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Abstract: Squeezing light is a critical resource in both fundamental physics and precision measure-
ment. Squeezing light has been generated through optical-parametric amplification inside an optical
resonator. However, preparing the squeezing light in an optomechanical system is still a challenge for
the thermal noise inevitably coupled to the system. We consider an optically levitated nano-particle
in a bichromatic cavity, in which two cavity modes could be excited by the scattering photons of the
dual tweezers, respectively. Based on the coherent scattering mechanism, the ultra-strong coupling
between the cavity field and the torsional motion of nano-particle could be achieved for the current
experimental conditions. With the back-action of the optically levitated nano-particle, the broad
single-mode squeezing light can be realized in the bad cavity regime. Even at room temperature,
the single-mode light can be squeezed for more than 17 dB, which is far beyond the 3 dB limit. The
two-mode squeezing light can also be generated, if the optical tweezers contain two frequencies, one
is on the red sideband of the cavity mode, the other is on the blue sideband. The two-mode squeezing
can be maximized near the boundary of the system stable regime and is sensitive to both the cavity
decay rate and the power of the optical tweezers.

Keywords: squeezing light; coherent scattering; levitated optomechanics

1. Introduction

Squeezing light, in which the quantum fluctuation is modulated below the shot noise
level, has been regarded as a powerful resource in fundamental physics, e.g., improving the
sensitivity of gravitational wave detection [1], cooling the motion of a macroscopic mechan-
ical object below the quantum backaction limit [2], engineering matter interactions [3], and
inducing the topological phase transitions [4], among many others. Squeezing light can be
generated via the nonlinear optics, such as parametric down-conversion process [5–8]. The
motion of the mechanical oscillator in cavity optomechanical systems could be regarded
as an effective nonlinear optical medium, generating the pondermotive squeezing state
by the back-action interaction [8–11]. With various optomechanical coupling mechanisms,
cavity optomechanical systems produce abundant squeezing light sources [11–15], even in
pulse driving regime [11,15]. However, due to the noise inevitably induced from the ther-
mal bath, as well as the limitation of the nonlinear interaction, generating the substantial
pondermotive squeezing light is still a challenge for the optomechanical system [9].

The levitated optomechanical system has raised widespread interest in macroscopic
quantum superposition [16–18], quantum time crystals [19,20], and quantum information
processing [21]. The squeezing has been studied in the levitated optomechanical system, in
which the nano-particle is optically levitated and coupled with a cavity field [22]. Under
ultra-high vacuum (gas pressure p = 10−10 Torr), the squeezing light could be estimated
over 15 dB below the vacuum noise level [22], which is much higher than the squeezing
light source based on a membrane mechanical resonator embedded in an optical cavity [9].
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In the levitated optomechanical system, the motional state of the optically levitated nano-
particle has been squeezed 2.7 dB below the thermal noise [23]. Recently, the coherent
scattering mechanism has been theoretically investigated to cool both the axial and the
in-plane motion of the levitated optomechanical system via a cavity mode [24,25]. The axial
motion of the optically levitated nano-particle has been cooled to the ground state, either
through the coherent scattering induced cavity cooling [26,27], or through the feedback
cooling [28,29]. Moreover, the strong coherent scattering coupling between the cavity field
and the motion of the nano-particle has also been observed in experiment [30]. With the
attainable ultra-high quality factor (beyond 109) of the optically nano-particle [31–33], it
is expected that the stronger and robust squeezing light can be realized via the coherent
scattering [22,24,32,34,35].

In this paper, we aim to generate both single-mode and two-mode squeezing light
via a vacuum levitated optomechanical system, in which the nano-particle is optically
levitated by the single and dual tweezers, respectively [22,24]. Both schemes are based on
the coherent scattering mechanism [24]. We find that the ultra-strong coupling between
the cavity mode and the torsion mode of the nano-particle is available by the current
experimental parameters [36–39]. In order to obtain the squeezed single-mode light in
steady state, the optical tweezers are detuned to the red sideband of the cavity mode. By
the back-action of the optically levitated nano-particle [11], the single-mode light can be
squeezed over 17 dB. The strong and broad single-mode squeezing light is observed in a
bad cavity. Furthermore, in order to generate the two-mode squeezing lightly, we consider
the optical tweezers with two frequencies, one is on the red sideband of the cavity mode,
the other is on the blue sideband. We find that the two-mode squeezing can be maximized
when the dynamics approach system instability [40]. The squeezing is sensitive to both the
cavity decay rate and optical tweezers’ power. Unlike the single-mode squeezing light, the
generated two-mode squeezing light is also an entangling source, which is very sensitive
to thermal noise. We also find that the two-mode squeezing degree is smaller than the
single-mode squeezing.

The paper is organized as follows. The model and the system dynamics are depicted
in Section 2. Then the results of one-mode squeezing light and two-mode squeezing light
are discussed in Sections 3 and 4. At last, a brief conclusion is given in Section 5.

2. Model and Dynamics

We consider a uniform isotropic non-dispersive nano-ellipsoid, which is optically
levitated by linearly polarized dual tweezers (A and B) in a bichromatic cavity as shown in
Figure 1a. The optical tweezers A (B) with frequency ωA(B) are on the red (blue) sideband
of cavity mode âA (âB). Under this condition, the nano-ellipsoid will be cooled and heated
by the optical tweezers A and B, respectively. If the cooling rate is larger than the heating
rate, the motional state can be cooled down to a low temperature and the system remains
dynamically stable.

The motion of the levitated nano-ellipsoid is characterized by the five degrees of
freedom where {x, y, x} for the center-of-mass motion in position R̂ and {θ, φ} for the
torsional motion in orientation Ω̂, as shown in Figure 1b. By locating the nano-ellipsoid to
the node (anti-node) of the cavity modes, the center-of-mass motion and torsional motion
can be decoupled from each other [37]. Besides, intrinsic optomechanical coupling between
the cavity mode and torsional motion of the nano-ellipsoid is typically much weaker
than the coherent scattering coupling strength [24,26,37]. Therefore, we only consider the
coherent scattering coupling between the cavity mode and the motion of the nano-ellipsoid.
Without loss of generality, we take the torsional motion as an example in the following
discussion [38,39].
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Figure 1. (a) Schematic diagram of the levitated optomechanical system. The nano-ellipsoid is placed
into a bichromatic cavity and optically levitated by the dual tweezers with two frequencies ωA and
ωB, and amplitudes EA and EB, respectively. Two cavity modes â†

A (âA) and â†
B (âB) are excited by

the scattering photons with the decay rates κA and κB. (b) The orientation of the nano-ellipsoid
{xE, yE, zE} rotates under the tweezers coordinate {xT , yT , zT} with a small angel φ. β is the angel
between the cavity coordinate axis xC and tweezers coordinate axis xT . Tweezers propagate along
the direction of axis zT .

With respect to the interaction picture defined by the Hamiltonian H0 = h̄ ∑
j=A,B

ωja†
j aj,

the interaction Hamiltonian for the system can be written as [24]

Ĥ=h̄ ∑
j=A,B

∆j â†
j âj + h̄ωm b̂† b̂− h̄ ∑

j=A,B
gj

(
â†

j + âj

)(
b̂† + b̂

)
, (1)

where â†
j and âj (b̂† and b̂) are the bosonic creation and annihilation operators with the

commutation relations
[

âj, â†
j

]
= 1 (

[
b̂, b̂†

]
= 1) [41], ∆j = ω

j
c−ωj is the detuning between

the cavity frequency ω
j
c and the optical tweezers frequency ωj. ωm is the torsional mode

frequency and gj is the coherent scattering coupling. They can be calculated by (see
Appendix B)

gj = (αa − αb)Ej
0ξ0 cos(ϕ)

√√√√ ω
j
c

8h̄ε0V j
c

(2)

and

ωm =

√
∑

j=A,B
Ej2

0 (αa − αb)
/

2I (3)

respectively. For the current experimental parameters, the torsional frequency can be in the
order of MHz as shown in Figure 2a. Interestingly, the ratio (gj/ωm) between the coherent
scattering coupling and the torsional frequency is larger than 0.1 as shown in Figure 2b,
in which the ultra-strong optomechanical coupling regime has been reached [36]. In this
regime, both the rotating and anti-rotating wave terms have to be considered. As âj (â†

j )

depends on b̂ + b̂†, one field quadrature of the cavity mode will be squeezed, while another
will be anti-squeezed [5,6].
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Figure 2. The torsional frequency ωm (a) and the ratio between the coherent scattering coupling
and torsional frequency (b) as a function of the tweezers power Pt. The parameters are given
as follows: the cavity length L = 1 mm, the wavelength of the optical tweezers λA = 780 nm
(λB = 980 nm), the beam waist of the tweezers in focus wj

0 = 1 µm, the principle axes of the nano-
ellipsoid a = 2b = 2c = 100 nm, the relative permittivity of the nano-ellipsoid ε = 2.1, and the
density of the nano-ellipsoid ρ = 2200 kg/m3. For convenience, the power of two optical tweezers
are assumed to be the same Pj = Pt.

Derived from the system Hamiltonian (1), the dynamics of the system is characterized
by the following quantum Langevin equations:

db̂
dt

= −
(γm

2
+ iωm

)
b̂ + i ∑

j=A,B
gj

(
â†

j + âj

)
+
√

γm b̂in, (4)

dâj

dt
= −

(
κj

2
+ i∆j

)
âj + igj

(
b̂† + b̂

)
+
√

κj âin
j , (5)

where γm is the damping rate of the torsional mode (see Appendix C). Note that the operators
are already replaced by δÔ → Ô, where δÔ denotes the fluctuation of Ô = {âj, b̂}. âin

j and

b̂in are the zero-mean Gaussian noises, satisfying the correlation relations
〈

âin
j (t)âin†

j (t′)
〉
=

δ(t− t′) and
〈

b̂in(t)b̂in†(t′)
〉
= (n̄ + 1)δ(t− t′) respectively [41]. Here n̄ = {exp(h̄ωm/kBT)

−1}−1 is the mean thermal excitation numbers at bath temperature T, and kB is Boltzmann
constant. The linearized Langevin Equations (4) and (5) can be rewritten in the matrix form

˙̂f (t) = A f̂ (t) + D̂(t) (6)

where f̂ T(t) = {b̂(t), b̂†(t), âA(t), â†
A(t), âB(t), â†

B(t)} and D̂T(t) = {√γm b̂in(t),
√

γm b̂in†(t),√
κA âin

A (t),
√

κA âin†
A (t),

√
κB âin

B (t),
√

κB âin†
B (t)}. The drift matrix A is given by
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A =



− γ
2 − iωm 0 igA igA igB igB

0 − γ
2 + iωm −igA −igA −igB −igB

igA igA − κA
2 − i∆A 0 0 0

−igA −igA 0 − κA
2 + i∆A 0 0

igB igB 0 0 − κB
2 − i∆B 0

−igB −igB 0 0 0 − κB
2 + i∆B


. (7)

After the Fourier transform Ô(t) =
∫ +∞
−∞ Ô(ω)e−iωtdω, the steady state solutions of

the Langevin Equations (4) and (5) in the frequency domain are

b̂(ω) =

i ∑
j=A,B

gj

[
â†

j (−ω) + âj(ω)
]
+
√

γm b̂in

γm
2 + i(ωm −ω)

, (8)

âj(ω) =
igj

(
b̂†(−ω) + b̂(ω)

)
+
√

κj âin
j

κj
2 + i

(
∆j −ω

) , (9)

where the corresponding correlation noises are
〈

b̂in(ω)b̂in†(−ω′)
〉
= 2π(2n̄ + 1)δ(ω + ω′)

and
〈

âin
j (ω)âin†

j′ (−ω′)
〉
= 2πδjj′(ω + ω′) , respectively. Furthermore, Equations (8) and (9)

can be rewritten as Â(ω) = J−1(ω)B̂(ω) where Â(ω) = {b̂(ω), b̂†(−ω), âA(ω), â†
A(−ω),

âB(ω), â†
B(−ω)}T , B(ω) = {√γm b̂in(ω),

√
γm b̂in†(−ω),

√
κA âin

A (ω),
√

κA âin†
A (−ω),√

κB âin
B (ω),

√
κB âin†

B (−ω)}T ,

J(ω) =



u1 0 −igA −igA −igB −igB
0 u2 igA igA igB igB
−igA −igA v1 0 0 0
igA igA 0 v2 0 0
−igB −igB 0 0 w1 0
igB igB 0 0 0 w2

, (10)

u1 = γm
2 + i(ωm −ω), u2 = γm

2 − i(ωm + ω), v1 = κA
2 + i(∆A −ω), v2 = κA

2 − i(∆A + ω),
w1 = κB

2 + i(∆B −ω), and w2 = κB
2 + i(∆B −ω). Based on the standard input–output relation

âout
j (ω) =

√
κj âj(ω)− âin

j (ω), (11)

the output cavity mode aout
j (ω) can be attainable.

3. Single-Mode Squeezing

We consider the case that the nano-ellipsoid is levitated by only one optical tweezer A,
while the other optical tweezer B is turned off. Only one cavity mode âA is excited by the
scattering photons of the optical tweezers A. From Equations (8) and (9), the cavity mode
âA(ω) can be solved as

âA(ω) = mA
1 (ω)b̂in(ω) + mA

2 (ω)b̂in†(−ω) + mA
3 (ω)âin

A (ω) + mA
4 (ω)âin†

A (−ω) (12)
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where
mA

1 (ω) = i
√

γmgAu2v2/z,

mA
2 (ω) = i

√
γmgAu1v2/z,

mA
3 (ω) =

√
κA{g2

A(u1 − u2) + u1u2v2}/z,

mA
4 (ω) =

√
κAg2

A(u1 − u2)/z,

(13)

with z = g2
A(u1 − u2)(v1 − v2) + u1u2v1v2. Furthermore, substituting Equation (12) in

Equation (11), one can obtain the stationary squeezing spectrum of the transmitted field [6]:

Sϑ(ω) =
〈
δXout

ϑ (ω)δXout
ϑ

(
ω′
)〉

(14)

where δXout
ϑ (ω) = e−iϑaout

A (ω) + eiϑaout†
A (−ω) with ϑ being the measurement phase angle

in homodyne detection. Or more specifically, Equation (14) can be rewritten as the form of
Sϑ(ω) = Sââ† + Sâ† â +

[
e−2iϑSââ + c.c

]
where

Sââ†(ω) =
〈

âout
A (ω)âout†

A
(
−ω′

)〉
=κA

[
mA

3 (ω)− 1/
√

κA

][
mA∗

3 (ω)− 1/
√

κA

]
+ κA

[
(n̄ + 1)mA

1 (ω)mA∗
1 (ω) + n̄mA

2 (ω)mA∗
2 (ω)

]
,

(15)

Sâ† â(ω) =
〈

âout†
A (−ω)âout

A
(
ω′
)〉

= κA

[∣∣∣mA
4 (−ω)

∣∣∣2 + (n̄ + 1)
∣∣∣mA

2 (−ω)
∣∣∣2 + n̄

∣∣∣mA
1 (−ω)

∣∣∣2],
(16)

and
Sââ(ω) =

〈
âout

A (ω)âout
A
(
ω′
)〉

=κA

[
mA

3 (ω)− 1/
√

κA

]
mA

4 (−ω)

+ κA

[
(n̄ + 1)mA

1 (ω)mA
2 (−ω) + n̄mA

2 (ω)mA
1 (−ω)

]
.

(17)

It is noted that the maximum squeezing could reach when dSϑ(ω)/ϑ = 0. Then it is
easy to find out that the maximum squeezing of single output cavity mode is [13,42]

S1(ω) = Sââ†(ω) + Sâ† â(ω)− 2|Sââ(ω)| (18)

as e2iϑ = −Sââ
/
|Sââ|. The output cavity mode is squeezed if S1(ω) decreases below the

shot-noise level (S1(ω) < 1).
In order to maintain the system stability, we assume that the frequency of the optical

tweezer A is on the red sideband of the cavity mode, e.g. ∆A = ωm. We find that
the Routh–Hurwitz criterion could be fulfilled, even under ultra-strong coupling regime
gA/ωm > 0.1 [41]. Besides, the cavity mode could be highly squeezed in this regime. As
shown in Figure 3, we find that the output cavity mode can be squeezed even at room
temperature. Obviously, the optimal squeezing of the output cavity field occurs around
resonance regime ω = 0, where the dissipative part of the mechanical susceptibility has no
response in dynamics [6]. In the good cavity regime κA < ωm, the pondermotive squeezing
will be suppressed [15]. As the cavity decay rate increases from κA = 0.1ωm to κA = 1ωm,
the minimum of S1(ω) decreases. The output cavity mode can be squeezed up to 17 dB
when the lifetime of cavity photons approximately equals to a period of torsional motion
(κA ≈ ωm). As the cavity decay rate continues to increase, the broadband and strong
squeezing generate a bad cavity condition κA ≈ 2ωm. Then the broadband squeezing will
split into two dips under the bad cavity regime, and the squeezing degree will reduce at
ω = 0 for the larger dissipation [15].
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Note that the model we proposed is an open system, in which the optically levitated
nano-ellipsoid irreversibly couples to the environment by the collision of the surrounding
gas [33]. With the back-action interaction, the thermal disturbance could act on cavity mode,
leading to decoherence. Here we investigate the effects on the squeezing light from the
perspective of the surrounding gas pressure and temperature of the torsional motion. As
shown in Figure 4a, S1(ω), this depends on the gas pressure p. The lower pressure of the
surrounding gas leads to the higher squeezing light. However, limited by the stability in
ultra-high vacuum and the photons recoiling [33], the squeezing threshold exists. On the other
hand, the higher temperature for the torsional mode will extremely enlarge the number of
thermal phonons, which would destroy the squeezing state of the output lights. Therefore,
many schemes based on optomechanics require a low-temperature environment [9,11,23]. In
order to realize the stronger squeezing light, the high-quality factor and low-temperature
environment are necessary for the levitated optomechanical system [11]. For our scheme, the
squeezing is robust to the thermal environment as shown in Figure 4b.
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Figure 3. S1(ω) as a function of the cavity decay rate κA. Parameters are listed as follows: optical
tweezers’ power in focus PA = 0.05 W, pressure of the residual gas p = 10−4 Pa, temperature of the
residual gas Ta = 300 K, bath temperature for the torsional mode T = 300 K, and the accommodation
efficient γac = 0.9 (see Appendix C). Other parameters are the same as Figure 2.
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in both picture (a,b). Other parameters are the same as Figure 3.
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4. Two-Mode Squeezing

Our scheme can also be used for generating two-mode squeezing light, if we consider
the nano-ellipsoid is optically levitated by dual tweezers, both A and B. Driven by the
scattering photons, two cavity modes âA and âB are excited in the bichromatic cavity. Based
on Equations (8), (9), and (11), the output cavity mode âout

j (ω) can be solved by

âout
j (ω) =mj

1(ω)b̂in(ω) + mj
2(ω)b̂in†(−ω) + mj

3(ω)âin
A (ω)

+ mj
4(ω)âin†

A (−ω) + mj
5(ω)âin

B (ω) + mj
6(ω)âin†

B (−ω)
(19)

where

mA
1 = i

√
κAγmgAu2v2w1w2/z,

mA
2 = i

√
κAγmgAu1v2w1w2/z,

mA
3 = κA

(
(u1 − u2)

(
g2

Bv2(w1 − w2) + g2
Aw1w2

)
+ u1u2v2w1w2

)
/z− 1,

mA
4 = κA

(
g2

A(u1 − u2)w1w2
)
/z,

mA
5 =
√

κAκB(gAgB(u1 − u2)v2w2)/z,

mA
6 =
√

κAκB(gAgB(u1 − u2)v2w1)/z,

(20)

and
mB

1 = i
√

κBγmgBu2v1v2w2/z,

mB
2 = i

√
κBγmgBu1v1v2w2/z,

mB
3 =
√

κAκB(gAgB(u1 − u2)v2w2)/z,

mB
4 =
√

κAκB(gAgB(u1 − u2)v1w2)/z,

mB
5 = κB

(
(u1 − u2)

(
g2

Bv1v2 + g2
A(v1 − v2)w2

)
+ u1u2v1v2w2

)
/z− 1,

mB
6 = κB

(
g2

B(u1 − u2)v1v2
)
/z,

(21)

with z = (u1 − u2)
(

g2
Bv1v2(w1 − w2) + g2

A(v1 − v2)w1w2
)
+ u1u2v1v2w1w2. Furthermore,

by introducing two phase-quadrature operators

X(ω) =
1
2 ∑

j=A,B

[
aout

j (ω) + aout†
j (−ω)

]
, (22)

and
Y(ω) =

1
2i ∑

j=A,B

[
aout

j (ω)− aout†
j (−ω)

]
, (23)

the squeezing spectra SXX(ω) and SYY(ω) can be calculated by 〈X(ω)X(ω′)〉 = 2πSXX(ω)
δ(ω + ω′) and 〈Y(ω)Y(ω′)〉 = 2πSYY(ω)δ(ω + ω′) [43]. The output two-mode cavity field
is squeezed if S2(ω) = SXX(ω) + SYY(ω) < 1.

In order to realize the two-mode squeezing light in steady state, two optical tweezers
A and B are detuned to the red sideband (red-red), or the optical tweezers A is detuned
to red sideband while the optical tweezers B is detuned to blue sideband (red-blue). In
the red-blue case, the system will be stable in the blue sideband if the cavity photons are
quickly lost to the vacuum. So, the cavity decay rates are assumed to κB = 10κA = 3ωm. As
the torsional mode resonance in the blue sideband, the dynamics of the torsional motion
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will be gradually amplified. In that case, the enhanced back-action interaction on the cavity
mode will induce deeper squeezing. As shown in Figure 5, the squeezing of the red-blue
case is much larger than that of the red-red case as the mechanical susceptibility of the
levitated nano-ellipsoid responds in the resonant region.

-2 -1 0 1 2

/
m
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0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

S
2

red-red

red-blue

Figure 5. Squeezing spectrum of two output modes. The legend red-red represents both two optical
tweezers in red sideband of the cavity mode. The legend red-blue denotes the optical tweezers A
in red sideband while another tweezers B in blue sideband. The decay rates of the cavity mode are
κA = 0.3ωm and κB = 3ωm. Two tweezers are different in wavelength λA = 780 nm (λB = 980 nm).
Other parameters are the same as Figure 3.

Next, we will analyze the two-mode squeezing from the view of system stability. As
shown in Figure 6a, none of S2(ω) is lower than 0.5 (3 dB). Obviously, there is a narrow and
suddenly interrupted area, which splits the blue area into two parts. By comparing with
Figure 6b, it corresponds to the critical boundary between the stable and unstable regions.
The larger κB and smaller κA would make the system more stable. However, the squeezing
will be reduced for the weak back-action. The maximum S2(ω) reaches its maximum as
the system approaches the dynamical instability [40].
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Figure 6. Cont.
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Figure 6. S2(ω) (a) and the maximum eigenvalue of Equation (7) (b) as a function of the cavity decay
rate κj. The detunings are set to the red and blue sideband ∆A = −∆B = ωm, respectively. In picture
(b), the yellow area means the maximum eigenvalue of Equation (7) is non-negative. According to the
Routh–Hurwitz stability criterion [41], the system becomes instable in the long time limit. Conversely,
the blue area denotes the system is stable. Other parameters are the same as Figure 5.

In Figure 7, we assume that the power of optical tweezer A is fixed at PA = 0.1 W. Noted
that the optical tweezer A is set to the red sideband of cavity mode, while optical tweezer B
is detuned to the blue sideband. With the power PB from 0.05 W to 0.15 W, S2(ω) decreases
at ω ≈ ωm for the enhancement of the back-action interaction. As the power PB up to 0.5 W,
there is no squeezing on ω ≈ ωm. The amplified torsional motion is overlarge on resonance.
It results in the instability of the system, which shows the destruction of squeezing.
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Figure 7. S2(ω) as a function of PB. The power of optical tweezer A in focus is set to PA = 0.1 W.
Tweezer A is detuned to the red sideband while tweezer B is set to be the blue sideband. Other
parameters are the same as Figure 5.

5. Conclusions

We have proposed the squeezing light source based on an optically levitated nano-
ellipsoid, which couples with a cavity. By the coherent scattering mechanism, the ultra-
strong coupling between the cavity field and torsional mode of the nano-ellipsoid could be
realized under the current experimental parameters. If the optical tweezers are on the red
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sideband of the cavity mode, the single-mode squeezed light source (17 dB squeezing) can
be realized even at room temperature. It is noteworthy that both the strong and broadband
squeezing light can be achieved under the bad cavity condition. In order to achieve the two-
mode squeezing light two optical tweezers are applied to trap the nano-particle at the same
time. One is on the red sideband, while another is on the blue sideband. The two-mode
squeezing of the lights is sensitive to the system stability, which depends on both the cavity
decay rates and the power of the optical tweezers. When the system dynamics are close to
the boundary of the stable regime, the two-mode squeezing can be maximized. However,
two-mode squeezing can not be over the 3 dB limit in our current scheme. In future,
the 3 dB limit can be overcome either by feedback [44] or by the reservoir-engineering
method [45].

Author Contributions: Writing—original draft preparation, G.L. and Z.-Q.Y.; writing—review and
editing, G.L. and Z.-Q.Y.; visualization, G.L. and Z.-Q.Y.; supervision, Z.-Q.Y.; project administration,
Z.-Q.Y.; funding acquisition, Z.-Q.Y. All authors have read and agreed to the published version of
the manuscript.

Funding: This research is supported by the National Natural Science Foundation of China under Grant
No. 61771278 and the Beijing Institute of Technology Research Fund Program for Young Scholars.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Polarization Tensor

An uniform isotropic non-dispersive ellipsoid is assumed to be smaller than the wave
length of the tweezers λj. By this setting, the dipole approximation is performed. The
corresponding polarizability of the nano-ellipsoid in a semiaxis k is [46]

αk = 4πabcε0
εr − ε0

3ε0 + 3Lk(εr − ε0)
(A1)

where k = {a, b, c} and Lk = abc
2

∫ ∞
0

ds
(s+j2)(s+a2)

1/2
(s+b2)

1/2
(s+c2)

1/2 . With a > b = c, Lk can

be analytically solved by
La =

1−e2

e2

(
−1 + 1

2e ln 1+e
1−e

)
,

La + Lb + Lc = 1,

Lb = Lc

(A2)

where e =
√

1− b2
/

a2 denotes the eccentricity. Then the polarizability tensor for the
ellipsoid is given as the matrix product:

α̂ = Ŝ−1α̂0Ŝ, (A3)

where α̂0 = diag{αa, αb, αc} and Ŝ =

∣∣∣∣∣∣
cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

∣∣∣∣∣∣
∣∣∣∣∣∣

cos φ sin φ 0
− sin φ cos φ 0

0 0 1

∣∣∣∣∣∣.
Appendix B. Hamiltonian for Coherent Scattering

As the size of the ellipsoid is assumed to be smaller than the wavelength of the op-
tical tweezers, the dipole approximation is appropriate. The dipole moment is given as
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P̂ = α̂(θ, φ)Ê(r, t), where α(θ, φ) is the polarization tensor characterized by the rotating an-
gles θ and φ, Ê(r, t) is the electric field of the incoming beams. The Hamiltonian interaction
between the nano-ellipsoid and electric field can be written as [24,47]

ĤI = −
1
2

α̂(θ, φ)Ê2(r, t) (A4)

where
Ê(r, t)= ∑

j=A,B

(
Ej

C(r) + ε
j
T(r, t)

)
. (A5)

Ej
C(r) =

√
h̄ω

j
c

2ε0V j
c

[
f j(r)âj + H.c.

]
is the electric field in cavity mode and ε̂

j
T(r, t) = [Ej

T(r)e
iωjt +

c.c.]/2 is the tweezers field with Gaussian form Ej
T(r) = Ej

0
wj

t0

wj
t(z)

e
− x2+y2

wj
t(z)w

j
t(z) eiωjteikj

tzeiψj
t(r). âj

and â†
j are the bosonic annihilation and creator operators of cavity mode. ωj (ω j

c), kj
t (kj

c), and

wj
t0 (wj

c) are the frequency, wave number, and beam waist of the optical tweezers (cavity modes).

V j
c = πdwj

cwj
c/4 denotes the cavity volume where d is the cavity length. The mode function

f j(y) depends on the boundary of the cavity, which can be written as f j(r) = cos(kj
cy + ψj) in

y axis. Ej
0 =

√
4Pj

/
πε0cwj

t0 and wj
t(z) = wj

t0

√
1 + z2

/
zj2

R are the amplitude and beam waist

of the tweezers. zj
R = πwj

t0wj
t0/λj and ψ

j
t(r) are the Rayleigh range and Gouy phase of the

tweezers. Pj, c, and λj are the power, speed, and wavelength of the tweezers.
By inserting Equation (A5) to Equation (A4), the Hamiltonian can be written as

HI = HT−T + HC−C + HT−C where

HT−T = −1
2

α̂(θ, φ) ∑
j=A,B

ε
j
T(r, t)εj

T(r, t), (A6)

HC−C = −1
2

α̂(θ, φ) ∑
j=A,B

Ej
C(r)Ej

C(r), (A7)

and
HT−C = −α̂(θ, φ) ∑

j=A,B
ε

j
T(r, t)Ej

C(r). (A8)

Then, we assume that the nano-ellipsoid is fixed at the origin (r = 0), and only the
torsional motion on θ and φ is under considered. That is, when θ(φ)→ 0, one can expand
the HT−T to the second order of θ(φ). The torsional frequency of the nano-ellipsoid is

ωθ(φ) =

√(
EA

0 EA
0 + EB

0 EB
0
)
(αa − αb)

/
2I (A9)

where I = M(a2 + b2)/5 denotes the inertia of the ellipsoid. M is the mass of the nano-
ellipsoid. The corresponding intrinsic optomechanical coupling and coherent scattering
coupling can be derived by expanding the HC−C and HC−T to the first order of θ(φ) as
θ → π/4, φ = 0(φ→ π/4, θ = 0), given as

gj
θ(φ)

=
(αa − αb)ω

j
cξ

θ(φ)
0 cos2(ϕj

)
2ε0V j

c
, (A10)

gj
sθ(sφ)

= (αa − αb)E0ξ
θ(φ)
0 cos

(
ϕj
)√√√√ ω

j
c

8h̄ε0V j
c

(A11)
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where ξ
θ(φ)
0 =

√
h̄
/

2Iωθ(φ) is the zero-point fluctuation of torsion mode. It is noted that
the torsion motion can be decoupled from the center-of-mass motion by moving the optical
tweezers to the anti-node of the cavity mode (ϕj = 0) [37]. Moreover, because gj

θ(φ)
is much

smaller than the gj
sθ(sφ)

, the coherent scattering coupling gj
sθ(sφ)

is under considered. Then
the Hamiltonian for the interaction picture can be read by [24]

Ĥ=h̄∆j â†
j âj + h̄ωm b̂† b̂− h̄ ∑

j=A,B
gj

(
â†

j + âj

)(
b̂† + b̂

)
(A12)

where ∆j = ω
j
c − ωj, ωm denotes the torsional frequency ωθ(φ), and gj represents the

coherent scattering coupling gj
sθ(sφ)

. In this Hamiltonian, the first two terms denote the free
Hamiltonian for the cavity modes and torsional mode, while the last term describes the
coherent scattering interactions between the cavity modes and torsional mode.

Appendix C. Damping for Torsional Motion

As the nano-ellipsoid optically trapped in a high vacuum environment, the collision
of surrounding gas on nano-ellipsoid leads to the change of angular momentum. The
damping rate for the torsional motion is given by [48]

γφ =
5ρav̄a3

√
1− e2

8ρ(a2 + b2)

[
γac

(
f1 +

(
1− e2

)
f2

)
+ 3
(

1− γac
6− π

8

)
e4 f3

]
(A13)

where
f1 = 3

8e2

[
1
e arcsin(e)−

(
1− 2e2)√1− e2

]
,

f2 = 3
16e2

[(
1 + 2e2)√1− e2 − 1

e arcsin(e)
(
1− 4e2)],

f3 = 1
4e4

[(
3− 2e2)√1− e2 + 1

e arcsin(e)
(
4e2 − 3

)]
.

(A14)

ρa = ma p
/

kBTa is the mass density, where ma, p, and Ta are atom mass, pressure, and

temperature of the residual gas. v̄ =
√

8kBTa
/

πma is the mean thermal velocity and ρ is
the density of the nano-ellipsoid. γac denotes the accommodation efficient which charges
the diffuse and specular reflection of ellipsoidal surface.
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25. Toroš, M.; Delić, U.; Hales, F.; Monteiro, T.S. Coherent-scattering two-dimensional cooling in levitated cavity optomechanics.
Phys. Rev. Res. 2021, 3, 023071, doi:10.1103/PhysRevResearch.3.023071.
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