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Abstract: A new type of low-frequency magnetic-field sensor based on fiber Bragg gratings (FBGs)
was experimentally demonstrated for measuring the DC to low-frequency magnetic field. The
operating mechanism of this AC magnetic sensor is based on the strain exerted by a loaded magnet
on the sensing structure, which causes center-wavelength shifts of FBG. The achieved sensitivity was
8.16 pm/G with a resolution of 3 Gauss at ambient conditions. The proposed FBG magnetic sensor is
easy to use, compact, and suitable for DC to low-frequency magnetic sensing applications.

Keywords: fiber Bragg grating; AC magnetic field; super low frequency

1. Introduction

Super-low-frequency (SLF = 30–300 Hz) magnetic fields appear commonly in the city
environment, where typical sources include high-voltage transmission towers and electrical
appliances. Epidemiological studies suggested that there is a correlation between SLF
magnetic field exposure and adverse health effects such as cancer [1,2], and monitoring
of the daily dosage of the SLF magnetic field is therefore important in risk assessment.
In addition, the SLF prospecting technique has also been successfully implemented in
geothermal exploration and coalbed methane reservoir interpretation [3]. In this context,
a SLF magnetic sensor with an affordable and compact probe that meets engineering
requirements is essential for SLF applications.

SLF magnetic sensing techniques utilize a broad range of physics and chemistry
methodologies, including Faraday search coils [4], optically pumped magnetometers [5],
magnetic resonant spins [6], superconducting quantum interference devices (SQUIDs) [7],
Hall effect sensors [8], magneto-resistive sensors [9], and optical magnetic sensors. Al-
though some of the magnetic detectors achieve state-of-the-art magnetic sensitivity in
the sub-nanotesla range, such as SQUID-based laboratory sensors [10], their large sensor
size obscures practical applications. Importantly, the majority of the magnetic sensors
operating at DC to SLF are highly influenced with readout electronics [11], limiting their
suitability for use by electromagnetic interference in certain environments. On the other
hand, optical magnetic sensors such as fiber optic sensors offer many strengths, such as
immunity to electromagnetic perturbation, a compact and portable sensor head, remote
sensing capability, and high magnetic sensitivity [12].

Recently, fiber Bragg grating (FBG)-based sensors stand out as a promising sensors
among the aforementioned optical magnetic sensors [13–16]. As FBG is designed to reflect
light in a narrow band of wavelengths, the composition of FBGs could encode optical
pulse signals in both the time and frequency domain, and hence is more suitable to achieve
wavelength division multiplex (WDM). In principle, the FBG sensor is based on Bragg
wavelength drift [17] and has inaccurate issues in cross-sensitivity of strain and tempera-
ture [18]. Therefore, wavelength detection and temperature compensation are accordingly
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critical in wavelength-coded FBG sensors. Here we proposed a simple optical sensor for a
SLF magnetic field utilizing FBG which is not sensitive to temperature fluctuation, and is
suitable for monitoring daily exposure to SLF magnetic field as well as magnetic inspection,
depth sounding, and other SLF applications. The proposed FBG magnetic sensor is based
on the sensing ability of FBG to strain or pressure [19], which is applied to the sensor
by an attached magnet within the sensor structure. Experimental results show that the
proposed SLF magnetic sensing element responds well to magnetic field with frequency
below 120 Hz. An average magnetic sensitivity of approximately 8.16 pm/G was achieved.

2. Materials and Methods

The FBG sensor structure is shown in Figure 1. A small neodymium magnet with
magnetic dipole

⇀
m was glued in a sensing hole on the side of FBG structure. The structure

size: length 40 mm, width 20 mm, and height: 20 mm. The diameter of the sensing hole
is 12 mm and is located at the center of the side surface. We filled the sensor structure
with a chunk of soft polymer and an embedded FBG [19]. A pair of gaskets was used to
enclose the chunk polymer and to fix both sides of the fiber which improves the sensing
performance. When the magnet is in the presence of an external AC magnetic field BAC, the
magnetic force causes the magnet to squeeze the enclosed polymer with an axial strain ε to
the FBG. For a magnetic dipole

⇀
m coupled to an external magnetic field BAC, the magnetic

force is
⇀
F = ∇

(
⇀
m·

⇀
BAC

)
, (1)
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The strain
⇀
ε exerted on the polymer could then be expressed in terms of the magnetic

force by
⇀
ε = c∇

(
⇀
m·

⇀
BAC

)
, (2)

where c is a parameter depending on the geometry of the magnet and FBG sensor structure.
The strain

⇀
ε then changes the effective index and grating period of the FBG, which induces



Photonics 2022, 9, 102 3 of 8

the grating wavelength to shift. The relationship between the grating wavelength shift
(∆λB) and the axial strain applied to the FBG is given by [20]:

∆λB/λB = (1− Pe)ε (3)

where Pe represents the effective photo-elastic coefficient of the glass fiber. In a typical
fiber material

Pe = nneff
2[P12 − v(P11 + P12)]/2, (4)

where nneff is the effective refraction index, υ is the Poisson’s ratio, and P11 and P12 are
elements of the strain-optic tensor. According to Equations (2) and (3), it follows that the
shifting of the grating wavelength ∆λB of the FBG is then proportional to the applied
magnetic field BAC:

∆λB/λB = c(1− Pe) |∇ (
⇀
m·

⇀
BAC ) |, (5)

The experimental setup is shown in Figure 2, in which two FBGs were used. One was
used as the sensing grating (SG) in the FBG sensor, and the other was used as a matching
grating (MG) for obtaining the overlapped signals of the two gratings to be detected by
the photo detector (PDA10CS, Thorlabs, Newton, NJ, USA). A laser light of wavelength
1.53–1.61 µm (ASE FL7002, Thorlabs, Newton, NJ, USA) was fed through 2 circulators
such that the sum of SG and MG signals were sent to a photodetector. The purpose of
using a MG is to get an almost simultaneous response for sensing the magnitude variation
of low frequency AC magnetic field. This is due to the various overlapping intensity
created from the overlapping area of both the sensing grating and matching grating spectra.
Variation in the AC magnetic-field magnitude caused the permanent magnet of the sensing
head to modulate the magnetic force and then resulted in a shift in the sensing grating
wavelength. In the end, two gratings’ overlapping intensity over time was monitored
as electrical signals shown in oscilloscope via an optical power detector. The matching
grating also has the function of temperature compensation so that the SG will always
have an identical wavelength shift under different temperatures. The MG was placed in
a temperature-control oven such that the thermal expansion of grating period tuned the
wavelength for reflected reference light, as shown in Figure 3. Therefore, the proposed
FBG sensor system is immune to temperature fluctuation in ambient air owing to the
temperature-compensated MG.
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Figure 3. The reflection spectrum from both the SG and the MG. (a) The reflection spectrum at 25 ◦C
(b) the reflection spectrum of FBG sensor when the MG was baked to 65 ◦C to match the peak from
the SG.

For the AC magnetic-field measurement, the AC magnetic field at SLF was generated
from a solenoid driven by a function generator at different frequencies. The sensor structure
is 3D printed with Z-ABS resin and filled with elastic polymer (CrownCrete USC 810, Crown
Polymers, Huntley, IL, USA). The elastic polymer here was produced by mixing the USC810
resin with its hardener in an appropriate proportion, in which the viscoelasticity of the
polymer gives a reasonable response (storage modulus) and phase lag (loss modulus) to
oscillatory driving force at super-low frequency [21].

3. Results

The experimental results of the DC magnetic field measurement are shown in Figure 4,
in which the slope of the curve shows a DC magnetic sensitivity η = 0.00816 nm/G. Given
a fitting error of 25 pm, we achieved a minimum detectable magnetic field (magnetic
resolution) of ∆BAC = error·η = 3 Gauss. The measured root-mean-square (RMS) voltage
signal versus AC magnetic field frequency at a distance of 1 cm between coil and sensor is
plotted in Figure 5a. The AC magnetic field was also recorded with a Gauss meter (5180, F.W.
Bell Inc., Portland, OR, USA), and the measured RMS AC magnetic field versus frequency is
depicted in Figure 5b. The recorded magnetic field versus frequency curve with the Gauss
meter is consistent with FBG sensor signals. Throughout the entire measurement of AC
magnetic field with our FBG sensor in the manuscript, we had repeated the same sequence
of measurements over half a dozen times and found out the difference between each
repetition was less than 1%. With a projected magnetic field resolution around 3 Gauss at
120 Hz, we deducted an AC magnetic sensitivity of 3 Gauss/

√
120 Hz = 9 µT/

√
Hz for our

FBG sensor at super low frequencies. The lower signals of FBG sensor at higher frequency
could be attributed to the facts that the impedance Z of the solenoid is proportional to the
driven frequencyω. The impedance of the solenoid can be given by an inductor formula:

Z = R + jωL, (6)

where R is the resistance and L is the inductance of the solenoid. Since I = V/Z, a higher
impedance at higher frequencies induces less current, which causes a smaller magnetic field
from the solenoid and results in fewer sensor signals. It is also prominent that the magnetic
field measured from the Gauss meter follows the same inverse dependence of frequency,
which further confirms the current of the solenoid is subject to the above impedance. It
was found that there is a time-lag of ~2.5 ms between the solendoid-driving voltage to the
measured signals at 50 Hz. As a result, the upper limit of frequency for AC magnetic field
detection could be estimated to be around 400 Hz. On the other hand, it is also feasible to
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measure magnetic field at DC voltage. The dynamic range of frequency the proposed FBG
AC magnetic sensor is therefore DC-400 Hz.
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Figure 5. Measured RMS signal voltage versus AC magnetic field frequency. The solid dots are the
measured data, whereas the solid lines are fitted curves to the inverse function. (a) The voltage signals
are plotted with various function generator input voltage from 5 to 8 V. The data were fitted with
Equation (6) with an error ~5 mV. (b) The sensor voltage signals (left axis) as well as the magnetic
field measured with a Gauss meter (right axis) are plotted at 50 to 130 Hz. The magnetic field was
fitted with an inverse function similar to the voltage function with an error of 1 gauss.

Figure 6a shows the measured sensor voltage versus input voltage to the solenoid at
various frequencies. The output sensor voltage is linearly proportional to the input function
generator voltage within the tuning range of the function generator, which indicates a
linear relationship between the signals to the applied magnetic field is indeed valid within
our experimental settings. In Figure 6b, measured sensor voltage versus input voltage at
a distance of 1 and 1.5 cm to the solenoid are shown. It can be seen that a smaller sensor
signal-input slope appears with a greater distance between the solenoid and the sensor
structure. This could be explained by calculating the magnetic force between a solenoid and
a magnet; the magnetic force would decrease monotonically with the increasing separation
distance [22]. A solenoid-sensor distance less than 1 cm is not applicable in this experiment
due to the deformed sensing hole structure at such distance, which also confirms the
magnetic force explanation above.
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4. Discussion

So far, various techniques have been developed for the FBG-based magnetic sen-
sor, and each differs in measurement complexity, resolution, dynamic range, or sensitiv-
ity. Although typical laboratory AC magnetic sensors could achieve a sensitivity in the
∼ nT/

√
Hz range, such as SQUID sensors [10], their entire instruments and cooling system

could occupy an entire room. In contrast, the compact size of the FBG-based sensor head
offers advantages in applications such as medical surgery which demands for portability
and convenience. The portability of FBG sensor also makes coalbed exploration a viable
option. In addition, immunization to electromagnetic interference also give FBG sensor
niches in environments where a high field is present, such as a transformer tower. Mainly,
FBG is attached to a magnetic film, magnetic cantilever, or magnetic fluid [18,23–26], and is
then coupled to the external magnetic field. Our work combines highly elastic polymer
with a strong neodymium magnet into a compact magnetic sensing structure, which then
exerts high strain to the sensing FBG in the presence of external magnetic field. As a
result, our designed FBG magnetic sensor gives fine magnetic signal resolution yet achieves
good magnetic sensitivity at DC to SLF. Table 1 summarizes different magnetic sensing
FBG techniques.

Table 1. Magnetic measurement comparison of some fiber grating sensor systems.

Sensitivity η Magnetic Field Resolution References

4 G
(3 G with 8.6 MPa pre-press) [23]

19.1 G [18]
0.07 pm/G [24]
0.33 pm/G [25]
0.5 pm/G [26]
8.16 pm/G 3 G This work

To create high-elasticity polymer for a FBG sensor, fine experimental adjustment is
required for a good recipe. In principle, a different mixture of load material and filler
material variously alters the storage and loss modulus of the elastic polymer. For example,
increasing the load material (i.e., resin) percentage might increase its composite storage
modulus, but at the expanse of increasing its loss modulus [27]. A technical challenge
for composite polymer mixing is to moderately increase its storage modulus without
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significantly increasing its loss modulus, so that the oscillatory motion of the polymer is
not completely out of phase to the driving force at a frequency of interest. Therefore, the
optimum recipe for the mixture percentage differs with the type and properties of both
the filler and load material of the polymer composite, and it could not be predicted from
simple calculation at a specific frequency beforehand. The elastic polymer’s performance is
also expected to deteriorate from oxidation due to aging [28], and its durability over time
remains a critical issue to overcome.

Throughout the work, the noise appears as errors in magnetic field readings, and it
contributes to nearly ~1% of variation of the measurement at SLF. The geomagnetic field
could possibly affect DC magnetic field sensing as a systematic error, but it does not con-
tribute to AC magnetic field sensing at SLF due to modulation of signals. In principle, the
noise can be attributed mainly to optical noise of the light source and mechanical noise from
the fiber and polymer. With a stiffer fiber and with a more stable structure, the proposed
FBG sensor might further reduce its noise in signals. By increasing signal integration time,
the noise can be further reduced. There are also several technical improvements that could
be implemented to get better sensitivity in the future. For example, the uniformity of soft
polymer to surround the FBG could affect the measurement results due to the uneven
sensing pressure converted to the stress in the FBG. Furthermore, the best elastic polymer
material for the FBG sensor has not been optimized yet, and a better magnetic field to strain
ratio might be achieved by simply replacing the current polymer. In addition, by incor-
porating a stronger magnetic film into the sensor structure, an enhanced magnet-to-stress
converting ratio could also boost its sensitivity. It would also be of practical interest to test
real SLF signals with a noisy background in the future, but this is beyond the scope of this
work and is left for futuristic exploration.

5. Conclusions

We report a simple, FBG-based magnetic sensor that provides a linear measuring
characteristic at super-low frequency. In addition, a DC magnetic sensitivity of 8.16 pm/G
and a magnetic resolution of 3 G is experimentally obtained. The signal readings of the
AC magnetic field sensor are consistent with the reading from a Gauss meter. Although
many optic-based magnetic sensors are currently available, affordable manufacturing and
portability are still key factors to develop a general-purpose sensor for wide applications.
We expect that further improvements to this sensor will lead to even higher sensitivity. This
includes further refinement of the sensing structure and more powerful magnet.
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