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Abstract: Photonic spiking neural networks (SNN) have the advantages of high power efficiency,
high bandwidth and low delay, but limitations are encountered in large-scale integration. The silicon
photonics platform is a promising candidate for realizing large-scale photonic SNN because it is
compatible with the current mature CMOS platforms. Here, we present an architecture of photonic
SNN which consists of photonic neuron, photonic spike timing dependent plasticity (STDP) and
weight configuration that are all based on silicon micro-ring resonators (MRRs), via taking advantage
of the nonlinear effects in silicon. The photonic spiking neuron based on the add-drop MRR is
proposed, and a system-level computational model of all-MRR-based photonic SNN is presented.
The proposed architecture could exploit the properties of small area, high integration and flexible
structure of MRR, but also faces challenges caused by the high sensitivity of MRR. The spike sequence
learning problem is addressed based on the proposed all-MRR-based photonic SNN architecture via
adopting supervised training algorithms. We show the importance of algorithms when hardware
devices are limited.

Keywords: spiking neural network; micro-ring resonator; spike sequence learning

1. Introduction

Neuromorphic computing has intrinsically enhanced computing power in the last
decade. In particular, a spiking neural network (SNN) operates on spatiotemporal spikes
as in biological neural networks, where neurons are active when stimulated with above-
threshold injected pulses. Such a spike event-driven mechanism is expected to be power
efficient. The computational superiority of spiking hardware has already been demon-
strated [1-3]. However, the electronic hardware implementation of SNN suffers from
energy efficiency and physical dimensions, as well as the fundamental tradeoff between
bandwidth and interconnectivity. Hence, the photonic platform has become a promising
candidate for neuromorphic hardware implementation due to the advantages of ultrahigh
speed, high efficiency, and extremely high bandwidth.

Tremendous efforts have been devoted to the explorations of optical devices that
exhibit neuron-like dynamics, biological synapse properties and algorithms [4-16], which
are essential elements in a SNN. Existing photonic spiking neurons are mainly based on
excitable semiconductor lasers [13,17,18]. One typical model of such laser neuron is vertical
cavity emitting laser with saturable absorption region (VCSEL-SA), which was theoretically
demonstrated to be a Leaky-Integrate and Fire neuron [17]. Based on the polarization mode
competition, all-optical inhibitory dynamics were also observed in VCSEL-SA [19]. In
addition, the semiconductor optical amplifiers (SOA) and the vertical-cavity SOA (VCSOA)
were numerically and experimentally demonstrated to perform the spike timing dependent
plasticity (STDP) function [20,21], which is a biologically observed phenomenon in synapses
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that related to the learning mechanism [22]. Such a STDP rule is widely employed in both
supervised learning and unsupervised learning [23-26]. However, these devices are usually
based on III-V platforms that are not CMOS-compatible, hence limiting the large-scale
integrated applications.

Silicon-based optoelectronics is an ideal platform for photonic neural networks because
it is CMOS-compatible, thereby benefits from low-cost, commercial maturity and easy
integration with electronics [27-32]. A micro-ring resonator (MRR) has innate WDM
compatibility and small footprints, with flexible structure and high scalability. Phase change
materials (PCM) embedded on silicon waveguides were successfully used to emulate optical
synapses [9,10,33]. Recently, based on nonlinear effects in silicon, a STDP scheme has
been proposed via using high-order MRRs [34], in which tunable potentiation/depression
windows could be generated with different time constants. Besides, due to thermo-optic
and electric-optic effects in silicon, the resonance wavelength of MRR could be tuned
and the transmission could be controlled [35-40], which enables MRRs as reconfigurable
elements for matrix multiplication, convolutional operation [41,42], and as reconfigurable
weighting in photonic computing [43—45]. A set of parallel-coupled MRRs, named a MRR
weight bank (MRR-WB), can weight the neuron output independently over a continuous
range from [-1,1] with balanced photodetectors (PDs) [43]. Due to the high sensitivity
of MRR, feedback control approaches are usually adopted for weight stabilization, and
the precision for continuous weight tuning has been improved to more than 8 bits in a
2-channel MRR-WB setup [44].

In addition, there are also novel photonic spiking neuron models based on passive
silicon platforms, such as PCMs embedded on micro-ring [33,46] and microcavity neu-
rons [47-49]. It needs to be mentioned that the former neuron utilizes PCMs to accumulate
energy and switch the inner state. External incident spikes are sent to the system instead of
internally generated spikes, and a reset pulse is required after a spike event, thus is reliant
on a synchronized operation between the output spike pulses and the input data, and
lacks temporal encoding features [49]. However, neurons based on micro-cavity possess
an internal mechanism for generating optical pulses due to the nonlinear effects in silicon.
Such neurons are CMOS-compatible, promising for large-scale integration, and have very
low loss at telecom wavelengths. Typically, considering different time scales, there are
two kinds of spiking neurons based on MRRs. One takes into account the thermo-optic
effect [47,48], and the pulse width is limited by the temperature time constant which is
larger than other time constants governing the dynamics of the light, and the processing
speed was limited to the MHz. Note, that a negative pulse will be generated upon a positive
perturbation, which might make it more complicated for further processing in a network.
The other model takes into consideration of faster mechanisms, such as free-carrier and
instantaneous Kerr effects, spikes could be generated at a much faster time scale [49,50].
Considering that there is a high power threshold to enter such a nonlinear regime, graphene
was incorporated in a recently reported work to enhance the efficiency of the nonlinear
photonic [49].

However, the previous works based on passive devices were concentrated more on
emulating the basic functional properties, a systematic architecture that combines MRR-
based neurons, synapses and algorithms has not been reported yet, as far as we know. In
addition, the previous MRR-based photonic spiking neurons were mainly based on the
all-pass configuration, which might limit the scalability of the system. Here, we proposed a
photonic spiking neuron based on an add-drop MRR and demonstrated the typical spiking
behaviors and excitability. Besides, we provided a detailed theoretical analysis for MRR
based STDP and illustrated the basic mechanism of thermo-optic weight tuning. A photonic
SNN architecture and system-level computational model based on MRRs was presented,
including MRR-based spiking neurons, MRR-based spike timing dependent plasticity,
and MRR-based weight reconfiguration. Furthermore, the spike sequence learning task
was implemented via adopting supervised training algorithms within the all-MRR-based
photonic SNN.
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The rest of the paper is organized as follows: In Section 2, the system-level computation
model of all-MRR-based photonic SNN is derived. We introduce the theoretical model
and the neuron-like dynamics of the MRR-based neurons. Besides, the theory of STDP
function and weight tuning mechanism is also described. In Section 3, we provide a
systematic phonic SNN architecture and implement spike sequence learning tasks via
adopting supervised algorithms. Conclusions are given in Section 4.

2. System-Level Computational Model

The proposed all-MRR-based photonic SNN architecture consists of the MRR-based
neurons and synapses. A schematic structure of an all-coupling SNN is presented in
Figure 1. The input data are firstly pre-coded into different spiking times at different
wavelengths and sent to the input MRR neurons, the outputs of which are then multiplexed
via a bus waveguide, and then split into several parts according to the number of input
and output neurons. The central part is the MRR weight unit, through which the coupling
strength of all pre-post neuron pairs could be adjusted, and results will be obtained from
the spikes generated by the output neurons. In the following, we will, respectively, discuss
the mechanisms of MRR based neurons, weight elements and STDP function.

Input neuron MRR weight Output neuron

Pout
—
]
R P
—3i in
0y

Figure 1. The architecture of all-MRR-based photonic SNN.

2.1. MRR-Based Photonic Neuron

Photonic neurons based on MRR are actually passive devices and require external
continuous wave injection acts as pump light for the generation of spiking dynamics, such
as self-pulsations [51,52]. Due to the nonlinear effects of silicon materials, such as two-
photon absorption (TPA), free carrier absorption (FCA) effect, free carrier dispersion (FCD)
effect, Kerr effect, and thermo-optic effect, self-pulsations occur as the change of resonance
frequency of the MRR and the light intensity, as was illustrated in detail in Refs. [47-50].
We proposed a novel structure of photonic spiking neurons based on add-drop MRR, as
shown in Figure 2a. The normalized dimensionless nonlinear rate Equations can be derived
as [49-51,53]:
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Figure 2. The proposed photonic neuron structure based on MRR (a); the output of the MRR neuron
with P;, = 0.1,0.05,0.01. (b1-c3); the corresponding phase portrait of the normalized light complex
amplitude (c1-c3).

The time f is normalized via 'y = wy/(2Q ), where Qy is the loaded quality factor
of the system. For critical coupling, thereis 1/(Qr) = 1/(Qg) +1/(Qo), where Qf (Qo)
is external (inner) quality factor. Here, a is the normalized complex light amplitude in
the MRR. P, is the injection power and P; denotes the perturbation. Note, that in the
add-drop configuration, P;, and P; are sent into different ports of MRR, compared with the
all-pass configuration utilized in [47,54]. 6 = A; — Ag is the difference between the input
light wavelength and the resonant wavelength. 7y,,, y is the Kerr coefficient of silicon and
Graphene [54]. orcp is related to the FCD effect, yrc4 and atpy is, respectively, the FCA
absorption coefficient and TPA coefficient. W is the total energy stored in the cavity at
the onset of saturable absorption [55,56]. Tpc is the normalized carrier lifetime, and 7 is the
normalized carrier density. b,y is the output complex light amplitude, and I'c = wo/ Q.
describes the coupling coefficient. The thermo-optic effect is assumed to be constant for
fast (GHz) signals due to the large time constant. The detailed parameters used are given
in Table 1.

Table 1. Basic Parameters Used in MRR neuron model.

Parameter Value Unit Refs
ng; = ng 3.476 [47,48]
Trca 0.9996 [47]

Vin 3.81 pm?3 [47]
nog 45 %1018 m?/W [48-50]
ng, —1x10713 m?/W [49,54]
1o 1207 Q [55,56]
Qo 60,000

Qe 30,000

Lsat 1 MW /cm? [49,55]

The self-pulsation dynamic is demonstrated in Figure 2b,c for different injection
strengths. Action potentials are generated in a certain frequency band, indicating class 2
neural excitability. When working below the self-pulsation threshold and injected via an
optical perturbation pulse, the MRR neuron generates a positive spike, as shown in Figure 3.
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Note, in Figure 3al,b1l, two adjacent input pulses lead to only one spike, which is a result
of a relatively larger rising edge duration of the spike due to relatively weak stimulation,
not in a concept of “integration”. Those two input pulses can, respectively, trigger a spike,
as shown in Figure 3a2,b2. Figure 3a3,b3 shows multiple spike generation with wider
rectangular pulse injection, indicating pulse energy encoding. The MRR-based neuron
model is considered to be “resonate and fire” neuron, which has not a clear threshold of

firing and shows damped subthreshold oscillations [57].
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Figure 3. The response of MRR neuron (al-a3) under external optical perturbation with differ-
ent interval and duration time (b1-b3). (c1-c3) the output of MRR with perturbation strength
P; = 0.01,0.05,0.1, respectively.

In addition, the input frequency may also have impacts on the spiking dynamics of the
proposed neuron. We vary the frequency offset 6 to observe the output signal and find that
within about —300 pm to 300 pm, a clear pulse could be generated. However, the output
amplitude decays as | 8| increases, as shown in Figure 4a. Figure 4b gives the threshold
property of the proposed add-drop MRR neuron. For the input power from 0 to 0.03, the
slope of the output power is higher, which indicates the quasi-threshold property that is
called after FitzHugh [58]. For integrating and firing neurons there is a specific threshold of
spiking, that is, when the perturbation pulse is above the threshold, the neuron fires a spike
or otherwise remains quiescent. However, the MRR neuron generates a spike as soon as
the perturbation occurs despite the input strength, as shown in Figure 3c1-c3. Compared
with the VCSEL-SA based optical neuron, the MRR based neuron lacks integration, a well-
defined threshold and spike latency. However, these are important mechanisms related to
learning in optical temporal-encoded SNN in our previous works [12]. With integration,
the neuron first accumulates input energy, and there will be a latency between the input
and the output that can be obviously adjusted via the input strength. This is especially
important in temporal encoding neural networks because in such a network the spike
timing conveys information. Moreover, a clear threshold means we have a one-or-none
spike transmitted in the neural network. Since the MRR neuron lacks a clear threshold,
a proper value could be set as “threshold.” However, it might bring more ambiguity to
the network.
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Figure 4. The frequency region of spiking dynamics (a); The quasi-threshold behavior of the proposed
MRR-based neuron (b). The output spike is presented in the order in which the perturbation power
increases.

2.2. MRR-Based Optical Synaptic Plasticity

STDP is a Hebbian synaptic learning rule demonstrated in various neural circuits. The
dependence of synaptic modification on the spiking time between pre- and postsynaptic
spikes is considered to have profound functional implications [22]. On the basis of the
intra-cavity nonlinear effect, a MRR-based STDP scheme has already been reported [34].
Here, we introduce an optical STDP scheme based on MRRs as shown in Figure 5a. The
derived rate Equations are as follows [47,48,59]:

dA:t T Yioss
ek [](w,—i—éwnl—wi) - ?]Ai—FKiSi 4
dAT AT | Ty Paps
GAl _ Al efabs 5)
dt Tih  OsiCp,SiVin
dN N FFCA’BSI'CZ 4 2 2 4
= AP (AP 4|AL AT+ AL 6
dt Tfe 2P1cuVF2CA71§(| +l A+ A"+ 1A ) ©

where A=+ denotes the complex amplitude of the forward and backward propagation mode.
w+ = 271c/ A+ is the frequency of input light in the waveguide, dw,; = —wr(An; gerr+
An; pep + Anj ) /1ng; is the resonant wavelength detuning caused by the Kerr effect, FCD
and thermo-optic effect. 7,5, is the total loss in the cavity, including coupling loss, radiation
loss and absorption loss. x+ represents the coupling coefficient, and S+ stands for the input
light amplitude. AT is the temperature difference with the surroundings and denotes the
free carrier density. P,;; describes the total absorption, including linear surface absorption,
TPA and FCA. Bg; is the constant governing TPA. h = h/(2m) is the reduced Planck
constant. Detailed parameters are given in Table 2.

t (a) Output i (c)
H [ ————— i 1
i Main Probe | 30'5
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Ry
—_ ~ 05
i =
dls 3 :
= = =
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< | (b 4 |(b2) s
0.5 —1.5
=50 0 50 —50 0 50 =50 A 0 (ns) 50
= - =t - =t —t ns
Al [prc [posl(ns) Al lpre lposl(ns) t pre  post

Figure 5. (a) MRR-based STDP structure; (b1,b2) the output power change as a function of A; (c) the
calculated STDP transfer function.
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Table 2. Basic Parameters Used in MRR STDP.

Parameter Value Unit Refs
ng; = Tlg 3.476 [47,48]
Bsi 0.75 x 10~11 m- W1 [50]
dng;/dT 1.86 x 1074 K1 [47,48]
dng;/dN —1.73 x10~% m3 [47]
T, 65 ns [47,48,52]
Ty, 0.934 [48]
T'rpa 0.995 [48]
Trca 0.998 [48]
Vin 3.81 pm?3 [47]
Vrpa 3.09 pm?3 [48]
Veca 2.82 pm?3 [48]
Cpsi 0.7 J-gt-K! [47]
0si 2.33 g-cm™3 [47]
OFCA 1.45 x 10~ [50]
h 6.63 x 10734 J-s

The concept of optical two-neuron synaptic systems is similar: a spike with relatively
higher energy is used to generate a nonlinear effect that decays over time while monitoring
the output of a lower energy spike that is fed into the system at varying times. Here, as
an example, we firstly set the pre-synaptic spike as the main signal, denoted as Pre, and
the post-synaptic spike as a weak probe signal, denoted by Post. The power of the Post
and Pre could be set as, for example, Py, = 20 mW, Pyt = 2 mW (the power ratio is
10:1), by which the STDP-like function could be successfully produced. If the Post arrives
before the Pre, it will not be affected via the nonlinear effects caused by the Pre and the
output power will remain constant. However, if the Post arrives after the Pre, the strong
power of the latter will cause a significant increase in the population of free carriers due to
TPA, which will further lead to FCD and causes a blue shift in the resonant wavelength.
The Kerr effect, as well as the thermo-optic effect caused by absorptions, will lead to a
redshift in the resonant wavelength. The transmission of the weak Post spike will be
affected by these nonlinear effects, and gradually returns over time, as shown in Figure 5b1.
For a more detailed description, the frequency detuning caused via the Kerr effect, FCD
and thermo-optic effect are, respectively, presented in Figure 6a—c and shown together in
Figure 6d for an intuitive observation of the nonlinear effect strength. It can be seen that
FCD is the dominant effect in the MRR. Then if we utilize Post as the main signal and Pre
as the probe in another identical MRR, a symmetric transmission is acquired, as shown
in Figure 5b2. Combining the transmission of both MRRs and subtracting their response,
namely AP = AP; — AP,, the STDP transfer function will be obtained as in Figure 5c.

-6 -5
0 X10 6 X10
= @ (b)
—g -2 4 FCD
E :
Kerr effect
-6 0 —
X106 X10~°
0
—~ | © 41 (d)
D ;
=2
2
©_3 — Thermal-optic 0
50 100 150 200 50 100 150 200
Time(ns) Time(ns)

Figure 6. (a-d): The resonance frequency detuning caused by the Kerr effect, FCD and thermo-optic
effect as a function of time.
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The STDP window is governed by the relaxation time of free-carrier 77 as can be
seen in Figure 7, where Aw represents the normalized transmission. The required STDP
window is mainly dependent on the FCD effect since it is dominant. Hence, we neglect
the thermo-optic effect, because it has a relatively low but long-last impact on the inner
state of MRR due to the large time constant (as can be seen in Figure 6d), which will lead to
non-zero values outside the effective STDP window.

1 1 1

(a) % (b) ‘% (© 2
<)
3 0 (}W oamm%b o %umm

-1 -1 -1
=50 0 50 -5 0 5 -1
(ns)

=t —t
t pre post
Figure 7. STDP curve at different time scales (a) 7¢, = 6.5 ns; (b) 75, = 0.5 15; (¢) Tp. = 0.2 ns.

2.3. MRR Based Weight Configuration

Thermal tuning is an effective way for resonant wavelength tuning of MRR due to
the large thermo-optic coefficient. Consider an add-drop MRR configuration as shown in
Figure 8a and according to coupled-mode theory, the transmission of the drop port can be
derived as:

_|EB[ _ akiks

T, = =
TR T 1+ a2 — 2241 cos(20)

@)

where 6= 1/2pL = 27T2R7/leff /A is the phase change during half cycle propagation, and
15 is the efficient refractive index. For simplicity, we only consider the effect on the silicon
waveguide core. The effective index variation An,fs is approximately a linear function
of temperature change: An,rr = AT - dn/dT, where dn/dT is the thermo-optic coefficient
and is about 1.86 x 1074 K~! at 1550 nm [36,40]. The wavelength shift is estimated to
AA = A(AT -dn/dT) /ng, and ng is the group refractive index.

(a) idrop add: o0l (0

1552

A(nm)

1550

Normalized Transmission
(=1
WK
n
[=)}
Normalized Transmission
o
s

1.55 1.555
A(um) dT(K)

Figure 8. A basic structure of the add-drop MRR (a). The transmission of drop port as a function
of input light wavelength (b). The resonant wavelength as a function of temperature shift (c). The
transmission of the drop port indicates weight configuration as a function of temperature shift (d).

The weight is modified according to the transmission of the drop port, which is a
function of input light wavelength, as shown in Figure 8b. The resonant wavelength as
a function of temperature shift is presented in Figure 8c. Via thermo-optic tuning, the
transmission of the drop port can be adjusted within the range of [0,1], indicating weight
configuration, as illustrated in Figure 8d. For applications, thermo-optic phase shifters
could be typically implemented using metallic heaters (on-ring) [35] or doped-silicon resis-
tive heaters (in ring) [37], which might acquire a suite of external measurement equipment
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dedicated for each MRR. In-resonator photoconductive heaters for both detection and con-
trol could alleviate the need for dedicated PDs [38,39]. In practice, the relationship between
the desired weight and the applied voltage or current is usually previously measured for a
direct configuration. Feedback control is usually adopted for stabilization and to obtain
higher precision [43].

Moreover, it should be particularly pointed out that, the output waveform of an ultra-
short optical pulse transmitted through MRR would be distorted because the transmission
differs in wavelength (see Figure 8b). The frequency band of the input signal should be
as narrow as possible compared to the falling edge of the transmission spectrum. This
brings a tradeoff between the WDM channels and crosstalk, and a tradeoff between the
speed (equivalently the spike width) and the weight precision. In addition, it still requires
modification algorithms to compensate for weight accuracy. Here, for simplicity, we apply
the weight configuration via a linear map of the normalized transmission.

3. Results

In this section, we use the Remote Supervised Method (ReSuMe) to implement a spike
sequence learning task in the proposed SNN, which combines the MRR-based STDP with a
1 ns window. The weight is modified according to [12,15]:

Adi:(Did—Dio);Did:td—tirDio:to_ti (8)

di(x +1) = d;i(x) + n4Ad; )

The proposed learning architecture is presented in Figure 9. The input layer consists of
200 pre-synaptic MRR neurons, each connected to the single output neuron with a synapse.
Temporal encoding is adopted, and the input signals are pre-encoded into rectangular
pulses with a time interval of 0.02 ns, linearly increasing from 5.31 ns to 9.29 ns. The initial
time delay is set to 2 ns for each synapse.

Weight(Delay)
Configuration

Input Algorithms ._LH_.

- Teacher
Mg

A @yl -

Precoding | -
N

I

. |

Figure 9. The SNN learning structure.

The results are given in Figure 10. It seems that the output spikes are near to the
desired ones from the training process in Figure 10al and the final output in Figure 10b1.
To quantitively describe the difference, we calculate the “distance” between the actual and
desired spike sequences as in Ref. [15], and present the result in Figure 10cl. The distance
is defined as:

Distance = 2|, +,,, + 1‘”0:nd/|to_td|2" + Z (|(to — tg)|/nor) (10)
710 = nd
|to —tg] <7
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Figure 10. The spike sequence learning with different learning algorithms. (al—c1): The training
process, the output spikes after the 300th training epoch, the calculated distance after each training
epoch with ReSuMe method. (a2—¢c2): with delay combined ReSuMe method. P_t = 0.032, w_0 = 0.6,
P_th = 0.006, w_f = 0.001.

The actual output could never reach the desired one because the weight does not
contribute to the spiking time of the MRR-based neuron, as illustrated in Figure 3c1—c3.
It seems that such neuron does not fit for temporal encoding in a SNN, but it could be
useful for rate coding that encodes input energy into multiple spikes as demonstrated
in Figure 3a3,b3, which deserves further investigation in future works. However, we
address this issue via introducing delay learning in the traditional weight-based ReSuMe
algorithm, which was described in our previous work [15]. The updating of synaptic delay
is according to:

Ad; = (Dig — Djo); Dia = tqg — t;, Djop = to — t; (11)

di(x + 1) = di(x) + WdAdi (12)

The results are presented in Figure 10a2—c2. We can see that combined with delayed
learning; the actual output is exactly at the desired time. The learning process converges
quickly and is quite stable. It should be noted that via MRR weight configuration, the
coupling strength could not be increased, thereby, the weight of a synapse is confined within
the range of [0,1]. Additionally, note that in our network, the presynaptic neurons are pre-
coded into only one spike; however, the postsynaptic neuron may generate multiple spikes
within the STDP window, thus, the weight modification would be affected by different
pairs of pre-post spike pairs during the training process. We choose linear integration to
perform the weight computing, that is, to sum up the modification of each spike pair [60].
In particular, the STDP curve used here is highly symmetric. However, in biological
experiments, the LTP and LTD functions are usually asymmetric due to the complex
mechanisms of biological neurons and synapses [61]. The optical implementation of
asymmetric STDP and its influence on OSNN will deserve further exploration.

For further comparison, we calculate the average distance from epoch;jo; to epochsg
of the two algorithms with varying threshold power. The result is shown in Figure 11. We
can see that with traditional ReSuMe, the distance is higher than 1 for all threshold powers,
indicating the learning process could never converge. However, when combined with
delay learning, the average distance can converge to 0 for a wide range of thresholds. The
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result suggests that with delay learning, the spike sequence learning could be successfully
achieved via an MRR-based learning structure.

2 T—I—I =\

t
/
/
\
N\
/
u

Average Distance

0 5 L \. _._RCSLIMC
’ \ #— DW-ReSuMe

0 . N §
0.001 0.004 0.007 0.01
Threshold Power(a.u.)

Figure 11. The average distance from epochig; to epochggg as a function of threshold power with the
two learning algorithms.

The initial weight and threshold power also have impacts on the performance. As the
weight can be adjusted within 0-1, we select different initial weights (wy = 1, 0.7, 0.4, 0.2)
for a brief comparison. A relatively small learning rate usually contribute to better per-
formance in the delay combined algorithm [15], so we choose w¢ = 0.0006. The average
distance is calculated as a function of threshold power in Figure 12a. We can see that with
a relatively larger initial weight, the average distance is close to 0 for a relatively higher
threshold power. As the initial weight wq decreases, the training process gradually becomes
convergent for a low threshold power (Py, = 0.001). However, a low wy also makes it fail to
converge with higher threshold power (P, = 0.031, 0.036). In Figure 12b, we also compare
the performance of different learning rates. The result indicates that the learning process is
highly modified by the learning rate wy, and a proper wy is required for better performance.
Note, that a relatively higher ws can also lead to faster convergence. At the point marked
in Figure 12b, for all the considered wy, the average distance approaches 0. The related
convergent epoch, defined here as the first training epoch that corresponds to a distance
less than 0.1 is, respectively, 116, 64 and 62 for w¢ = 0.0001, 0.0006, and 0.001.

2 2~
—E—..:JI.:O.UGO] | -
5 ——w =0.0006 [ /
W © 6 f f _
g 15 31-52 + w0001 | l
< = f
— +—
.z =
a l ) i
[b] Q
£n j=l1]
« 0.5 < 0.5
L (b)
0 0 ——¥ ——a—a——
0.001 0.011 0.021 0.031 0.001 0.011 0.021 0.031
Pth(a.u.) Pth(a.u.)

Figure 12. The average distance from epochyg; to epochsgg as a function of threshold power for
different cases of initial weight wy (a). The other parameters are: wy = 0.0006, Py = 0.0032; The
average distance as a function of Py with w¢ = 0.0001,0.0006, and 0.001, respectively (b).

4. Conclusions

In summary, we proposed an all-MRR-based photonic SNN architecture. On account
of the nonlinear effects in silicon, the neuron-like dynamics, photonic STDP, as well as
weighting, could be realized based on the MRRs. Furthermore, with a supervised learning
algorithm, we also achieved the spike sequence learning in the proposed architecture.
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The MRR based architecture provides potential approaches to the realization and
application of large-scale neural networks because it is not only CMOS-compatible but has
internal WDM properties and small footprints.

Note, in addition to the hardware devices, the algorithm also plays important role in a
SNN, which combines together the spiking properties of neurons, the encoding schemes
and the specific problems to be solved. For the moment, hardware implementations are
more suitable for online inference rather than online learning. The weight calculation
and updating during training largely rely on electronic control. A generalized and robust
algorithm might be able to compensate for some of the limitations and shortcomings of
photonic hardware and promote the development and applications of photonic SNN.
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