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Abstract: Spectroradiometers exhibit the smallest aberration and the optimum response at the field-
of-view (FOV) center. The aberration increases and the response deteriorates at positions further
away from the FOV center, which leads to nonuniformity in the spectroradiometer FOV. In this
study, a concentric-circles method for correcting the spectroradiometer FOV nonuniformity was
developed. The calibration experiment for FOV nonuniformity was conducted by establishing the
experimental platform. The nonuniformity correction coefficients were obtained and then used to fit
the correction function curve within the whole FOV, allowing for correction of measurement targets
with an arbitrary shape. The radiation intensity of the blackbody at different temperatures was
obtained by measurement, and the nonuniformity coefficient was used to correct it. After correction,
the error was within 1.84% for the spectrally integrated radiant intensity in the non-absorption
band. Using this correction method, efficient calibration of spectroradiometer nonuniformity can be
achieved, thereby enhancing the measurement accuracy of the spectroradiometer.

Keywords: spectroradiometer; aberration; field-of-view (FOV) nonuniformity; concentric-circles correction

1. Introduction

Fourier-transform infrared (FTIR) spectroscopy has found increasingly extensive ap-
plications in environment monitoring, pollution prevention and control [1–3], infrared
target detection for the military [4–7], atmospheric transmittance measurement, and other
fields [8–11]. A Fourier infrared spectroradiometer can obtain the spectral radiation charac-
teristics of a source, but its measurement results generally differ considerably from those
calculated under ideal conditions. The causes of the errors include issues with the repeata-
bility of spectroradiometer measurements, detector nonlinearity, interference from infrared
background radiation, atmospheric transmission attenuation, and human errors in exper-
imental apparatus testing. The nonuniformity of the spectroradiometer’s field-of-view
(FOV) response caused by off-axis aberration also significantly impacts measurements. At
the center of the spectroradiometer FOV, the aberration is the smallest and the best response
can be obtained. At long distances from the FOV center, the aberration increases and the
response deteriorates. Therefore, when the target to be measured deviates from the FOV
center or occupies a major part of the spectroradiometer FOV, the radiation measurement
results contain considerable errors compared to the theoretical values.

The spectroradiometer consists of four parts: an optical system, a detection system,
a signal processing module, and a computer module [12,13]. The optical system receives
and collects the energy of the target radiation source. The detection system then transforms
the collected energy into physical quantities, such as voltage and resistance. The signal
processing module amplifies the physical quantities, which are ultimately transmitted to
the computer module for data visualization by supporting software.

Among the modules in the spectroradiometer, the off-axis parabolic mirror in the
optical system constitutes the fundamental cause of FOV nonuniformity. For the off-axis
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parabolic mirror, the aberration can be ignored on its optical axis, but it increases rapidly
when the deviation from the optical axis exceeds a certain value. Therefore, the target
light can be recovered well at positions close to the optical axis. However, at positions
further away from the optical axis, aberration may result in different responses from the
spectroradiometer for the same target at different FOV positions. The greater the deviation
from the optical axis, the worse the response of the spectroradiometer is. Furthermore,
aberration is a complex function related to the structure of an optical system that cannot be
directly expressed as a specific function.

References [14,15] studied the response nonuniformity of the spectral testing appara-
tus in the theoretical measurement regions. They evaluated the practical spectroradiometer
FOV range and the responses at different positions within the FOV range and obtained the
directional response function, which is of far-reaching significance for accurate spectrora-
diometer measurements.

In 2015, Huang, W.; Ji, H.H.; Si, R. [16] corrected the nonuniformity in the results
measured by an FTIR spectroradiometer. By studying the effects of FOV and field area on
spectral radiant intensity, they concluded that measurements for the same target varied
with the relative target position in the FOV. Furthermore, by integrating the theoretical
spectral radiant intensities in the band from 3.5~4.0 µm and comparing the integral with
the test value, a correction coefficient was obtained, which was then used for uniformity
correction. With this approach, the error between the corrected test result and the spectral
radiant intensity calculated under ideal conditions was reduced. However, this method
requires the acquisition of the target radiation source’s test and theoretical radiation values,
which are then used to obtain the correction coefficient. Furthermore, it does not explain
the specific law of nonuniformity.

In 2018, Wang, X.X.; Yang, H.R.; Yu, B. et al. [17] corrected the nonuniformity of
the spectroradiometer FOV using equal-solid-angle calibration. First, by studying the
nonuniformity of spectroradiometer FOV, the voltage responses at different FOV positions
were obtained, revealing that the response at the edge was approximately 50% lower than
that at the center. For the nonuniformity of the FOV, an equal-solid-angle calibration
method was proposed. As the distance between the spectroradiometer and the blackbody
was set reasonably, the solid angle when the spectroradiometer measured the target was the
same as the solid angle when the blackbody was measured. In this way, the optical paths
of the spectroradiometer when measuring the blackbody and the target to be measured
were the same, eliminating the influence of the nonuniformity of the FOV. The final results
revealed that the measurement error was less than 2%. This method requires that the
blackbody and the target have substantially the same shape. The spectroradiometer has the
same optical path when measuring both objects. However, it is difficult to find blackbodies
with similar shapes for equal-solid-angle calibration for irregular target radiation sources.
There are certain limitations present.

There have been in-depth reports about the suppression techniques that can be used
for background radiation and the spectroradiometer response function, with the aim of
improving the measurement accuracy of the spectroradiometer. However, few studies have
focused on correcting the spatial nonuniformity of the spectroradiometer FOV. With the
existing methods, the inversion is performed with the help of the theoretical value of the
radiation intensity of the target radiation source. However, the theoretical value of the
radiation intensity of the target radiation source is generally difficult to obtain in practical
tests. Alternatively, it is necessary to use a blackbody with a similar shape as the target
radiation source to achieve better operation. However, this method cannot be applied
when the target radiation source has an irregular shape; for example, when measuring an
engine tail jet. In general, the existing processing methods still have limitations. Therefore,
a concentric-circles method for correcting the nonuniformity of spectroradiometer FOV
was developed in this study. It can be applied to target radiation sources of any shape and
with unknown theoretical radiation intensities.
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2. Calibration Scheme for FOV Nonuniformity
2.1. Correction Using Concentric-Circles Method

Spectroradiometers exhibit minor aberration and an optimum response at the FOV
center. The aberration increases and the response deteriorates further away from the FOV
center, which leads to phase nonuniformity in the spectroradiometer FOV. The axisymmet-
ric aberration of the optical system, which causes the nonuniform response of the FOV, is
circularly symmetric and gradually increases along the FOV, taking the center of the FOV
spectroradiometer as the center of the circle. This indicates a centrosymmetric distribution.
Therefore, a correction scheme using a concentric-circles method for the nonuniformity of
the FOV of the spectroradiometer can be proposed.

The center of the FOV of the spectroradiometer was taken as the concentric center
of the circle. Moreover, the FOV was divided into concentric rings. The nonuniformity
of the FOV along the same ring was the same. The blackbody to be calibrated moved on
different rings along the red line, as shown in Figure 1. For the entirety of the moving
process, the blackbody was always completely located in the FOV of the spectroradiometer.
At this time, the radiation value received by the spectroradiometer did not change, and the
theoretical output response remained unchanged. However, due to the nonuniformity of
the FOV, the output response value of the spectroradiometer changed when the blackbody
was in different positions. Using the test results for spectroradiometers with blackbodies in
different rings, the nonuniformity of the FOV of the spectroradiometers was calibrated.
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Figure 1. Schematic diagram of the concentric-circles method.

In the calibration process, in order to reduce the measurement error, two measurements
were made on the left and right sides of the same ring. The measurement numbers on
the left were marked as −1, −2, . . . , −i, . . . , −n, and the measurement numbers on the
right were marked as 1, 2, . . . , i, . . . , n. The average of the two measurements of i and -i
was calculated in order to replace the measured response value for the entire ring. When
the number of ring divisions increases infinitely, a correction coefficient curve can be
obtained. In this way, a more accurate response value at each position in the FOV of the
spectroradiometer can be obtained, and the nonuniformity coefficient at all positions of the
FOV can be calibrated.



Photonics 2022, 9, 56 4 of 14

2.2. Experimental Scheme

The experiment setup included a spectroradiometer, an electrically controlled mobile
platform, and standard-surface blackbodies. The spectroradiometer was a model MR170
produced by ABB, with a spectral range of 2~15 µm and optional lenses of 75 mrad, 28 mrad,
and 4.9 mrad. Two types of HT2M and B-500HE-20 blackbodies produced by DEMEI and
LR Tech respectively, with uniform and stable surface temperature distributions, were
used: blackbody I, with a diameter of 100 mm, and blackbody II, with a size of 200 mm ×
200 mm and blackbody emissivity of 0.95. The electronically controlled mobile platform
was a model FZVAC1200 produced by Fuzhou Vacuum Electromechanical Equipment, and
the moving accuracy was ±0.05 mm. Driven by the electrically controlled mobile platform,
the blackbody moved the given distance along the direction perpendicular to the optical
axis of the spectroradiometer. Thus, the blackbody radiance at each given position on the
mobile platform could be measured. According to the characteristics and purpose of this
experiment, and considering the need to reduce the influence of the signal-to-noise ratio,
when the output of the spectroradiometer was unsaturated, the blackbody temperature
was maximized. After fully considering the temperature range of the blackbody and the
responsiveness of the spectroradiometer, the following experiment scheme was configured.

The spectroradiometer had to be calibrated before use so as to facilitate convenient
test operations while guaranteeing the accuracy requirements. As this experiment was
conducted in the laboratory, the measurement distance was short, and the temperature
variations of the target radiation source were small. Under these conditions, the response
function of the spectroradiometer was considered to be linear, so the two-point calibration
method was selected [18–20]. Specifically, two different temperatures were configured for
the blackbody to calibrate the spectroradiometer. To eliminate the influence of background
radiation and improve the calibration accuracy, the blackbody filled the spectroradiometer
FOV during calibration. The theoretical formulae for the two-point calibration method are:

V(λ, TH) = R(λ)·L(λ, TH) + O(λ) (1)

V(λ, TC) = R(λ)·L(λ, TC) + O(λ) (2)

where TH is high temperature, TC is low temperature, V(λ,TH) is the output voltage of the
spectroradiometer when testing the high-temperature blackbody, L(λ,TH) is the radiance of
the high-temperature blackbody, V(λ,TC) is the output voltage of the spectroradiometer
when testing the low-temperature blackbody, L(λ,TC) is the radiance of the low-temperature
blackbody, R(λ) is the response of the spectroradiometer, and O(λ) is the error of the radia-
tion measurement, which does not change when the temperature of the blackbody changes.

By combining Equations (1) and (2), the response R(λ) and radiation measurement
error O(λ) can be obtained as follows:

R(λ) =
V(λ, TH)−V(λ, TC)

L(λ, TH)− L(λ, TC)
(3)

O(λ) =
V(λ, TC)L(λ, TH)−V(λ, TH)L(λ, TC)

L(λ, TH)− L(λ, TC)
(4)

After two-point calibration, the response and measurement error of the spectrora-
diometer could be determined, and the linear relationship between the voltage and the
spectral radiance could be obtained as follows:

V(λ, T) = R(λ)·L(λ, T) + O(λ) (5)

Thus, the voltage measured by the spectroradiometer was matched with the spectral
radiance of the target, and the response function between the two was obtained.

The schematic diagram of the experimental setup for measuring the spatial nonunifor-
mity of the spectroradiometer FOV is shown in Figure 2. The blackbody was placed on the
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electronically controlled mobile platform and in the center of the spectroradiometer FOV.
It could be moved to the left and right under the control of the electronically controlled
mobile platform. The blackbody moving path is shown in the figure. A 75 mrad lens was
selected, and the test distance D1 was set to 5.33 m. The temperature of the blackbody
was set to 533 K. In the specific test, the FOV nonuniformity calibration was performed by
first measuring the spectrum radiance of blackbody I at the central axial position of the
spectroradiometer FOV. Then, starting from the center measurement point, the blackbody
was moved to the left of the center position 1 cm at a time to perform each measurement,
with 15 measurements taken in total across 15 cm. The same measurements were recorded
on the right side of the center of the FOV, and a total of 31 measurements were performed.
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the spectroradiometer FOV.

Afterward, as shown in Figure 3, the FOV nonuniformity calibration result was
verified by placing blackbody II at the spectroradiometer FOV center and measuring its
spectral radiation.

The measurement scheme is shown in Table 1. A total of two sets of tests were carried
out. When the distance D2 between the blackbody and the spectroradiometer was set
reasonably, the blackbody accounted for 50.11% of the spectroradiometer’s FOV. Here, D2
was 4.25 m; the blackbody temperatures were set as 547 K and 557 K, respectively.
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Table 1. FOV nonuniformity correction verification scheme.

D2 (m) Temperature (K) Percentage in the FOV of the
Spectroradiometer (%)

4.25 547 50.11
4.25 557 50.11

3. Results
3.1. FOV Nonuniformity Correction Coefficient

The distance i between each measurement point and the FOV center was divided by
the FOV radius for normalization and the ratio was denoted as β. In this study, the FOV
radius Q of the spectroradiometer was 200 mm.

βi =
i
Q

(6)

The radiance measured by the spectroradiometer was transformed into the radiant in-
tensity at different wavelengths by averaging the spectral test data from two measurements
on the same ring. Meanwhile, the theoretical radiant intensity value of the blackbody was
obtained by the following Equations [21].

L(λ1−λ2)
=
ε

π

∫ λ2

λ1

a1

λ5(ea2/λT − 1)
·dλ (7)

I(λ1−λ2)
= L(λ1−λ2)

·A (8)

Here, L(λ1−λ2)
is the radiance within the λ1 − λ2 band; I(λ1−λ2)

is the radiant intensity
within the λ1 − λ2 band; A is the effective radiation area of the target; ε is the emissivity
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of the blackbody; a1 and a2 are radiation constants, with values of 3.7415 ± 0.0003 × 108

(W·µm4/m2) and 1.43879 ± 0.00019 × 104 (µm·K), respectively; and T is the temperature
of the blackbody.

The measured data were processed according to Equations (7) and (8). First, the rela-
tionship curve between the wavelength and the radiant intensity at different measurement
positions was obtained for blackbody I, as shown in Figure 4.
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The variation curve of the radiant intensity with the wavelength measured at different
positions and the theoretical radiant intensity curves at the two temperatures are given in
Figure 4. As can be seen, the spectral radiant intensity curves of 3~5 µm obtained for the
same target varied at different positions. Basically, the smaller β was—i.e., the closer it was
to the FOV center—the greater the measured spectral radiant intensity was and the closer
to the theoretical value.

Furthermore, as can be observed in Figure 4, the practical spectral radiant intensity
curve fluctuated obviously at wavelengths of 3~3.4 µm,4.2~4.4 µm, and 4.5~5 µm. Specifi-
cally, the curve decreased rapidly at approximately 4.2 µm and then rose at around 4.4 µm.
These changes were due to energy attenuation during atmospheric transmission. The wave-
lengths of the infrared absorption bands for the main atmospheric components at 3~5 µm
are shown in Table 2, in which CO2 and H2O exhibited the highest absorptions. Therefore,
these two components should be the focus when discussing atmospheric transmittance in
the range of 3~5 µm. The fluctuations near 3.2 µm were due to the influence of H2O in the
atmosphere, and the significant fluctuations at 4.2~4.4 µm were due to atmospheric CO2,
which had a strong absorption band at 4.3 µm, causing an evident drop in the curve [21].
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Table 2. Center wavelengths of infrared absorption bands for main atmospheric components at
3~5 µm.

Composition Center Wavelength of Absorption Band (µm)

CO2 4.3, 4.8
H2O 3.2
CO 4.7
CH4 3.3
O3 4.8

Overall, the influence of atmospheric absorption was minor within the range from
3.4~4.15 µm, so the curve was generally smooth, exhibiting a trend similar to that of the
theoretical curve. To eliminate the influence of atmospheric transmission attenuation on
the experiment when correcting the FOV nonuniformity, the band from 3.5~4.15 µm was
selected for calibration in the data processing.

The spectral radiation data measured at the FOV center was closest to the theoretical
value. After obtaining the total radiant intensity at 3.5~4.15 µm for each measurement
point, the correction coefficient α was calculated by taking the radiant intensity at β = 0 as
the reference value.

αi=
Ii

I0
i = 0, 1, 2 . . . 15. (9)

where Ii is the 3.5~4.15 µm radiant intensity at βi and I0 is the 3.5~4.15 µm radiant intensity
at β0.

Figure 5 presents the correction coefficient α at different values of β at 533 K and the
spectrally integrated radiant intensity in the 3.5~4.15 µm band. Specifically, the correc-
tion coefficient changed gently near the FOV center. The correction coefficient dropped
significantly when β became larger than 0.35.
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The correction coefficient α at different values of β was obtained using the above
test. The distance β from the center of the FOV of the spectroradiometer was taken as
the abscissa and the nonuniformity correction coefficient α as the ordinate. The quartic
polynomial function was used for fitting, and the correction function α = f(β) was obtained,
as shown in the corresponding curve in Figure 6a.
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The FOV of the spectroradiometer was represented in the X-Y coordinate system, with
the center of the FOV of the spectroradiometer as the origin, the normalized horizontal
distance as X, and the normalized vertical distance as Y.

The distance from any point (xi, yi) in the coordinate system to the center of the FOV

was
√

xi
2 + yi

2, so the correction coefficient at (xi, yi) was αi = f(
√

xi
2 + yi

2), and it was
recorded as αi = f(xi, yi). From this, the correction coefficient α at any position of the FOV
of the spectroradiometer could be obtained. The correction coefficient cloud image for the
whole FOV is shown in Figure 6b.

As can be seen in Figure 6, the nonuniformity reached 0.55 at the edge of the FOV
of the spectroradiometer. When the target occupied a large area in the spectroradiometer,
the effect of the spatial nonuniformity of the spectroradiometer FOV was very large and
needed to be corrected.

3.2. Correction of FOV Nonuniformity

When testing the target radiation source with the spectroradiometer, the distance from
the edge of the FOV of the spectroradiometer to the center of the FOV was regarded as
1 to normalize the area of the target radiation source. The area was denoted as S. When
correcting the target radiation source, there was a correction coefficient for each concentric
ring in the FOV of the spectroradiometer, and the correction coefficients were different for
different rings.

For the i-th circle, the correction coefficient at the distance
√

xi
2 + yi

2 = βi from the
center of the FOV of the spectroradiometer was αi. As shown in the Figure 7, the target
radiation source was in this red area. The correction coefficient was αi.
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Figure 7. Correction coefficient for the target radiation source in the FOV.

From this, it can be seen that every position of the target radiation source in the FOV
had a certain correction coefficient. For the calculation of radiation intensity correction,
the method of splitting, approximating, summing, and taking the limit was used to derive
the formula.

The area of the target radiation source was arbitrarily divided into n area elements.
For the FOV area with position coordinates (εj, µj), the area element of this area was ∆σj
and the radiation intensity was:

∆Ij ≈ L·∆σj·
1

f(εj,µj)
(10)

where f(εj,µj) = f(
√
εj

2 + µj
2) and L is the measured radiance of the target radiation source.

The total radiation intensity of the target radiation source was:

I =
n

∑
j=1

∆Ij (11)

When the largest area η in all n area elements tends to 0, the limit can be expressed as
a double integral, namely:

I = lim
η→0

n

∑
j=1

L·∆σj·
1

f(εj,µj)
= L·

x

S

1
f(x, y)

dσ (12)

I = L·
x

S

1
f(x, y)

dxdy (13)

where S is the normalized total area of the target radiation source.
Considering the response of the spectroradiometer and the experimental test condi-

tions, blackbody II was selected to verify the correction results. The measurements were
performed when the blackbody temperatures were 547 K and 557 K. In accordance with
the shape characteristic of the blackbody square, the square area located in the 0–π

4 range
of the first quadrant was taken for integral calculation. Then, the radiation was multiply by
eight, so that Equation (13) could be derived as Equation (14).

I = 8L·
∫ b

0
dx

∫ x

0

1
f(
√

x2 + y2)
dy (14)
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where b is the normalized maximum distance of the target radiation source in the horizontal
direction, which was 0.6274 in this verification.

These data can also be converted to polar coordinates as follows:

I = 8L·
∫ π

4

0
dθ

∫ b
cosθ

0

1
f(r)

rdr (15)

Here, the value of r equals the distance β from any point to the center of the FOV,
f(r) = f(β).

The radiation intensity curves of the corrected value, the measured value, and the the-
oretical value in the 3.5~4.15 µm band are shown in Figure 8. It can be seen from the figure
that the spectral radiant intensity curve after correction of the FOV nonuniformity was, as
a whole, closer to the theoretical value. In the 3.5~4.15 µm band, the theoretical radiant
intensity curve and the corrected radiant intensity curve almost overlapped, indicating that
the error was small. This shows the excellent effect of nonuniformity correction.
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The spectrally integrated radiant intensity in the 3.5~4.15 µm band was calculated,
and the results are given in Figure 9. The maximum error compared to the theoretical value
within the 3.5~4.15 µm band was 1.84% after correction, exhibiting improved measurement
accuracy and verifying the effectiveness of the correction method.
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3.3. Uncertainty Analysis

The uncertainty of the spectrally integrated radiant intensity in the non-absorption
band existed across three aspects: the measurement instrument, the object, and the condi-
tions [22–24].

1. Measurement instrument

According to the type A evaluation of measurement uncertainty, the error N1 intro-
duced by issues with measurement repeatability was approximately 1.0%.

The uncertainty component N2 due to inaccurate spectroradiometer measurements
was approximately 0.3%.

2. Measurement object

Following calibration, the blackbody temperature stability was ±0.5 ◦C. The uncer-
tainty caused by the inaccurate temperature of the blackbody was 0.5 ◦C. Assuming that it
followed a normal distribution, the confidence probability was 0.95, and the k was 2 [25].
According to the type B evaluation of measurement uncertainty, the uncertainty of the
blackbody was highest at 50 ◦C, so N3 was:

N3 =
0.5

2× 50
× 100% = 0.5%

Following calibration, when the temperature was below 673 K, the emissivity of
the blackbody was 0.950 ± 0.005. Assuming that it followed a normal distribution, the
confidence probability was 0.95, and the k was 2. According to the type B evaluation of
measurement uncertainty, the blackbody emissivity causing the uncertainty N4 was:

N4 =
0.005

2× 0.95
× 100% = 0.26%

3. Measurement conditions

According to the type B evaluation of measurement uncertainty, the uncertainty owing
to the inaccurate distance and angle between the spectroradiometer and the blackbody (N5)
was approximately 0.1%.

The change in ambient temperature was less than 2 K. According to the type B evalua-
tion of measurement uncertainty, the influence resulted in an uncertainty (N6) of approxi-
mately 0.2%.

In acquiring the correction coefficient, the spectral radiant intensity measurements
on both sides of the same ring were averaged. Errors accrued at this point. Similarly, in
the fitting of the calibration curve, the use of different fitting functions also led to errors.
Moreover, in the part of the method where β was less than 0.75, the obtained fitting
coefficients were more accurate. In summary, the uncertainty of the correction factor N7
was about 2.5%.

The above uncertainty components were independent of each other, so the combined
uncertainty N was:

N =
√

N1
2 + N22 + N32 + N4

2 + N52 + N62 + N72 = 2.78%

4. Conclusions

In an experiment examining practical spectral radiation characteristics, a concentric-
circles method was used to obtain the nonuniformity fitting function. A correction formula
was used to correct the measured results of the spectroradiometer. In this context, it is
useful to attend to the influence of the spatial phase nonuniformity of the spectroradiometer
FOV on the actual measurement.

After correcting the spatial nonuniformity of the spectroradiometer FOV using the
concentric-circles method, for the blackbody occupying 50.11% of the spectroradiometer
FOV, the corrected spectrally integrated radiation in the 3.5~4.15 µm band was close to
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the theoretical value, with an error less than 1.84%, demonstrating an improved FOV
nonuniformity and verifying the effectiveness of the correction method.
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