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Abstract: Multiband supercontinuum generation covering the bandwidth from 0.65 µm to 3.3 µm
was demonstrated in a gas-filled hollow-core silica fiber pumped by chirped ultrashort pulses at
1.03 µm. The development of the SC spectrum into the mid-IR was initiated by cascade stimulated
Raman scattering in gaseous D2, which was used as an active medium filling the hollow core. The
influence of the Kerr nonlinearity was studied by changing the linear chirp of the pump pulses. The
influence of gas pressure and pump pulse energy on the SC generation was investigated. As high as
14% of pump quanta were converted to the wavelength range above 2 µm.

Keywords: hollow-core fiber; supercontinuum; mid-infrared range; stimulated Raman scattering;
nonlinear fiber optics

1. Introduction

Supercontinuum (SC) sources are of great interest for many applications, which include
biomedicine, remote sensing, and environmental monitoring. In recent years, much effort
has been devoted to realize fiber-based SC generation at wavelengths λ > 2.4 µm in the mid-
infrared (mid-IR), where many molecular species of interest have fundamental absorption
bands. As silica-core fibers cannot be applied in this spectral range, most of the research has
focused on non-silica fibers of various compositions. As a result, impressive progress on
mid-IR SC generation has been achieved in fluoride, telluride, and chalcogenide fibers [1–8].

Negative-curvature hollow-core fibers (HCFs) present an alternative fiber design that
can be applied beyond the transparency window of silica glass [9–12]. Various types
of HCFs are also referred to as anti-resonant or revolver fibers. Having the cladding
made of SiO2, the HCFs possess all advantages of well-developed silica glass technology.
Simultaneously, most of the fundamental restrictions imposed by silica on optical fiber
properties are eliminated, as high-power optical radiation is strongly localized in a gas-
filled hollow core. Moreover, HCFs can be used at high intensities that are above the optical
damage threshold of any solid-core fibers [13,14]. This combination of properties has made
gas-filled HCFs an ideal platform for nonlinear fiber optics in a wide spectral range [15–17].

SC generation that was experimentally demonstrated in HCFs covers mainly the spec-
tral range from the near-infrared to deep-ultraviolet. Typically, a HCF filled by a noble gas
is pumped by near-infrared ultrashort pulses that experience soliton-driven dynamics [18]
or modulation instability [19]. The dispersive wave generated in such experiments favors
the energy transfer toward the deep-ultraviolet part of the spectrum. Some works make
use of molecular gases [20–23], which could potentially extend the SC spectrum to longer
wavelengths by means of stimulated Raman scattering (SRS). Nevertheless, in the experi-
ments, the long-wavelength edge of the spectrum remains shorterthan 1.2 µm for the SC
generated by pure SRS [23] and shorter than 2.4 µm when SRS is accompanied by the Kerr
nonlinearity [24].
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A mid-IR SC in HCFs was experimentally achieved only in a few works [25–28],
all of which used noble gases. By using a 1.03 µm pump, Köttig et al. [25] showed that
ionization of the gas in the strong-field regime can lead to the generation of a dispersive
wave in the mid-IR. Although this approach works in principle and the dispersive wave
was detected in the 3.3–4 µm spectral range, the efficiency of the process was very low.
Another approach relies on pumping the HCF by ultrashort pulses at longer wavelengths,
which results in a soliton-based SC with enhanced spectral power density in the mid-
IR. In this way, efficient SCs were generated in the spectral range of 0.27–3.1 µm [26],
0.3–4.6 µm [27], and 0.2–4.0 µm [28], by pumping at 1.7 µm, 2 µm, and 2.46 µm, respectively.
Although demonstrating the prospects of the gas-filled HCFs to generate a SC in the
mid-IR, those works were based on complex pump sources, such as ultrafast optical
parametric amplifiers. For practical applications, however, development of simplified
pumping schemes is highly desired.

Recently, we showed that widespread ultrafast lasers at 1.03 µm can be efficiently used
as a pump source to generate mid-IR picosecond pulses in a HCF filled by Raman-active
gas [29]. Moreover, such gas fiber Raman lasers can be turned into a mid-IR SC source, as
numerical simulations showed [30].

In this work, we experimentally demonstrate a multiband supercontinuum covering
the bandwidth from 0.65 µm to 3.3 µm in a gas-filled hollow-core silica fiber pumped
by chirped ultrashort pulses at 1.03 µm. The development of the SC spectrum into the
mid-IR was initiated by cascade Raman conversion in gaseous D2, which was used as
an active medium filling the hollow core. The effect of Kerr nonlinearity was studied by
controllingthe amount of linear chirp introduced to the pump pulses. The influence of gas
pressure and pump pulse energy on the SC generation was also investigated.

2. Materials and Methods

The experimental setup (Figure 1a) and the HCF (Figure 1b) were the same as in [29].
As a pump source, we used an ytterbium laser (TETA-6, Avesta) that generates linearly
polarized transform-limited 250 fs long pulses at 1.03 µm with a pulse energy of up to
400 µJ. At the output of the pump laser, a pulse stretcher was used to control the pump
pulse duration in the 0.25–12 ps range. A lens L1 couples the pump pulses into a 2.9 m long
piece of a revolver-type HCF with a 75 µm core diameter and 1.15 µm thick walls of the
cladding capillaries.
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Figure 1. (a) The scheme of experimental setup; (b) SEM image of the hollow-core fiber cross-section.

The HCF was filled with D2 at various pressures in the range from 5 to 30 atm.
Deuterium was chosen as an active gas as it has one of the largest molecular vibration
frequencies (ΩR = 2991 cm−1), and being pumped at 1.03 µm, it generates 1st (1.49 µm)
and 2nd (2.68 µm) Stokes waves that match well with the transmission bands of the HCF
used. Both ends of the fiber were hermetically sealed into small gas cells, which had 1 mm
thick fused silica (input) and sapphire (output) windows to couple/decouple the radiation.
The output radiation was collimated by a ZnSe lens and then analyzed by a powermeter
(Ophir), optical spectrum analyzer (AQ6317B, Ando), and a monochromator equipped
with a nitrogen-cooled InSb detector (Hamamatsu, Shizuoka, Japan). An uncoated 2 mm
thick Si plate and antireflection-coated Ge filter (WG91050-C9, Thorlabs, Newton, NJ,
USA) were used to separate the optical power generated in the near-IR (1.1–1.9 µm) and
mid-IR (>1.9 µm) spectral ranges. To calculate the quantum efficiency of pump conversion



Photonics 2022, 9, 997 3 of 11

into near-IR and mid-IR ranges, the quantum defect was approximated by that of pure
vibrational Raman conversion 1.03→1.49→2.68 µm.

The numerical simulation of pulse propagation in the D2-filled revolver fiber was
carried out by solving a generalized nonlinear Schrödinger equation (GNSE) for the com-
plex spectral envelope of the pulse [31] and taking into account the higher-order disper-
sion, Kerr nonlinearity, and SRS on Q2 vibrations of the D2 molecules. The nonlinear
response function of D2 has the form R(t) = (1− f R)δ(t) + fRhR(t), where the first and
second terms are responsible for the instantaneous Kerr effect and the slowly relaxing
Raman effect, respectively. The Raman response function of the D2 molecule was mod-
eled as hR(t)= Ω2τs exp(−t/τd) sin(t/τs), where Ω2 = τs

−2 + τd
−2, τs = 1/ωR, and

ωR = 5.626× 1014c−1 is the angular frequency of molecular vibrations; τd = T2/2π, where
T2 is the phase relaxation time for the excited vibrational level. The time T2 is a function
of the gas density ρ, as T2 = 1/(π× ∆νR) and the linewidth of the vibrational Raman
transition ∆νR depends on the D2 density as ∆νR= 101/ρ+ 120ρ, where ∆νR is in MHz
and ρ in Amagat [32].

The nonlinear refractive index N2 of deuterium was determined based on the data obtained
in [33], where contributions to the value of N2 were measured separately for the electronic
Kerr nonlinearity (N2K = 5.8 × 10−24 m2/W) and vibrational SRS (N2vib = 1.2× 10−24 m2/W).
The value of N2K was assumed to depend linearly on D2 pressure p. The dependence of N2vib
on p was determined by taking into account the pressure dependence of the Raman gain [32].
The coefficient fR, which describes the SRS contribution to the value of N2, was estimated as
fR(p) = N2vib(p)/(N2K×p+N2vib(p)) [34].

Numerical analysis was conducted in Matlab using built-in fast Fourier transform
algorithms and solving the GNSE by the 4th-order Runge–Kutta method for the fiber
fundamental mode, taking into account the spectral dependences of the effective mode area
Aeff(ω), waveguide loss α(ω), and the effective refractive index. The simulated spectral
range from 0.6 µm to 5 µm covered 4 transmission bands of the fiber. The maximum time
interval was 120 ps with a minimum grid size of 1.8 fs. As the input pump, we considered
Gaussian pulses at 1.03 µm with amplitude E(t) =

√
P× exp

{
−0.5× [(t + iC)/T0]

2
}

. The
power P, pulse duration τFWHM= 1.665× T0, and chirp value C were chosen to satisfy our
experimental conditions.

3. Dispersion and Waveguide Properties of the Revolver HCF

Waveguide, dispersion, and nonlinear characteristics of the HCF were calculated in the
0.6–5 µm wavelength range by the finite element method. The spectrum of optical losses,
calculated for the fundamental mode, has several transmission bands (Figure 2a, black).
The spectral position of the bands is favorable for SRS-initiated energy transfer in the
D2-filled HCF from the pump toward longer wavelengths, as the wavelengths of the pump
(1.03 µm), the first (1.49 µm), and the second (2.68 µm) Stokes fall within transmission
bands of the fiber (the 3rd, the 2nd, and the 1st band, respectively). Meanwhile, the energy
transfer to shorter wavelengths should be reduced due to high losses around the first
anti-Stokes wavelength (0.79 µm).
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Figure 2. (a) The optical loss spectrum (black) and nonlinear coefficient γ (red) calculated for the
fundamental mode of the HCF. (b–d) Quadratic dispersion β2 as a function of wavelength in different
transmission windows of the HCF. Both waveguide and gas dispersion were taken into account.
Dispersion data are presented for D2 pressures from 0 to 50 atm with a step of 10 atm.

Nonlinear coefficient γ was calculated as γ = 2π·N2K/(λ·Aeff), where N2K—nonlinear
refractive index due to the electronic Kerr nonlinearity of D2, Aeff—effective mode area,
and λ—wavelength. Figure 2a (red) shows the value of γ as a function of wavelength for
the highest D2 pressure used in the experiment (30 atm).

The dispersion properties of the fiber were calculated taking into account the dis-
persion of deuterium [35] and the waveguide dispersion of the HCF. The total quadratic
dispersion β2 of the D2-filled HCF is shown in Figure 2b–d for gas pressures from 0 to
50 atm with a step of 10 atm. Note that at the pump wavelength, the dispersion can change
sign (Figure 2b), while for the 1st Stokes, it has only negative values (Figure 2c), and for the
2nd Stokes, only positive values (Figure 2d). At the highest pressure we used (30 atm), the
values of dispersion are β2(1.03 µm) = −0.03 ps2/km, β2(1.49 µm) = −0.33 ps2/km, and
β2(2.68 µm) = 3.6 ps2/km.

4. Results and Discussion

First, we experimentally investigated supercontinuum generation in conditions similar
to those used in work [29]. The same 2.9 m long HCF was filled by gaseous D2 at a pressure
of 5 atm and pumped by 1.03 µm ultrashort pulses with an energy of 210 µJ coupled into the
HCF. The duration of linearly chirped pump pulses was initially set to τpump = 12 ps. Then,
spectra at the output of the HCF were measured as a function of pump pulse duration,
which was reduced step by step down to the transform-limited value of 250 fs.

Three qualitatively different regimes were observed. When sufficiently long pump
pulses (τpump ≈ 6–12 ps) were used, vibrational SRS in D2 was a dominant nonlinear effect,
which resulted in an efficient cascade Raman conversion 1.03→1.49→2.68 µm at fixed
wavelengths (Figure 3a). About 25% of pump quanta were converted to the second Stokes
wavelength of 2.68 µm (Figure 3d, red solid curve), and no significant spectral broadening
was detected even for pump pulse energies as high as 210 µJ.
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pressure of D2 was 5 atm.

However, when τpump was shortened to below ~3 ps, a competition between SRS
and other nonlinear effects, such as self-phase (SPM) and cross-phase modulation, came
into play. The output spectrum experienced noticeable broadening (Figure 3b,c) with a
simultaneous reduction in SRS conversion efficiency (Figure 3e,f). For τpump as short as
250 fs, the second cascade of SRS conversion into the mid-IR was completely suppressed,
so it was beyond the detection limit of our setup.

The most pronounced spectral broadening was observed for the case of τpump ≈ 1 ps
and Epump = 210 µJ, where a multiband supercontinuum with spectral coverage from 0.65
to 3.3 µm (at −30 dB level) was achieved (Figure 3c), and about 6% of pump quanta were
converted to wavelengths above 2 µm (Figure 3f).

The three different regimes observed can be qualitatively understood by estimating
broadening of the pump spectrum induced by pure SPM. The SPM-broadened spectral
width is approximately ∆ν ≈ ∆ν0 + ϕmax/(2πτp), where ∆ν0 is initial bandwidth of the
pulses, τpis the pulse duration, and ϕmax = 0.86·γL·Ep/τp. In our case, ∆ν0 always cor-
responds to the spectrum of 250 fs long transform-limited pulses, while τp varies in the
range of 0.25–12 ps. For the case of 210 µJ pulses propagating in the HCF at a D2 pressure
of 5 atm, the dependence of ∆ν on τp clearly shows that noticeable spectral broadening
should occur only for pump pulses shorter than 2–3 ps (Figure 4). When the pulse duration
drops below ~1ps, the spectral width experiences more than 10-fold broadening and the
influence of the pump bandwidth on SRS should be considered.
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pulse energy was 210 µJ and the pressure of D2 was 5 atm.

A comprehensive review of the pump bandwidth influence on the Raman gain can
be found in [36]. Here, we just mention that to avoid reduction in the Raman gain, the
pump bandwidth ∆ν should be less than ∆νmax = 1/(L·GVM), where L is the interaction
length and GVM = (1/vs − 1/vp) is group velocity mismatch, which is defined by group
velocities of the Stokes (vs) and pump (vp) waves. In our case, the group velocity mismatch
is as low as GVM ≈ 0.04 ps/m for 1.03→1.49 µm conversion. Thus, pump spectra as
broad as ∆ν ≈ 10 THz should not reduce the efficiency of SRS. However, for the second
stage of Raman conversion (1.49→2.68 µm), the value of GVM is as high as 1 ps/m,
which means that SPM-induced spectral broadening should first reduce or even suppress
the 1.49→2.68 µm Raman conversion, while the 1.03→1.49 µm SRS process still could
be efficient.

All three regimes of spectral broadening mentioned above should also occur for higher
D2 pressure. Moreover, as nonlinearity γ grows proportionally with D2 pressure, the pulse
energy required to achieve those regimes should be proportionally reduced.

We studied the supercontinuum generation at different D2 pressures that were varied
from 5 to 30 atm. At any pressure used, the output spectra had a similar dependence on
pump pulse duration. As expected, the energy of pump pulses required to achieve efficient
SRS and supercontinuum generation was reduced with D2 pressure. Figure 5 shows typical
spectra at a D2 pressure of 30 atm, obtained for a τpump of 1ps (Figure 5, grey filled curve).
The SC spectral coverage from 0.65 to 3.3 µm was observed when the coupled energy of
1pslong pump pulses was only 50 µJ, which should be compared with the 210 µJ needed to
produce a similar SC bandwidth at 5 atm of D2. Moreover, the quantum efficiency of pump
energy conversion to wavelengths above 2 µm was rising with pressure, reaching the value
of about 14% at 30 atm of D2 (Figure 6, red solid curve).
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Figure 6. Quantum conversion efficiency of the pump into 1.1–1.9 µm band (black dashed curves)
and to wavelength range above 1.9 µm (red solid curves) at pump pulse duration of 1 ps.

It is instructive to consider the supercontinuum spectrum achieved in this work on
a frequency scale (Figure 7). The grey filled area on Figure 7 illustrates optical loss of
the hollow-core fiber. The shortening of the pump pulse duration from 12 ps to 1 ps
resulted in the spectral broadening of separate SRS components (Figure 7, blue) into the
SC that completely covered the 0.8–1.2 µm and 1.2–2.2 µm transmission windows of the
fiber. Additionally, the SC covered the 0.6–0.8 µm transmission band in the visible part of
the spectrum. In the mid-IR band of the fiber (2.2–5.0 µm), the supercontinuum reached
wavelengths as long as 3.3 µm as measured at the −30 dB level.
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curve) and 1 ps (red curve). The coupled pump pulse energy was 50 µJ, the pressure of D2 was
30 atm, and thefiber length was 2.9 m. The optical loss spectrum of the HCF is also shown (grey
filled curve).

In addition, the data presented in Figure 7 explain partially the reason for the reduction
in quantum conversion efficiency that was observed in all SC generation regimes during
the increase in pump pulse energy (e.g., see Figure 6, black dashed curve). Some part of the
SC energy was inevitably lost in high-loss regions of the HCF near the wavelengths of 0.8,
1.2, and 2.2 µm.

Results of numerical simulations agreed well with the experiment, as can be seen in
Figure 5, where measured (grey filled) and calculated (red) output spectra are compared
for the case of 1 ps pulses with an energy of 50 µJ coupled into the 2.9 m long HCF that was
filled by D2 at a pressure of 30 atm. More details about supercontinuum evolution can be
deduced from the spectral power density plot (Figure 8, left). The pump propagated along
the fiber length z and experienced slow spectral broadening due to self-phase modulation,
while at about z = 1.5 m, vibrational SRS came into play by generating 1st (1.49 µm) and
2nd (2.68 µm) Stokes components. Note that two anti-Stokes components also appeared
at λ = 0.79 µm and λ = 0.64 µm. At around z = 2 m, the spectrum evolved into a broad
supercontinuum due to modulation instability, which is associated with the complex
interplay between Kerr and Raman nonlinear processes and results in the pulse break up
into multiple soliton-like pulses. At this point, four-wave mixing processes entered the
competition with SRS. While SRS promotes the pump energy transfer to the mid-IR spectral
range, the four-wave mixing stimulates the pump energy conversion toward the visible
range, where the nonlinear coefficient γ had a higher value (Figure 2a, red). If energy
transfer to anti-Stokes components is blocked in simulations, the supercontinuum evolves
into the mid-IR much more efficiently (Figure 8, right). Thus, to improve spectral power
density and spectral coverage of the SC in the mid-IR, it is important to place high-loss
bands of the HCF at anti-Stokes wavelengths.
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5. Conclusions

To conclude, a supercontinuum source is demonstrated on the basis of a hollow-core
silica fiber filled by gaseous D2. Being pumped by the easily available ultrashort laser at
1.03 µm, the supercontinuum source covers the spectral bandwidth from 0.65 to 3.3 µm at
the −30 dB level. As high as 14% of pump quanta were converted to the wavelength range
above 2 µm.
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