ≈ (63S4
∆ + 1) and B∆ ≈ 1 [87]. The “natural”

depolarization space is not an isotropic projection from 4D eigenvalue space; the space
based on the indices of purity is nonisotropically scaled. In both these cases, surfaces
of constant value of the degree of polarimetric purity P∆ are not spherical. Barycentric
eigenvalue space avoids these problems. It is a Euclidean vector space, ideally suitable for
fitting to experimental data or finding a physical or deterministic approximation. On the
other hand, if used to specify brightness or color in an image display, the parameters are
scaled to fill the dynamic range, and so the coordinates xj or Pj are equally suitable.

Three-dimensional barycentric eigenvalue space can be regarded as being spanned by
coordinates that can be represented by the four-vectors: λ/2d0, x, and g. These coordinates
are isotropic, but the alternative coordinate p4 is not isotropic, as it is nonuniformly scaled.
A system with a Type-I canonical Mueller matrix is represented by a point in this barycentric
space and is equivalent to a corresponding Mueller matrix with elements d, where d = 2g.
Similarly, the other types of canonical Mueller matrix are also represented by points in
the barycentric space. Type-II resides in triangle ABC, Type-III at point A, and Type-IV at
point B.
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Ossikovski showed that measures based on the eigenvalues of the coherency matrix
still do not tell the whole story concerning depolarization and introduced the Lorentz
depolarization indices [82]. In order to account for the diattenuation of the Mueller matrix,
a depolarization measure called the diattenuation-corrected purity, Pa, was introduced in
the present study. Specification of the depolarization condition using coherency matrix
eigenvalues for both an original Mueller matrix and its canonical form was also proposed.

A reflectance polarization imaging system using a beam splitter, in the exact backscat-
tering direction, gives a coherency vector with a zero in the final element, and a coherency
matrix, which is at most Rank 3, with zeros in the last row and column. The Mueller matrix
can be decomposed into a sum of up to three deterministic components. The Mueller matrix
is similar to the Sinclair–Mueller matrix for exact backscattering without a beam splitter.
For a sample placed in the optical system on a mirror, the polarimetric properties of the
sample can be recovered in some cases, if we have some prior information.
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Symbols
The following symbols are used in this manuscript (some symbols have multiple meanings):

B∆ Eigenvalue product polarimetric purity
c Vector form of the coherency matrix
C Coherency matrix
d Diattenuation vector
d Diattenuation
g Orthogonal coordinate system for purity space
G Minkowski metric
H Correlation matrix
I, Q, U, V Stokes parameters
J Jones matrix
JS Sinclair matrix
K Kennaugh matrix
L1,2 First and second Lorentz depolarization indices
mij Mueller matrix elements
M Mueller matrix
Ms 3× 3 Mueller spherical sub-matrix
MD Diattenuator Mueller matrix
MR Retarder Mueller matrix
MR Mueller matrix for a perfect reflector
MS Mueller-Sinclair matrix
M∆I,I I Type-I,II canonical Mueller matrix
N MTGM
P Polarization (coherency) matrix
p Vector form of the polarization (coherency) matrix
p Polarizance vector
p Polarizance
Ps Degree of spherical purity
P∆ Degree of polarimetric purity
PL2 Second Lorentz degree of polarimetric purity
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(P1, P2, P3) Indices of purity
PI Overall purity index
Q Parke matrix
Q∆ Third order polarimetric purity
s Stokes vector
sC Stokes vector in Chandrasekhar phase basis
S Entropy
S∆ Fourth order polarimetric purity
σj Singular values
tr Trace
x Orthogonal coordinate system for purity space
z Coherency vector
Z Polarization coupling matrix, Z-matrix, or state generating matrix
∆ Depolarization power
∆i,j Identity matrix with elements in subscript negative
Γ 16× 16 transformation matrix, c = Γm
Λ Transformation matrix of elements of the Pauli spin matrices
λ Vector of eigenvalues of the coherency matrix
λi Eigenvalues of the coherency matrix
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