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Abstract: We consider a version of the supporting quadric method for designing freeform mirrors that
generate prescribed irradiance distributions in the near field. The method is derived for a general case
of an incident beam with an arbitrary wavefront. As an example, for a practically important special
case of a plane incident wavefront, we design a freeform mirror that generates a complex-shaped
uniform irradiance distribution in the form of the abbreviation “IPSI” on a zero background. The
designed mirror is fabricated and qualitatively investigated in a proof-of-concept optical experiment.
The experimental results confirm the correctness of the proposed approach and demonstrate the
manufacturability of the mirrors designed using the considered method.

Keywords: optical design; supporting quadric method; geometrical optics; nonimaging optics

1. Introduction

The problem of designing a reflecting or refracting optical surface that can generate
a required irradiance distribution in a certain domain belongs to the inverse problems of
nonimaging optics and is extremely complex. In the geometrical optics approximation, this
inverse problem can be reduced to finding a solution to a nonlinear differential equation
(NDE) of an elliptic type [1–10]. Although several finite difference methods have been
proposed for solving such NDEs [1–10], the design of optical elements using this approach
is sophisticated and has significant limitations. In particular, the formulation of the problem
of the calculation of an optical element as an NDE assumes that the optical surfaces of
the element are smooth. The requirement of smoothness limits the class of the irradiance
distributions that can be generated by the element. For example, an optical element with
smooth surfaces cannot generate an irradiance distribution defined in a disconnected region
or in a region with non-smooth boundaries [11–14].

One of the methods widely used for calculating the reflection and refraction of optical
surfaces is the supporting quadric method (SQM) [15–22]. The main advantages of the
SQM are its versatility, simplicity, and the capability to make calculations relating to
optical surfaces that generate “discontinuous” irradiance distributions defined in non-
simply connected regions with complex non-smooth boundaries. With this method, the
required irradiance distribution is approximated by a discrete distribution defined on a
finite set of points. Then, the optical surface is represented as a set of segments of stigmatic
surfaces (referred to as quadrics), focusing the incident beam on the points of the discrete
distribution. Depending on the design problem, paraboloids, ellipsoids, hyperboloids, or
more complex surfaces, e.g., Cartesian ovals [19], are used as these stigmatic surfaces. The
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parameters of the stigmatic surfaces (quadrics) are calculated iteratively from the condition
of generating the prescribed discrete distribution. In the general case, the convergence
of this iterative method remains a research issue. In some particular cases, when the
considered inverse problem of calculating the optical surface can be formulated as a Monge–
Kantorovich mass transportation problem (MTP), the supporting quadric method can be
regarded as a gradient descent method for minimizing a certain convex function [22]. In
this case, it can be stated that the method converges. Such inverse problems include, for
example, the problems of designing the refracting surfaces [11] and mirrors [12,23,24]
operating in the far field in the case of a spherical or plane incident beam, the problems of
collimated beam shaping [22,25], and the problems of calculating the eikonal function of
the light field providing the generation of a required irradiance distribution [26]. In the
problems, which cannot be reformulated as MTPs, and in particular in the problems of
generating a required irradiance distribution in the near field using mirrors or refracting
surfaces, the equivalence of the SQM to the gradient descent method has not been proven,
and the theoretical justification of its convergence remains an open question. Nevertheless,
in solving practical problems, the method usually demonstrates good performance.

It is important to note that the form of the quadrics, the representation of the optical
surface, and the iterative algorithm of updating the quadric parameters differ significantly
for different problems. In the present work, we consider for the first time a version of the
SQM for calculating a reflecting surface that generates a prescribed irradiance distribution
in the near field for an incident beam with an arbitrary wavefront, and provide an equation
for the stigmatic surface and a detailed description of the method. The good performance of
the method is illustrated with a designed example of a mirror that generates a discontinuous
irradiance distribution in the form of framed letters “IPSI”. The calculation results are
confirmed by a proof-of-concept optical experiment.

2. Methods
2.1. Problem Statement

Let us consider a three-dimensional space E3 with the coordinates (x1, x2, z), in which
a light beam with a wavefront W is propagated. The wavefront is defined by a vector
function

→
w(u) = (w1(u), w2(u), w3(u)), where u = (u1, u2) ∈ G are certain curvilinear

coordinates and G is a domain, in which the beam has non-zero irradiance E(u). With-
out the loss of generality, let us assume that the beam propagates in a medium with a
unit refractive index. The directions of the rays of the light beam coincide with the di-
rections of the unit normal vectors to the wavefront, which are defined by the relation
→
n w(u) =

→
wu1 ×

→
wu2 /

∣∣∣→wu1 ×
→
wu2

∣∣∣, where
→
wui = ∂

→
w(u)/∂ui, i = 1, 2, and the symbol “×”

denotes the cross-product.
Let the light beam impinge on a mirror with the surface Q (Figure 1). We define the

surface Q through a function l(u) that describes the distance from the wavefront surface to
the mirror along the ray propagation directions in the following form:

→
q (u) = (q1(u), q2(u), q3(u)) =

→
w(u) + l(u) ·→n w(u). (1)

Let the ray going out of the point of the wavefront W with the coordinates u ∈ G be
reflected by the mirror and come to a certain point x = (x1, x2) of the plane z = 0 (Figure 1).
This defines a ray mapping x = γ(u) that is implemented by the mirror. Note that the
directions of the reflected rays are determined by Snell’s law in the form

→
r q(u) =

→
n w(u)− 2

→
n q(u)

(→
n w(u) ·

→
n q(u)

)
, (2)
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where
→
n q(u) =

→
q u1
×→q u2

/
∣∣∣→q u1

×→q u2

∣∣∣ is a unit normal vector to the mirror surface, and
the symbol “·” denotes the dot product. Taking into account Equation (2), the mapping
x = γ(u) can be written as {

x1(u) = q1(u) + rq,1(u)t(u),
x2(u) = q2(u) + rq,2(u)t(u),

(3)

where t(u) = −q3(u)/rq,3(u) is the distance from the mirror surface to the plane z = 0
along the direction of the ray reflected by the mirror.
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The mapping x = γ(u) defines the irradiance distribution L(x) generated in the plane
z = 0. This distribution can be found using the light flux conservation law,

L(γ(u)) = E(u) ·
∣∣∣→wu1 ×

→
wu2

∣∣∣/Jγ(u), (4)

where Jγ(u) is the Jacobian of the mapping γ. For the further derivations, let us intro-

duce the function I(u) = E(u) ·
∣∣∣→wu1 ×

→
wu2

∣∣∣. The integral of this function over a domain
U ⊂ G defines the light flux through this domain on the surface of the wavefront W as
Φ(U) =

∫
U

I(u)du. Using the introduced function, the light flux conservation law can also

be written in the integral form: ∫
γ−1(B)

I(u)du =
∫
B

L(x)dx, (5)

where B is an arbitrary subset in the plane z = 0.



Photonics 2022, 9, 118 4 of 12

In the present work, we consider an inverse problem relating to the calculation of
a mirror surface Q defined through a function l(u) from the condition of generating a
required irradiance distribution L(x), x ∈ D in the domain D of the plane z = 0 (Figure 1).

In the case of a smooth surface Q, Equations (3) and (4) reduce the calculation of
the function l(u) to solving a nonlinear partial differential equation of an elliptic type (an
equation of Monge–Ampère type) [6–8]. In what follows, we consider a method for solving
the formulated inverse problem, which does not assume the smoothness of the surface Q
and does not require solving the mentioned NDE.

2.2. Envelope Representation of the Mirror Surface

The mirror surface can be represented as an envelope of a family of stigmatic surfaces
focusing the incident light beam to the points of the target domain D [12,22–25,27]. Simi-
lar to Equation (1), the equation of a reflecting stigmatic surface focusing the incident beam
to the point x = (x1, x2) ∈ D of the plane z = 0 can be written as

→
q st(u; x) =

→
w(u) + lst(u; x) ·→n w(u), (6)

where lst(u; x) is the distance from the wavefront surface to the stigmatic surface along the
ray propagation direction. Let us note that the coordinates of the point x = (x1, x2) ∈ D
in Equation (6) are considered to be parameters. Let us define the function lst(u; x) in
Equation (6) from the condition of a constant path length F(x) from the wavefront W of the
incident beam to the focus

→
x = (x1, x2, 0) = (x, 0):

F(x) = lst(u; x) + ‖→q st(u; x)−→x ‖ = lst(u; x)+

+
√
(w1(u) + nw,1(u)lst(u; x)− x1)

2 + (w2(u) + nw,2(u)lst(u; x)− x2)
2 + (w3(u) + nw,3(u)lst(u; x))2.

(7)

Since the function lst(u; x) also depends on the value F(x) defining the optical path
length for a given point x = (x1, x2), we will further write it in the form lst(u; x, F(x)).
From Equation (7), the function lst(u; x, F(x)) can be obtained as

lst(u; x, F(x)) =
F2(x)−

(→
w(u)−→x

)2

F(x) +
→
n W(u) ·

(→
w(u)−→x

) . (8)

The equation of the envelope surface for the family of surfaces
→
q st(u; x) with respect

to the parameter x ∈ D is defined by Equation (6) and the following two equations [27,28]:
(→

q st,x1
,
→
q st,u1

,
→
q st,u2

)
= 0,(→

q st,x2
,
→
q st,u1

,
→
q st,u2

)
= 0,

(9)

where
→
q st,xi

= ∂
→
q st(u; x)/∂xi, i = 1, 2,

→
q st,ui

= ∂
→
q st(u; x)/∂ui, i = 1, 2, and the parenthe-

ses denote the mixed product of the vectors. Substituting Equation (6) into Equation (9)
and performing simple transformations, we obtain the envelope equation in the form lst,x1 ·

(→
n W ,

→
wu1 + lst

→
n W,u1 ,

→
wu2 + lst

→
n W,u2

)
= 0,

lst,x2 ·
(→

n W ,
→
wu1 + lst

→
n W,u1 ,

→
wu2 + lst

→
n W,u2

)
= 0,

(10)

where lst,xi = ∂lst(u; x, F(x))/∂xi, i = 1, 2. Note that the fulfillment of the conditions{
lst,x1(u; x, F(x)) = 0,
lst,x2(u; x, F(x)) = 0

(11)
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is sufficient for the fulfillment of the envelope Equation (10).
In order to obtain an explicit expression for the envelope, it is necessary to express

from Equation (11) the variables (x1, x2) as functions of the variables (u1, u2) and substitute
the obtained expressions to Equation (6). Note that at a fixed value of u = (u1, u2) ∈ G,
Equation (11) corresponds to a critical point of the function lst(u; x, F(x)) with respect to
the variables x1, x2. As in the works [12,14,22,29–31], in what follows, we will consider an
envelope of a special kind, for which Equation (11) defines not only a critical point, but a
minimum point. In this case, the functions x(u) = (x1(u), x2(u)) satisfying Equation (11)
will have the form

x = argmin
x∈D

lst(u; x, F(x)). (12)

From Equations (12), (11), and (6), it follows that the envelope equation has the form

→
q (u) =

→
w(u) + l(u) ·→n w(u), (13)

where

l(u) = min
x∈D

lst(u; x, F(x)) = min
x∈D

F2(x)−
(→

w(u)−→x
)2

F(x) +
→
n W(u) ·

(→
w(u)−→x

) . (14)

It is easy to understand [11–14,22,29,31] that Equation (12) defines the ray mapping
x = γ(u) implemented by the envelope surface. Note that the ray mapping and the enve-
lope are completely defined by the function F(x), which determines the optical path length
from the wavefront W to the points of the domain D. This makes it possible to formu-
late the problem of designing a mirror that generates a prescribed irradiance distribution
L(x), x ∈ D in the plane z = 0 as a problem of calculating such a function F(x), so that
the corresponding ray mapping of Equation (12) satisfies the light flux conservation law
defined by Equation (4) or Equation (5).

2.3. Supporting Quadric Method

In this subsection, we consider a version of the supporting quadric method (SQM)
for the solution of the inverse problem of calculating a mirror that generates a prescribed
irradiance distribution (Figure 1). Strictly speaking, the rigorous formulation of the SQM
requires the introduction of the concept of the so-called weak solution, which makes it
possible to correctly define the solution of the problem in this case, in which the ray
mapping has discontinuities on a set of measure zero [15,17,29,31]. However, for the sake
of simplicity, let us focus on the practical side of the method.

In the SQM, the prescribed continuous irradiance distribution L(x), x ∈ D has to be
approximated by a discrete distribution. Therefore, let us assume that in the domain D, a
rectangular grid containing N cells Di, i = 1, N is introduced, with the centers at the points
xi, i = 1, N. As a discrete approximation of the continuous distribution L(x), x ∈ D, let us
consider the following discrete distribution:

Ld(x) =
N

∑
i=1

Liδ(x− xi), (15)

where δ(x) is the Dirac delta function, and Li =
∫
Di

L(x)dx are the light flux values in

the cells Di. For the discrete distribution of Equation (15), the function F(x) becomes
a set of numbers F = {F1, . . . , FN}, which we will refer to as the weights of the points
xi, i = 1, N. In this case, the envelope surface of Equations (13) and (14) turns into a piecewise
smooth surface consisting of N segments of the stigmatic surfaces of Equations (6) and (8),
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focusing the incident beam to the points
→
x i = (xi, 0), i = 1, N. This surface is defined by

Equation (13), where the function l(u) reads as

l(u) = min
i

lst,i(u; xi, Fi) = min
i

F2
i −

(→
w(u)−→x i

)2

Fi +
→
n w(u) ·

(→
w(u)−→x i

) . (16)

The ray mapping implemented by this surface is defined by the equation

γ(u) = argmin
xi

lst,i(u; xi, Fi). (17)

Since for a discrete distribution, the surface of Equations (13) and (16) is completely
defined by the set of weights F = {F1, . . . , FN}, the problem of generating a given discrete
distribution of Equation (15) can be considered to be the problem of finding weights
F = {F1, . . . , FN}, which provide the generation of the required light flux values Li, i = 1, N
at the points xi, i = 1, N.

Let us explain, how the light flux values at the points xi, i = 1, N are related with the
weights F = {F1, . . . , FN}. For this, let us introduce the concept of the generalized Voronoi
cell to define the “apertures” of the stigmatic surfaces in the domain G. Under generalized
Voronoi cells with the weights F = {F1, . . . , FN}, we will understand the subdomains
CF(xi) ⊂ G equal to the inverse images γ−1(xi), i = 1, N. From Equation (17), it follows
that the cells CF(xi) can be defined by the following condition: a point u ∈ G lies inside the
cell CF(xi) if, and only if,

lst,i(u; xi, Fi) ≤ lst,j
(
u; xi, Fj

)
, ∀j 6= i. (18)

The light flux Φi focused on the point xi is calculated as an integral over the corre-
sponding generalized Voronoi cell:

Φi(F1, . . . , FN) =
∫

CF(xi)

I(u)du =
∫

CF(xi)

E(u) ·
∣∣∣→wu1 ×

→
wu2

∣∣∣du. (19)

According to Equation (19), the problem of finding the weights F = {F1, . . . , FN}
providing the required light flux values Li, i = 1, N at the points xi, i = 1, N can be
considered to be the problem of solving the following system of nonlinear equations:

Φ1(F1, . . . , FN) = L1,
. . .

Φn(F1, . . . , FN) = Ln.
(20)

Let us rewrite this system as
F1 = F1 + ε · (Φ1(F1, . . . , FN)− L1),

. . .
Fn = Fn + ε · (Φn(F1, . . . , FN)− Ln).

(21)

Using the simple iteration method for solving the system (21), we obtain the following
iterative algorithm for the calculation of the weight values:

Fk+1
i = Fk

i + ε ·
(

Φi

(
Fk

1 , . . . , Fk
N

)
− Li

)
, i = 1, N, (22)

where the superscript k denotes the iteration number, and ε > 0 is the step of the iterative method.
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Let us explain that the algorithm of Equation (22) updates the weights F = {F1, . . . , FN}
in the “right direction”. Assume that all the weights except the value Fi are fixed. Let, at the
k-th step of the iterative algorithm, the light flux Φi(F) generated at the point xi be greater
than the required one Li. In this case, the algorithm of Equation (22) increases the weight
Fi. Below, we demonstrate that ∂lst,i/∂Fi ≥ 0 and, therefore, for all points u ∈ G the value
lst,i(u; xi, Fi) increases. As a result, the inequalities in Equation (18) hold for a smaller set
of points u ∈ G, i.e., the cell CF(xi) decreases and, correspondingly, the generated light
flux Φi(F) also decreases. Similarly, one can show that if the light flux Φi(F) generated at
the point xi is smaller than the required one Li, then the algorithm of Equation (22) will
decrease the weight Fi. In this case, the size of the cell CF(xi) and, correspondingly, the
generated light flux Φi(F) will increase.

Let us now prove the following inequality used above:

∂lst,i(u; xi, Fi)

∂Fi
=

∂

∂Fi

 F2
i − (

→
w(u)−→x i)

2

Fi +
→
n w(u) · (

→
w(u)−→x i)

 ≥ 0. (23)

By expanding the right-hand side of Equation (23), we obtain

∂lst,i(u; xi, Fi)

∂Fi
=

(
Fi +

→
n w(u) · (

→
w(u)−→x i)

)2
−
(→

n w(u) · (
→
w(u)−→x i)

)2
+
(→

w(u)−→x i

)2

(
Fi +

→
n w(u) · (

→
w(u)−→x i)

)2 . (24)

Let us consider the last two terms of the numerator:

(→
w(u)−→x i

)2
−
(→

n w(u) · (
→
w(u)−→x i)

)2
= ‖→w(u)−→x i‖

2
− ‖→w(u)−→x i‖

2
cos2 ϕ ≥ 0, (25)

where ϕ is the angle between the vectors
→
n w(u) and

→
w(u) − →x i. Taking into account

Equation (25), it follows from Equation (24) that the inequality of interest
(Equation (23)) holds.

To conclude this section, let us note that in a practical implementation of the iterative
algorithm of Equation (22), the ray-tracing method is used for calculating the values Φi(F).
In this case, the incident beam is approximated by a set of Ntr rays going out of the nodes
of a certain grid uj, j = 1, Ntr on the surface of the wavefront W. These rays “carry” the
light flux values Ij, j = 1, Ntr, which are proportional to the values of the irradiance of
the incident beam at the nodes of the grid. According to Equations (16) and (17), for
each ray going out of the point uj, the index of the surface i(j) = argmin

i
(lst,i(u; xi, F)) is

found, which the ray “meets” first. This ray is directed to the corresponding point xi of the
generated distribution. Then, at the points xi, the light flux values are calculated as the
sums of the light fluxes of the rays arriving at these points.

3. Results and Discussion

The SQM for designing mirrors considered in the previous section was implemented
in a practically important case of an incident beam with a plane wavefront. In the example
considered below, the wavefront surface W is the plane

→
n w ·

(→
x −→x 0

)
= 0, (26)

where
→
n w = −(1, 0, 1)/

√
2 and

→
x 0 = (10 mm, 0, 40 mm). Equation (26) can be written in

the parametric form:
→
w(u) =

→
x 0 + u1

→
k 1 + u2

→
k 2, (27)
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where
→
k 1 = (1, 0,−1) · 1/

√
2,
→
k 2 = (0, 1, 0) are the unit vectors of the Cartesian coordinate

system u = (u1, u2) in the plane W with the origin at the point
→
x 0 (Figure 2). It can be

easily understood that in the case of a plane wavefront of the incident beam, the stigmatic
surfaces of Equations (6) and (8) that focus the incident light beam to the points of the target
domain correspond to paraboloids of revolution. The axes of the paraboloids are parallel
to the normal vector

→
n w to the wavefront, whereas their foci lie in the target domain D.

Note that in the plane wavefront case, the only simplification in the general “envelope
representation” of the mirror surface (Equations (13) and (14)) consists of the fact that the
normal vector

→
n w(u) does not depend on the point u.
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Figure 2. Geometry of the problem of designing a mirror for generating an irradiance distribution in
the form of framed letters “IPSI” for an incident beam with a plane wavefront. The dimensions of the
input beam, freeform mirror, and the generated distribution correspond to the considered example
up to a scale factor.

Let the incident beam be defined in a rectangular domain G = {u| |u1| < 12.5 mm,
|u2| < 8.5 mm} and have a constant irradiance distribution E(u) = E0, u ∈ G (Figure 2).
For this incident beam, we designed a mirror generating in the plane z = 0 an irradiance
distribution L(x), x ∈ D in the form of framed letters “IPSI” (the abbreviation of the Image
Processing Systems Institute) on a zero background (Figure 2). The outer boundary of the
frame coincides with the boundary of the square region D = {x| |x1 − 32 mm| < 20 mm,
|x2| < 20 mm}.

In accordance with the version of the SQM considered in the previous section, the
required irradiance distribution L(x), x ∈ D (Figure 2) was approximated by a discrete
distribution containing N = 29, 403 points. The points were located at the nodes of a square
grid (grid step ∆ = 0.09 mm) covering the domain D. The calculation of the mirror surface
was carried out using the iterative algorithm of Equation (22). At each iteration of the
method, the light flux values at the points of the discrete distribution were calculated using
the ray-tracing technique, and then the weight values Fi were corrected using Equation (22).
As the initial weight values for starting the iterative process, constant values were chosen:
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Fi = F0 = 40
√

2 ≈ 56.6 mm, i = 1, N. The F0 value corresponds to the optical path length
of the “central” ray coming out of the point

→
x 0 reflected from the plane x1 = 0. In this case,

the initial mirror surface is given by Equations (13), (16), and (27).
In the ray-tracing method used at each iteration for calculating the light flux values

Φi, the incident beam was approximated by 3N rays defined on a square grid. In the
calculation, about 35,000 iterations were performed. The total computation time on a
modern desktop PC (Core i9-7940X CPU) was about three hours.

The three-dimensional image of the designed mirror is shown in Figure 2. On the
surface of the mirror, “sharp bends” (derivative discontinuities) can be seen. The presence of
the sharp bends is caused by the discontinuous character of the ray mapping, corresponding
to the generated “discontinuous” irradiance distribution in the form of separate letters and
a frame on a zero background. The derivative discontinuities are additionally shown with
blue lines in Figure 3a. This figure shows the calculated mirror as the function x1 = x1(x2, z)
describing the “depth” of the mirror surface along the x1 axis. Figure 3b shows the
irradiance distribution generated by the mirror in the plane z = 0. This distribution was
calculated using the commercially available ray-tracing software TracePro [32], and with
a good accuracy coincides with the required distribution. The normalized root mean
square deviation of the calculated distribution (Figure 3b) from the required one (Figure 2)
amounts to 8.1%.
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Figure 3. (a) Surface of the mirror generating an irradiance distribution in the form of framed letters
“IPSI” shown as “depth” function along the x1 axis. Blue lines show the “sharp bends” of the surface
(derivative discontinuities). (b) Normalized irradiance distribution generated by the mirror calculated
using TracePro.

The presented example demonstrates one of the advantages of the proposed method,
which consists of the capability to calculate continuous piecewise smooth surfaces for imple-
menting discontinuous ray mappings. In this case, the known methods based on numerical
solution of NDEs of an elliptic type [1–10] are either inapplicable or numerically unstable.

The designed mirror was fabricated using the milling technique with a three-axis
machining center, Haas Minimill. As a blank for the mirror, a silver plate was used. The
photograph of the two fabricated mirrors is shown in Figure 4. In the right-hand side of the
photograph, a mirror after the milling process is shown, whereas the left-hand side shows a
mirror after the polishing process, which was applied in order to remove the cutter marks.
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Figure 4. (a) Surface of the fabricated mirror before (right) and after (left) polishing. (b) Demonstra-
tion of the performance of the fabricated mirror.

Figure 4b shows the irradiance distribution generated by the mirror when illumi-
nated by a handheld flashlight. The dimensions and shape of the generated distribution
qualitatively correspond to the calculated distribution shown in Figure 3b and confirm
the correctness of the performed calculations. The blurring of the letters and artifacts in
the generated distribution are caused by the fabrication imperfections and errors in the
positioning of the illuminating beam, as well as its deviation from the beam with a plane
wavefront and uniform irradiance distribution used in the mirror design. However, the
authors believe that the presented example demonstrates the “robustness” of the mirror
designed using the proposed version of the SQM to the fabrication errors and the variations
in the incident beam. This makes it possible to use such mirrors in “out-of-laboratory
conditions”, for example, when creating jewelry exhibiting interesting optical effects. In
particular, the mirrors shown in Figure 4a are prototypes for cufflinks.

4. Conclusions

We proposed a version of the supporting quadric method for calculating a mirror that
generates a prescribed irradiance distribution in the near field for an incident beam with an
arbitrary wavefront. In the method, the mirror surface is represented as a set of segments of
stigmatic surfaces focusing the incident beam to the points of the required distribution. The
parameters of the stigmatic surfaces are calculated using an iterative method, which can be
considered to be a simple iteration method for solving a system of nonlinear equations.

Using the developed method, a mirror generating an irradiance distribution in the
form of framed letters “IPSI” on a zero background was designed for a practically important
particular case of an incident beam with a plane wavefront. This example demonstrates the
possibility of using the method for designing mirrors with continuous piecewise smooth
surfaces for implementing discontinuous ray mappings. The numerical simulation results
obtained using the commercial software TracePro demonstrate the good quality of the
generated distribution. The designed mirror was fabricated using the milling technique
and was qualitatively investigated in a proof-of-concept optical experiment. The exper-
imental results confirm the correctness of the proposed approach and demonstrate the
manufacturability of the mirrors designed using the developed method.
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