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Abstract: Mid-infrared imaging systems are widely applied in gas-leak detection. However, infrared
images generally suffer from low contrast and poor quality. In this paper, an image-enhancement
method based on Gaussian filtering and adaptive histogram segmentation is proposed to effectively
improve the quality of infrared images. It can effectively improve the quality of infrared images,
which contributes to the subsequent gas-image feature extraction. The traditional background
modeling algorithm is analyzed, and the ViBe (visual background extractor) algorithm is studied
in depth. Based on the advantages and disadvantages of the ViBe algorithm and the characteristics
of gas-leak images, a gas-leak region detection method based on the improved ViBe algorithm is
proposed. The test results show that it can quickly establish a background model, segment the gas-
leak region with motion characteristics, and render the gas-leak region in color based on grayscale
mapping to achieve the automatic detection and enhanced display of gas leaks.

Keywords: gas leakage; infrared imaging; image enhancement; background extraction

1. Introduction

With the rapid development of industry, a variety of toxic gases are widely used [1].
Their storage and transportation are critical and very important. Once the gases leak, it may
cause an explosion and other accidents. Efficient gas-leak detection technology helps to
detect and deal with gas leaks immediately. Infrared spectral-imaging detection technology
is one of the important means of gas-leak detection [2]. Compared with traditional point
gas sensors, infrared spectral-imaging detection technology has the advantages of long
detection distance, large coverage and wide detection range, and gas can be directly imaged.

Gas sensors are often used in gas-leak detection. They can be divided into the semi-
conductor type, electrochemical type, and infrared absorption type, etc., according to the
working principle. Gas sensors have the advantages of short detection time, high sensitivity
and no field sampling [3]. Most conventional gas sensors can only detect the target gas at a
single point. Therefore, they cannot realize real-time dynamic monitoring on a large scale
and cannot effectively reflect the distribution of leaking gas in space [4].

Infrared imaging can be divided into two categories: active imaging and passive
imaging. Active-imaging technology requires an external light source, with good sensitivity,
but poor safety and detection are limited by the external light source. Compared with
active infrared technology, passive infrared imaging has the advantages of no background
reflection, no laser source, and a long detection distance [5]. Passive-imaging technology
uses the natural background radiation of the environment to detect the gas. Gas-leak
scenes are often accompanied by temperature and pressure drops. There are temperature
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differences between the leaking gas and the background. This meets the conditions for
passive gas detection [6].

Infrared spectral-imaging technology is non-contact imaging. It can not only obtain
spectral information of gas but also image the distribution in space [7]. The spectral
information can be used to identify the type of gas [8]. In addition, passive infrared
detection equipment can detect a variety of gases, due to the different infrared absorption
characteristics of different gases. Therefore, the study of gas leaks based on passive infrared
imaging is of great significance.

Once these gases leak, there is a change in temperature and pressure. Therefore, there
is a temperature difference between the leaked gas and the background. This meets the
conditions for passive gas detection. In recent years, cooled infrared focal-level detectors
have also been widely used in passive gas detection, but they are expensive and have a
limited response band. With the development of uncooled infrared focal-plane detector
technology, the detection sensitivity of uncooled detectors has been rapidly improved and
the cost has been decreasing [9]. However, the infrared images from uncooled infrared focal-
plane detectors suffer from low contrast and poor quality. Therefore, effective methods for
infrared image processing are needed.

A gas leak can be detected using dynamic-target detection methods. However, there
are large differences between different gas targets in different scenarios. Although deep
learning is quite effective at target detection, it also has some limitations. The accuracy of
deep learning is highly correlated with the number and diversity of samples. In addition, it
is not suitable for real-time processing. Therefore, the improvement in classical motion-
target detection methods based on gas-leak characteristics is also a research trend in the
field of gas-leak detection.

In 2008, the French company Bertin Technologies developed the Second-Sight stereo-
scopic remote camera monitor, which can monitor the emissions of toxic industrial gases
or chemical gases in real time [10]. The working band of the system is 8000–14,000 nm,
and it can identify up to 50 kinds of gases, and can detect gas leakage within the range of
2 m–5 km. Second-Sight-series products use the site background as an infrared source and
use image-processing algorithms to highlight the target gas cloud.

In 2020, Telops used a resolving multispectral imaging system with a high-speed
rotating broadband pass filter wheel for imaging monitoring of volcanic gases rich in
carbon dioxide, sulfur dioxide and hydrogen sulfide [11]. The technique can be based on
pixel-to-pixel dynamic-flow analysis to estimate gas velocity. The system calculates the
actual size of pixels in the area, and calculates the carbon dioxide in the designated area
of the image according to path-length concentration results. It can show the gas-velocity
histogram in this region. This method can better estimate the gas-flow velocity and gas
concentration, but the working band is limited and cannot effectively cover most of the
toxic and harmful gases.

In 2021, Quan Lu et al. proposed a SF6 gas-leak online detection method [12] based
on a Gaussian mixture model. This research is based on the imaging results of the FLIR
GF306 cooled infrared imager. Under the experimental conditions of indoor 0.06 mL/min
and a distance of 5 m, it can overcome the high noise and complex background interference
of infrared imaging, and can effectively detect and locate a SF6 leak area. However, the
uncooled detector of the imager used in this study has a small working band coverage and
can detect few gases.

For these problems, we analyze the noise characteristics of gas infrared imaging and
propose an infrared gas image-enhancement algorithm, with the gas part being more
enhanced. Meanwhile, an improved gas-region extraction algorithm is proposed to make
it more suitable for gas-leak detection in different scenes. The algorithm proposed in this
paper can effectively segment gas clouds, and effectively enhance F1 values with high
detection accuracy.
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2. Materials and Methods
2.1. Experimental Configuration

Medium-wave or long-wave cooled infrared detectors have been used in the detection
and identification of certain gas leaks at home and abroad with the improvement in in-
frared detector technology. However, the cooled infrared detectors have the disadvantage
of high cost. They can only work in the mid-wave infrared band or the long-wave infrared
band. Some are even limited to a narrow single infrared band. It is difficult to effec-
tively cover common gas-leak detection. These disadvantages limit their popularization
and application.

In order to expand the types of detected gases, a broadband uncooled infrared focal-
plane detectors was used in our system, covering the mid-wave and long-wave bands.
Filters and scanning structures were developed to realize single-spectral and multi-spectral
channels. The processed image and gas-leakage results are displayed on the terminal. In
addition, the system was tested.

The overall block diagram of this system is shown in Figure 1. The infrared imaging
module includes a broadband infrared optical lens, a long-wave filter wheel and an broad-
band uncooled infrared focal plane detector. The rotation time of the long-pass filter wheel
is controlled and fed back to the image-processing module. The infrared video stream
obtained by the system is used for image enhancement, target detection, region selection
and image segmentation. The area and type of the gas leak are displayed on the display.

Figure 1. Block diagram of broadband infrared spectral imaging system.

In order to simulate different scenarios of gas leakage, different experimental con-
ditions are considered in this paper. Different experimental conditions include sulfur
hexafluoride and carbon tetrafluoride, and different environmental conditions include
indoor and outdoor. Infrared videos were acquired using an uncooled infrared detector.

This broadband uncooled infrared focal-plane detector was designed for the temper-
ature range of −20 °C and 50 °C and its thermal sensitivity is 15 mK at 30 °C. When the
characteristic absorption peaks are covered by the wavelength range of the filter, the image
is displayed in the infrared video. The video resolution is 640 ∗ 480 pixels and the speed
is 50 frames per second. The device is shown in the Figure 2. Figure 2a shows the device
which was used for tests. Figure 2b is the blueprint. In addition, the filters in our device
were purchased from Spectrogon. The types are shown in Table 1.

We propose and developed an infrared multispectral imaging system for gas-leak
area detection and identification. The related imaging principles and gas-leak detection
algorithms are introduced. Gas-leak monitoring and identification experiments were
carried out for the two gases in four different scenarios. There are two indoor scenes
and one outdoor scene. Combined with the algorithm recognition results and objective
indicators, the algorithm proposed in this paper can effectively segment the gas cloud
at different times in different scenarios, and effectively improve the F1 value under the
condition of high detection accuracy. Finally, experiments were carried out with sulfur
hexafluoride and carbon tetrafluoride gas, and the experimental results verified that our
methods have the ability to detect various gas leaks.
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Figure 2. (a) Physical view of broadband infrared spectral imaging system; (b) Rendering picture of
broadband infrared spectral imaging system.

Table 1. The filters of this device 1.

Filters a b c d e f

Type LP2000 LP3750 LP4750 LP6360 LP9000 LP10150
1 https://www.spectrogon.com/products/optical-filters/ (accessed on 2 June 2021).

2.2. Research Method
2.2.1. Infrared Image-Enhancement Algorithm

This paper proposes an enhancement method for local mapping. The method includes
three steps. First, the image is filtered by Gaussian filtering to obtain the base layer of
the image, and the base layer is subtracted from the input image to calculate the detail
layer. Then, adaptive histogram segmentation and dynamic compression are performed,
respectively, on the base layer and the detail layer. Finally, the two layers of images are
fused at different scales and exported as an 8-bit grayscale image. A Gaussian filter is
used to smooth the output image. In this paper, the Gaussian-filtering algorithm is used
to divide the infrared image into the base-layer image and the detail-layer image, and the
process is as follows.

Ibase = Ioriginal ⊗ G (1)

Idetail = Ioriginal − Ibase (2)

Among them, Ibase is the base layer image, Ioriginal is the original infrared image, ⊗ is
the convolution operation, G is the Gaussian kernel, and Idetail is the detail-layer image.
There is different information contained in the base image and the detail image and they
need to be processed differently. The basic information in the base-layer image has high
contrast and obvious grayscale changes. The detailed information in the detail-layer image
mainly has low contrast. There are often traces of gas leakage in the detail layer.

There are few pixels with extreme gray values in detail-layer images. They are often
recognized as noise. The image quality would be improved by removing these noises. A
large amount of detail weak noise is separated into the detail layers after the image layering
operation. To remove noise, the detail layer must be filtered a second time.

For a given image I, the probability distribution (probability distribution function,
PDF) of each gray level can be expressed as the formula (3)

PI(k) =
nk
n

, k = 0, 1, . . . , L− 1 (3)

https://www.spectrogon.com/products/optical-filters/
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where PI(k) represents the PDF value of grayscale k, nk is the number of occurrences of
grayscale k, and L is the total number of pixels in the image: for 8-bit images, L is 256.

The local minimum of the histogram gray distribution are determined by a sliding
window of size 1×W. The grayscale set is {l1, l2, . . . , lN}. The N is the number of local
minima. The first and last non-zero histogram components are also contained in the set.
Finally, the grayscale histogram is divided into N − 1 intervals, which can be expressed as
[l1, l2], [l2, l3], . . . , [lN−1, lN ], as shown in Figure 3.

Figure 3. Schematic diagram of adaptive histogram segmentation based on local minima.

The gray level in each interval is regarded as one or a group of objects, and the gray
redistribution strategy of each interval is carried out. It is unreasonable to redistribute
grayscales based only on the PDF values of a single grayscale. The overall grayscale
distribution of the interval would be considered to determine the foreground or background.
Based on the above characteristics, AHV is used as the criterion, which represents the
average histogram value of a certain grayscale interval, such as Equation (4):

Θi =
n× CDFi

li+1 − li + 1
, i = 1, 2, ..., N − 1 (4)

CDFi =
li+1

∑
li

PI(k), i = 1, 2, ..., N − 1 (5)

In the formula, Θi is the AHV value of the i interval, CDFi is the sub-histogram interval
[li − li+1] of the cumulative density function (CDF), and the set Θ = {Θ1, Θ1, . . . , ΘN−1}.
For a large flat area, its corresponding grayscale is usually concentrated in a small grayscale
range, and the AHV should also be large. The larger the flat area, the larger the AHV. For
those objects that contain a lot of detail, it is obvious that their AHV will be small because
the detail part has a large grayscale range and a small pixel-PDF value.

The Otsu method [13] was used to calculate the appropriate background recognition
threshold TH. Assuming that TH divides the set Θ into two classes, ΘA and ΘB, then TH
is defined as (6):

σ(TH) = CA · (E(ΘA)− µ)2 + CB · le f t(E(ΘB)− µ)2 (6)

In the formula, CA and CB represent the proportions of the two categories ΘA and ΘB
in the population, E(Θa) and E(Θb) are the average of these two categories, and µ is the
average of Θ. When σ(TH) takes the maximum value, TH is the optimal threshold. After
the threshold is confirmed, the grayscale interval is remapped. First, only sub-histograms
with AHV values below the threshold are enhanced, other sub-histograms maintain their
proportions across the dynamic range. Second, replacing the PDF of a single gray level
with the accumulation of sub-histograms is a key factor in gray level redistribution.
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The remapping rule of the sub-histogram interval of the background part is as fol-
lows (7)

Di = (li+1 − li) ·
L− 1

T
, i f Θi > TH (7)

where T is the number of non-zero sub-histogram components. Since the foreground part
needs to be enhanced, the sub-histogram interval mapping rule of the foreground part is as
follows (8)

Di =

L− 1− ∑
∀j:Θj>TH

Θj

 · CDFi

∑ f orall j:Θj≤TH CDFj
, i f Θi ≤ TH (8)

After assigning the dynamic range of each sub-histogram, each gray level can be
mapped to the specified dynamic range. The HE method is used for the non-background
sub-histogram, and the linear stretch is used for the background sub-histogram. The
algorithm adaptively divides the histogram into several sub-histograms, and then enhances
each sub-histogram according to its AHV, and the generated image is not affected by
amplified background noise.

The base image is dynamically compressed to reduce the gray scale. The base image
is compressed by a gamma curve to keep its gray level within a reasonable range. The
processed background layer and detail layer are fused at different fusion ratios, such as
formula (9).

Iout = αIdp + βIbp (9)

The algorithm can effectively enhance the gas part and significantly improve the
overall contrast of the image, which is convenient for the human eye to observe the gas
leakage event and the subsequent processing of the image. In the quantitative evaluation,
the average gradient AG, image information entropy IE and enhancement degree EME
introduced above are selected to evaluate the image-enhancement performance of this
algorithm. Generally speaking, the larger the three indicators, the better. It can be seen
from Table 2 that the average gradient of the algorithm in this paper after the enhance-
ment of the three scenes is close to the CLAHE algorithm, but significantly higher than
the AHS (adaptive histogram segmentation) algorithm; the information entropy of the
picture is improved compared with the CLAHE algorithm; the enhancement degree EME is
significantly higher than the AHS algorithm.Comparison of infrared image-enhancement
algorithm results are showed in Figure 4.

Figure 4. Comparison of infrared image-enhancement algorithm results.
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Table 2. Infrared image-enhancement algorithm processing result parameter comparison.

Original Image CLAHE AHS Our Method
Parameters AG IE EME AG IE EME AG IE EME AG IE EME

Scenario 1 0.074 2.69 10.5 0.079 2.35 16.5 0.101 3.18 15.5 0.076 2.72 17.3
Scenario 2 0.074 2.36 14.3 0.105 2.87 33.2 0.067 3.79 15.6 0.096 2.90 25.5
Scenario 3 0.082 3.03 9.9 0.164 3.09 15.8 0.118 3.39 12.7 0.163 3.21 27.6

2.2.2. Gas-Leak Area-Detection Algorithm

The leaking gas presents motion characteristics in the infrared video stream, and the
gas leaking area can be located by the relevant algorithm. The ViBe (visual background
extractor) algorithm was proposed by Olivier in 2009. The algorithm is a pixel-based
foreground-extraction algorithm with excellent processing effect and high efficiency. Its im-
portant feature is the automatic update decision of the background mode, which randomly
selects the pixels to be automatically updated, and then randomly selects the neighboring
pixels to start the automatic update. When the pattern of an image change cannot be
predicted, the random-update strategy can simulate the uncertainty of image change to a
certain extent. The main processing flow of the algorithm is shown in Figure 5.

Figure 5. The construction diagram of pixel-background sample set.

Classical background-extraction algorithms, such as the Gaussian background model-
ing algorithm [14], need to estimate the probability density function of pixels as information
for subsequent judgments. The ViBe algorithm only needs sample values to construct a
pixel model. Assuming that the pixel value of a pixel in the image is v(x), a pixel model
sample set M(x) is established for this pixel, such as the formula (10) shown.

M(x) = {v1, v2, ..., vN} (10)

Among them, vi represents the background sample value with index i in the sample
set, and N represents the size of the sample set. When initializing the background model,
ViBe only needs one frame of image. When the background model is first established,
the pixel values in the eight neighborhood Ng(x) are randomly selected with the same
probability to construct the background model, and the number of selections is N. It solves
the problem of insufficient samples in the process of background establishment, and can
establish a background model according to a frame of an image. The construction process
of the background sample set is shown in Figure 6.

After completing the construction of the background model, the pixels are classified
according to the M(x) corresponding to the pixels, and whether the pixel is the foreground
is determined. With v(x) as the center, a circle SR(v(x)) with a radius of R is drawn, each
sample in the sample set is traversed one by one, and it is judged whether the sample
point according to the Euclidean distance between the sample and the center falls within
the circle SR(v(x)), then, the number of sample points within the circle count is counted.
Next, the threshold min is set, and the sizes of count and the threshold min are compared,
if count is greater than the threshold value, the pixel is the foreground, otherwise it is the
background. Figure 7 shows the relevant process of pixel foreground detection.
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Figure 6. The construction diagram of pixel background sample set.

Figure 7. Schematic diagram of foreground detection in two-dimensional space.

The radius R of the circle SR(v(x)) and the threshold min are two key parameters
in the ViBe algorithm. The algorithm works better when R = 20 and min = 2. In the
foreground matching process, once the min match is found, the classification work of this
pixel is interrupted, which can effectively improve the computational efficiency.

As the image sequence changes, the background model must be updated periodically
in order to cope with new objects appearing in the scene. In the traditional background
model calculation, the newly established background model is also discarded or recon-
structed due to the increase in time. The result is that the information contained in the
existing background model is wasted and the computational difficulty and workload are
increased. ViBe adds two update strategies: foreground pixel count and random sampling
during the update process. When detecting each frame of anR image, each foreground
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pixel is marked and counted, and the problem of long-term stationary after the appearance
of a moving object is solved by the strategy of counting foreground pixels.

For background pixels, an update strategy combining memoryless update, temporal
random sampling and spatial neighborhood update is adopted in the update process. First,
the random replacement principle is used for the model samples. The probability of the
samples being replaced is the same, so that the sample value develops in a smooth life
cycle, and the probability of the sample value in the sample set is guaranteed to decay
monotonically. Second, the temporal sampling update strategy extends the time covered by
the background pixel model. Finally, in order to improve the spatial unity, the mechanism
of row space propagation is added.

When updating the background model of the pixel point, as shown in Figure 8, a
sample value of the sample set is randomly replaced, and the samples to be discarded are
randomly selected, and the probability of each sample being discarded is equal. Since the
sample set of the background model contains N samples, the probability of a sample being
retained at time t is (N − 1)/N, and the probability that the sample is retained after the
algorithm runs for a period of time is as follows (11):

P(t, t + dt) = (
N − 1

N
)(t+dt)−t (11)

Equivalent to:
P(t, t + dt) = e−ln( N−1

N )dt (12)

Figure 8. Three results of updating the background model sample set when N = 6.

The formula (12) indicates that the expected retention time of each sample in the
background model decays exponentially. If there is a sample in the background model
at time t, the sample will be stored at time (t, t + dt). The probability of being changed
is independent of time t, i.e., no memory update feature. For the update of the dynamic
background model, the memoryless update strategy method is convenient and effective.

The time sampling update strategy refers to updating the background model according
to the probability. Due to the periodicity of the background in the image, selecting some
of the image frames at a random time in the video stream to update can enhance the
robustness of the background model and increase the update cycle of the sample. When
a pixel is judged to belong to the background, assuming that the current time sampling
factor is ϕ, the probability of this pixel being selected for updating is 1/ϕ.

The target of the leaking gas cloud in the infrared image is weak, and the random
thermal noise in the shooting has a great influence on the target detection accuracy. There-
fore, when the background model is automatically updated, it needs to be more tolerant of
noise. The background model of the ViBe algorithm can be initialized in a single frame,
and the foreground can be judged from the second frame, so that the background model
can be quickly established and suitable for multi-spectral gas-leakage systems.The target
of the leaking gas cloud in the infrared image is weak, and the random thermal noise
in the shooting has a great influence on the target detection accuracy. Therefore, when
the background model is automatically updated, it needs to be more tolerant of noise.
The background model of the ViBe algorithm can be initialized in a single frame, and the
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foreground can be judged from the second frame, so that the background model can be
quickly established and suitable for multi-spectral gas leakage systems.

When initializing the model, the algorithm only relies on a single frame to build a
background model, which is prone to random noise, which affects the detection of weak
targets such as gas clouds.

There is a correlation between a pixel and its neighboring pixels in the spatial domain,
and at the same time, there is a correlation with the pixels of the adjacent frames in both
the temporal and spatial domains. This paper proposes an improved background-model
building method based on the association of image sequences in the video in the time
domain and the pixel space propagation mechanism in the spatial domain, which improves
the robustness of the background model and better suppresses random noise.

The establishment process of the background model is shown in Figure 9. When the
background model is first established, the pixel values in the eight neighborhoods Ng(x) in
the initial three frames are randomly selected with the same probability to construct the
background model, the number of times of selection is N. Take a certain pixel v(x) as an
example, the pixel point establishes a pixel model sample set M(x) is randomly selected
from Ng1(x), Ng2(x), Ng3.

Figure 9. Improved background-model building process.

The neighborhood pixels of pixels in three consecutive frames of images in the time
domain are added to the sample set, which enriches the sample set and reduces the
interference of some random noise compared to the previous single-frame background.
The selection range of samples is expanded from 8 neighborhoods to 24 neighborhoods,
which also avoids the selection of repeated samples and improves the applicability of the
background sample set. The establishment of the initial model in three frames has little
effect on the timeliness of the algorithm, which is almost negligible. The improved method
makes full use of the characteristics of similar distribution of adjacent pixels and random
distribution of noise in time series, which not only solves the problem of insufficient
samples in the process of background establishment, but also reduces the interference
of randomness of independent samples, and increases the robustness of the background
initialization model.

In this paper, the radius R of the circle SR(v(x)) is improved by the maximum inter-
class variance method. The maximum inter-class variance method calculates the inter-class
variance between the background and foreground regions, Confirm whether the decision
threshold min value is the best division value. As can be seen from the previous section,
based on the radius R value of the circle SR(v(x)), it can be judged that a certain pixel is a
foreground point or a background point, so that all pixels are divided into two categories:
background and foreground. Assuming that based on the current distance threshold R,
the proportion of pixels in the foreground area in the entire image is ωI , the average value
of the foreground part is µI , and the background area accounts for ωI . The ratio is ωB,
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the average value of the background area is µB, and the average value of all pixels in the
current image is ω, then the class of the foreground part and the background part. The
inter-variance can be expressed as the formula (13):

GR = wI × (µI − µ)2 + wB × (µB − µ)2 (13)

The larger the value of GR, the better the segmentation effect between the foreground
and the background. When GR is the largest, the R at this time is the optimal distance
threshold. In order to prevent the influence of light mutation, the threshold size needs to
be limited. The automatic threshold method is used to update the different thresholds of
each scene, which can increase the accuracy of the algorithm for gas-leakage identification
in different scenes, and reduce the false-alarm rate at the same time.

3. Results

Interframe difference can find subtle differences between the current frame and the
background frame, and is more sensitive to subtle changes in gas, so its accuracy and recall
rate are better, and it is also more sensitive to noise changes, so its accuracy is poor. The
original ViBe algorithm and SubSENSE have different gas-detection sensitivities in different
scenarios, and most of the time they cannot effectively identify the gas-leakage area. The
GMM algorithm has a good effect on the initial identification of gas leakage, but after the
occurrence of gas leakage, it will misjudge the gas region, and the segmentation effect on
the lower part of the nozzle is poor. Combined with the algorithm recognition results and
objective indicators, the algorithm proposed in this paper can effectively segment the gas
cloud at different times in different scenarios, and effectively improve the F1 value under
the condition of high detection accuracy.

4. Discussion

Aiming at the problems encountered in the application of ViBe algorithm in gas-
leakage scenarios, the dynamic background input and automatic threshold adjustment are
used to improve it. The improved algorithm is verified, and it was compared with other
foreground detection algorithms in four different scenarios.

Figure 10 from left to right are the original images of four scenes and the processing
results of different algorithms: Scene 1 is the outdoor carbon tetrafluoride gas leakage scene;
Scene 2 is the outdoor carbon dioxide leakage scene; Scene 3 is indoor six fluorocarbon
gas leakage scene; Scene 4 is an outdoor sulfur hexafluoride gas leakage scene. In four
different scenes, the results of traditional foreground detection algorithms and our algo-
rithm are compared and analyzed. The traditional algorithms are frame difference method,
background extractor (ViBe) [15], Gaussian mixture model (GMM) [12], Local adaptive
sensitivity detection method (SuBSENSE) [16]. The second column is a ground-truth
map which is artificially annotated for the leaked area. The white part with a gray value
of 255 represents the gas leakage area, and the black part with a gray value of 0 is the
background area. Similarly, the rest of the algorithm results are represented by binary im-
ages, the foreground part is represented by white, and the background part is represented
by black.

Although the inter-frame difference method can effectively segment the gas region,
it is affected by the environment. There is a lot of noise and the background needs to be
manually selected. The unimproved ViBe algorithm has poor applicability in different
scenes. The effect is better in scene 2 and scene 3, but if the overall brightness changes,
the effect is not ideal, such as the segmentation results in scene 1 and scene 4. The GMM
algorithm performs well in the segmentation process, but it is prone to missed detections
in the subsequent process. The SubSENSE method has poor sensitivity for gas detection. It
can be seen from the seventh column of Figure 10 that the improved algorithm in this paper
has significantly better detection ability for gas targets than other algorithms. In addition,
it also shows a good detection effect when the overall environment is dark.
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Figure 10. Comparison of detection results of different frame algorithms in the scene.

At the same time, our improved algorithm has good stability. When gas leaks continue
to occur, due to the background update strategies of other algorithms, some gas-leak areas
will be identified as backgrounds after a period of gas leakage, and the gas-leak areas
cannot be effectively detected. As shown in Figure 11, the frame difference method has
poor stability. When the temperature in the picture changes or the branches slightly shake,
it will have a great impact on the results. The background of the frame difference method
is fixed and cannot be used according to the video sequence. The background is updated in
real time, making it less immune to noise. In the processing of subsequent frames by the
GMM algorithm, the gas nozzle is identified as the background, which has a large error in
the actual gas detection application. The SuBSENSE algorithm also decreases its detection
sensitivity with the release time of the gas, and fails to effectively detect the gas leakage
area in the follow-up of scenario 4. As can be seen from the seventh row of Figure 11, for
the processing results of different frames of scene 3 and scene 4, the improved algorithm in
this paper has a good detection effect on the gas nozzle and has good anti-noise ability.

Figure 11. Comparison of detection results of different frame algorithms in the scene.

The definition of F1 is as follows (14):

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(14)

The F1 value of the 68th frame of scene 4 is the arithmetic mean divided by the
geometric mean, and both the precision rate and the recall are weighted. As shown in
Table 3, the algorithm in this paper is the best value in the five results. In addition, the
results of the six scenarios achieved better performance. Compared with other algorithms,
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the algorithm in this paper can effectively improve the F1 value under the condition of
high detection accuracy, and can better segment the gas cloud.

Table 3. F1 comparison of algorithm results in different scenarios.

F1 Interframe Difference ViBe [15] GMM [13] SubSENSE [16] Ours

Scene 1 0.6938 0.2196 0.6619 0.0555 0.7582
Scene 2 0.6383 0.3072 0.7342 0.5882 0.9358

Scene 3 Frame 113 0.8394 0.0931 0.7801 0.5323 0.8972
Scene 3 Frame 200 0.9142 0.5862 0.7589 0.1386 0.8236
Scene 4 Frame 68 0.6108 0.2328 0.501 0.4425 0.8596
Scene 4 Frame 186 0.366 0.1919 0.6166 - 0.8756

Combining the safety issues in the laboratory, sulfur hexafluoride and carbon tetraflu-
oride were selected for imaging. Their absorption peaks are showed in Table 4. In addition,
these videos were processed by our method.

Figure 12 shows the result of six-filter video processing of sulfur hexafluoride gas,
Figure 12a shows the imaging result of filter a, and so on. It can be seen that the imaging
effect of each filter is very different. According to the results, it can be concluded that gas
leakage cannot be observed in filter a, b, and c, and traces of gas leakage can be observed in
filter d, e, and f. By comparison, it can be determined that the gas leaking in the scene is
sulfur hexafluoride gas.

Figure 12. The imaging processing results of (a) LP2000 (b) LP3750 (c) LP4750 (d) LP6360 (e) LP9000
(f) LP10150 of sulfur hexafluoride.

Figure 13 shows the result of six-filter video processing for carbon tetrafluoride gas.
Spectral filter b and e have poor imaging effects due to the absorption characteristics of
water vapor in the atmosphere. Spectral channel d is located in the atmospheric window,
so the imaging effect of gas is the best. According to the results, it can be concluded that no
gas leakage can be observed in filter a, e, and f, and traces of gas leakage can be observed
in filter b, c, and d. By comparison, it can be determined that the gas leaking in the scene is
carbon tetrafluoride gas.

Table 4. Gas absorption peak.

Gas Chemical Formula Absorption Peak

sulfur hexafluoride SF6 10.56 µm
carbon tetrafluoride CF4 7.8 µm
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Figure 13. The imaging processing results of (a) LP2000 (b) LP3750 (c) LP4750 (d) LP6360 (e) LP9000
(f) LP10150 of carbon tetrafluoride.

5. Conclusions

We propose and develop an effective method for gas-leak area detection and gas
identification with mid-infrared image. The related imaging principle and gas-leak detec-
tion algorithm are presented. Gas-leak monitoring and identification experiments were
conducted for two gases in four different scenarios. Two indoor scenes and one outdoor
scene are included. Combining the algorithm recognition results with objective indicators,
the algorithm proposed in this paper can effectively segment the gas clouds in different
scenes at different times, and effectively improve the F1 values with high detection accuracy.
Finally, experiments weeR conducted using sulfur hexafluoride and carbon tetrafluoride
gases, and the experimental results verify that the method and system has the ability to
detect and identify multiple gas leaks.
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