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Abstract: In this work, an InGaN-based, green micro-photonic crystal-light-emitting-diode (µ-
PCLED), which incorporates a nanoporous, GaN-distributed Bragg reflector (DBR) to form a Fabry–
Perot (FP) cavity, was fabricated and characterized. Simulations for the µ-PCLED’s optical features
were systematically performed and analyzed. Numerical results revealed that the p-GaN photonic
crystal (PC) with a filling factor of 0.3 is beneficial for improving the coupling constants of the first-
and second-order Bragg diffractions. In addition, based on the product of quantum well (QW) and
PC confinement factors, four to six pairs of InGaN QWs should be the preferable design. In order to
achieve single-wavelength emission and small full-width at half-maximum (FWHM), the thickness
of the n-GaN layer was controlled to be thinner than 920 nm, leading to more than 20 nm wavelength
separation between two adjacent FP modes. Experimentally, the fabricated InGaN-based µ-PCLED
with a mesa diameter of 30 µm can emit 545 nm green light with FWHM of about 10 nm and negligible
blue-shift of about 3 nm in spontaneous emission under the injection current of 1 to 10 mA. Our
simulation and experimental results demonstrate that the p-GaN PC design can effectively resolve
the wavelength instability issue.

Keywords: InGaN; light-emitting diode; photonic crystal; nanoporous DBR; micro-LED

1. Introduction

III–V semiconductor-based light-emitting diodes (LEDs) have been developed for
decades. Their outstanding characteristics include high efficiency, high brightness, fast
response speed and wide modulation bandwidth. Nowadays, the InGaN LEDs are widely
used for various optoelectronic applications, such as solid-state lighting [1,2], visible light
communication (VLC) [3,4], data storage [5,6], augmented reality (AR) and virtual reality
(VR) displays [7–9]. As the next-generation light source, one significant advantage of
InGaN LEDs is their potential for being very compact in size, such as the emerging mini-
/micro-LED technologies.

It has been noted that for the blue InGaN micro-LEDs (µ-LEDs), the light emission
efficiency is largely governed by the chip size [8,10,11]. Particularly, the external quantum
efficiencies (EQEs) of the blue InGaN µ-LEDs decline from approximately 10% to 5% when
the lateral dimension shrinks from 500 to 10 µm [8]. When the chip size is in the range of a
few micrometers, the EQE reduction of red µ-LEDs is even more severe [10]. In addition, be-
cause the EQE is proportional to the light extraction efficiency (LEE), various methods have
been developed to facilitate light extraction, such as surface roughening [12–15], the pho-
tonic crystal (PC) method [16–23] and the vertical-resonant-cavity method [24–27]. Recently,
the PC light-emitting diodes (PCLEDs) and resonant cavity light-emitting diodes (RCLEDs)
have attracted much attention because their integration with PCs or high-reflectivity mir-
rors can achieve a higher LEE, smaller divergence angle, higher directionality and narrower
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spectral linewidth [19,28]. Despite these advantages, only a fraction of optical power
generated by the active layer can be extracted, leading to optical loss in the longitudinal
Fabry–Perot (FP) modes, horizontal guiding modes, and leaky modes. When the vertical
resonant cavity makes contact with the PC, the optical features of the horizontal guiding
modes will be influenced by the PC. For instance, the optical bandgaps and density of
states increase due to the high refractive index contrast, and the mode wavelengths can
also be controlled by PC’s periodiodic structure.

Previously, the effect of air-hole depth on the LEE of a two-dimensional (2D) PC
slab with a thickness of 200 nm was investigated. The results showed that the LEE is
almost quadratically proportional to the air-hole depth, and the LEE of the PC slab with
half-etched holes was only 30% of that with fully etched holes [29]. A deeper air hole can
improve the Bragg diffraction feedback and the light–matter coupling, leading to higher
LEE. Nevertheless, the drilled-though air-holes could lead to annoying current injection
and a notable increase in nonradiative recombination rates because of the drilling-induced
surface states [26]. In addition, it has been demonstrated that the LEE increases with
the etching depth, and the LEE of a GaN PCLED with deep air-holes of 500 nm, which
are etched through the active layer, is 1.37 times higher than that of a conventional LED.
However, due to the enhanced surface recombination, the forward-biased voltages of
the GaN PCLEDs are slightly higher than those of the conventional LEDs [30]. On the
other hand, recent studies show that a remarkable blue-shift in the emission peak occurs
when the InGaN/GaN LEDs operate at a high current density. At the same time, the
spectral linewidth broadens and the EQE decreases [31–36]. So far, the wavelength stability
of InGaN-based LEDs remains a critical challenge. As for the thermal effect, when the
injection current increases, more electrons and holes are injected into the MQWs, resulting
in shorter differential carrier lifetimes. Given that the LED optoelectronic characteristics
are greatly influenced by the operating temperature, the self-heating will lead to lower
radiative recombination rates, and therefore, a more obvious efficiency drop [37–41]. It is
worth noting that the self-heating effect at high injection current density can be alleviated
through properly decreasing the LED’s mesa size [42].

Here, we demonstrate an InGaN-based, green micro-photonic crystal-light-emitting
diode (µ-PCLED), which incorporates a bottom, nanoporous (NP), GaN-distributed Bragg
reflector (DBR) to form a hybrid resonant cavity. Simulations were performed to investigate
the influences of the PC’s period, filling factor (FF), pairs of multiple quantum wells
(MQWs) and n-GaN thickness on the optical properties of the µ-PCLED. The filling factor
is defined by the ratio of etching hole’s area to the square of the hole period. Furthermore,
the calculation of the photonic mode shift was also accomplished. All optical simulations
in this article were performed by using a finite-element method. Finally, the µ-PCLED was
fabricated and characterized. The fabricated green µ-PCLEDs possess a slight bule-shift
in spontaneous emission and small spectral linewidth under an injection current of 1 to
10 mA.

2. Design and Simulation

The primaeval LED wafer structure can be seen in our previous work [37], which was
grown on 13 pairs of NP GaN DBR and c-plane GaN substrate. The coupling with NP
GaN DBR can increase LEE and decrease the strain-induced quantum-confined Stark effect
(QCSE). In this part, we performed systematic numerical analysis to characterize the optical
performance of the InGaN-based green (550 nm) µ-PCLED in combination with a 2D p-GaN
PC pattern. The three-dimensional (3D) schematic drawing of the proposed InGaN-based
green µ-PCLED is shown in Figure 1a. The 2D PC patten is constructed by periodically
arranging SiO2 columns (which can also be replaced by other dielectric materials with a
lower refractive index, e.g., Al2O3 or SiNx) and surrounding them with p-GaN. The air
friction for the NP GaN is estimated to be 0.6. The µ-PCLED unit cell includes InGaN
MQWs separated by GaN barriers, a 20 nm thick p-AlGaN electron blocking layer (EBL), a
100 nm thick p-GaN layer and a 100 nm thick indium tin oxide (ITO) layer as the contact
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layer. The thicknesses of the QWs and barriers were set to be 3 and 10 nm, respectively. To
avoid damaging the active layer, the AlGaN EBL can be used as an etching stop layer.
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Figure 1. (a) Schematic of the InGaN-based µ-PCLED incorporated with the NP GaN DBR. (b,c) and
(d,e) First- and second-order coupling constants of the µ-PCLED with n-GaN = 690 nm and 920 nm as
a function of the filling factor. The PC period was set to 232 nm. Circles with different colors indicate
the specific orders of FP modes.

To optimize the filling factor of SiO2, the calculated first- and second-order cou-
pling constants (K1 and K2) of the µ-PCLED containing 5 pairs of InGaN MQWs for
n-GaN = 690 nm (~3 λ/n) and 920 nm (~4 λ/n) are shown in Figure 1b–e. The PC period
was set to be 232 nm (~λ/n), and circles with different colors indicate the specific orders
of FP modes. Here, n = 2.38 for GaN was chosen for the simulation. The FP modes inside
the LED are created by the PC and NP DBR. As we can see, the higher-order FP mode
leads to the larger first-order (in-plane) and second-order (out-of-plane) Bragg diffraction
couplings, because the coupling constants of Bragg diffractions are closely related to the
refractive index contrast and confinement factor of the PC [43,44]. Moreover, the highest
coupling constants K1 and K2 occur at the filling factor = 0.3 (when the hole’s diameter is
about 0.618 times the period), indicating that this specific filling factor of PC is ideal for the
µ-PCLED to achieve high output efficiency.

Since optical confinement is an essential parameter for describing the light–matter
coupling, the confinement factors of QW and PC as functions of the number of InGaN QWs
for n-GaN = 690 nm and 920 nm are shown in Figure 2a,b,d,e, respectively. The QW and
PC confinement factors of the fundamental (0th) mode increase with the QW’s number. For
the high-order FP modes (1st, 2nd and 3rd), the QW confinement does not increase with
the QW’s number regardless of the n-GaN’s thickness. Furthermore, the PC confinement
factors gradually decrease as the number of QWs increases. As shown in Figure 2c,f, we
used the product of QW confinement factor and PC confinement factor as the figure of
merit to optimize the QW’s number. The results reveal that four to six pairs of QWs have
the largest products for the 2nd and 3rd FP modes. In addition, the µ-PCLED with the
thinner n-GaN also helps to improve the optical confinement.
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After optimizing the filling factor and number of QWs, the influences of n-GaN’s
thickness and PC’s period on the resonance peaks and mode spacings of the µ-PCLED with
5 pairs of InGaN QWs are shown in Figure 3. Then, the mode wavelength shift induced
by the refractive index change (∆n) was also investigated. Based on the fundamental
concept of a FP cavity, the number of resonance modes (m ≡ 2ngLeff/λ) and mode spacing
(∆λ ≡ λ2/(2ngLeff)) are linearly and inversely proportional to the group index (ng) and
cavity length (Leff). The first six hybrid FP modes labelled 0th, 1st, 2nd, 3rd, 4th and 5th
for different thicknesses of n-GaN are shown in Figure 3a,b. The symbols ∆i in Figure 3b
denote the wavelength difference between i-th and (i-1)-th orders of FP modes. In other
words, the mode spacing ∆i is equal to λi-1–λi. For manufacturing a µ-PCLED with one
single-emission peak, the mode spacing ∆i should be larger than the full-width at half-
maximum (FWHM) of the emission spectrum. To make the ∆i greater than 20 nm, the
thickness of n-GaN should be smaller than 920 nm.

On the other hand, since the µ-PCLED coupled with the NP GaN DBR forms a hybrid
FP cavity, the resonance modes encompass distinctive characteristics of the PC, and the
PC mode wavelength is a function of the PC period. The simulated mode profiles of a 3D
µ-PCLED unit cell with a 920 nm thick n-GaN layer for the 0th-, 1st-, 2nd- and 3rd-order
modes are plotted in the inset of Figure 3e. The symmetrical-mode distributions in vertical
and horizontal directions were controlled by the FP cavity and PC structure. The two
adjacent PC modes, A and B, near the lowest Γ point of reciprocal space, are also shown in
the inset. Mode B would be the better choice to reduce the optical absorption caused by the
lossy material (e.g., ITO) filled into the etching holes. Furthermore, the calculated PC mode
wavelengths and relevant mode spacings of the µ-PCLED with 5 pairs of QWs and the
thickness of n-GaN equal to 920 nm are shown in Figure 3c,d. The calculated wavelengths
and spacings are positively correlated with the PC period. According to the simulation
results, the desirable periods of the 2nd-, 3rd- and 4th-order modes are about 240 nm
(λ = 549.3 nm), 250 nm (λ = 551.1 nm) and 260 nm (λ = 546.3 nm), so that the µ-PCLED
can emit green light at around 550 nm. Nevertheless, as shown in Figure 3d, the PC with
a sizeable period has a relatively large intermode spacing. Particularly, for the period of
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260 nm, the prognosticated mode spacing of 23.7 nm is obviously larger than that for the
periods of 240 nm (∆ = 13.1 nm) and 250 nm (∆ = 19.3 nm). Moreover, since the refractive
index change is a function of free carrier density [45,46] and the free carrier density could
be as high as 1018 to 1020 1/cm3. ∆n is estimated to be in the range of 10−3 to 10−2 for the
InGaN µ-LED operating at a high injection current density. Therefore, as ∆n increases from
0 to 0.02, the calculated mode shifts of FP resonance peaks are approximately 4.2 to 4.8 nm.
As suggested by Figure 3e, the PC mode shift in the green spectral region can be lower than
2.5 nm when the refractive index change ∆n is less than 0.01. Such a small blue-shift for the
µ-PCLED manifests its exceptional wavelength stability.
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Figure 3. (a) FP resonance wavelength as a function of the n-GaN thickness of the µ-PCLED with
5 pairs of QWs. (b) Mode spacing of adjacent FP peaks extracted from (a). (c,d) FP resonance
wavelength and corresponding mode spacing as a function of the PC period of the µ-PCLED with
5 pairs of QWs and n-GaN = 920 nm. (e) FP resonance wavelength shift as a function of the refractive
index change in the µ-PCLED with n-GaN = 920 nm. The PC period and filling factor for the
calculation were set to be 240 nm and 0.3. The upper inset shows the top views of two fundamental
PC mode profiles labeled by A and B. The vertical-mode profiles of the PC mode A for the 0th-, 1st-,
2nd- and 3rd-order modes are shown in the lower inset.

3. Growth and Fabrication

To construct the InGaN-based green µ-PCLED with the NP GaN DBR, on top of a
2-inch c-plane GaN substrate with a patterned sapphire layer, a 2 µm thick Ge-doped GaN
layer was first grown for laying a continuous and high-quality foundation for the following
deposition of a 8 µm thick undoped GaN layer. After the epitaxy of the SF-free GaN layer,
the wafer was planarized by chemical mechanical polishing (CMP). Subsequently, 13 pairs
of NP n-GaN/undoped GaN DBR were fabricated, followed by the formation of a near-1
µm-thick n-GaN layer and five pairs of InGaN (3 nm)/GaN (10 nm) MQWs as the active
layer. The NP n-GaN layers were fabricated through the following steps: (1) constructing
indium contacts on the n-GaN surface, (2) immersing the n-GaN layers and platinum
targets into the acid solution, (3) applying a forward voltage of 8V, (4) cleaning the finished
NP GaN layer in deionized water and (5) blowing dry with N2 gas.

Next, a 20 nm thick p-AlGaN EBL and a 100 nm thick p-GaN PC layer were grown
on the active layer. The detailed fabrication process without the PC layer can be found
in our earlier publication [37]. Regarding the 2D PC structure, the circular holes were
first defined by electron-beam lithography and then etched through the p-GaN layer. The
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etching stopped at the top surface of the p-AlGaN layer. The diameter of approximately
161 nm and period of 260 nm for the air holes were determined by the simulations. Then,
a 10 nm thick Al2O3 layer was deposited on the surfaces of the air holes by atomic layer
deposition (ALD) for passivation. The detailed fabrication process for the p-GaN PC layer
can be found in our previous publications [19,47,48]. After that, the SiO2 layer was also
deposited into the etched holes, followed by multiple rounds of SiO2 etching back processes
to expose the p-GaN surface.

Finally, a 100 nm thick ITO layer was deposited by electron-beam physical vapor
deposition (EB-PVD) on the p-GaN PC surface. The mesa with a diameter of 30 µm and
depth of 1 µm for the µ-PCLED was etched by using the HCl solution for ITO and the
ICP-RIE for GaN sequentially. Thereafter, the Ti (20 nm)/Al (100 nm)/Ni (45 nm)/Au
(55 nm) metal ohmic contact metal layer was deposited on the ITO layer as the electrodes.

4. Results and Discussion

The electrical and optical properties of the fabricated green µ-PCLED with the bottom
NP GaN DBR are summarized in Figures 4 and 5. Figure 4a shows the measured light–
current–voltage (L-I-V) curve, indicating the turn-on voltage of about 2.7 V. In addition, the
maximum EQE of the fabricated green µ-PCLED is approximately 8.8% at a low injection
current of 0.73 mA, as shown in Figure 4b. However, when the injection current is higher
than 0.73 mA, the efficiency droop becomes obvious due to the QCSE. Compared to
conventional ones, here the µ-PCLED exhibits a relatively small efficiency drop because the
epitaxial strain is alleviated by the application of NP DBRs [37].
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Figure 5a illustrates the current-dependent electroluminescence spectra of the µ-
PCLED with the bottom NP DBR. The inset in Figure 5a shows the SEM image of the
p-GaN PC. The green µ-PCLED with single mode emission and narrow FWHM was real-
ized. The measured emission peak slowly moves to shorter wavelengths as the injection
current increases from 1 to 10 mA. The measured emission peak and FWHM as a function
of injection current are characterized in Figure 5b, indicating that the central wavelength
of the electroluminescence spectrum shifts from 548.5 to 545.3 nm. At the same time, the
measured FWHM changes from about 9.8 to 10.8 nm. In comparison, a blue shift of 6 nm
and an average FWHM of 27 nm for the green µ-LEDs with sizes of 47 × 47 µm2 and
98 × 98 µm2 at low current densities were demonstrated in [36]. In addition, InGaN-based
green µ-LEDs with the diameter of 40 µm showed blue-shifts of around 12 nm [49] and
19 nm [50]. Similarly, the green µ-LEDs with the diameters of 1 to 20 µm showed an in-
significant dependence of size on the blue-shift of about 15 nm [51]. Moreover, the literature
showed the blue-shifts in wavelength for the semi-polar (11–22) and c-plane green µ-LEDs
were 5 and 16 nm, respectively [52]. Such a µ-PCLED with slight blue-shift and narrow
FWHM demonstrated superior color saturation compared to the literature [23,53,54]. It
is worth mentioning that insignificant minor peaks seem to appear with a Fabry–Perot
mode spacing from the major peak larger than 20 nm, as shown in Figure 5a. In summary,
the measurement results are in good agreement with the numerical simulation results,
indicating that our design is reliable for the development of µ-PCLEDs.

5. Conclusions

We numerically and experimentally investigated the optoelectronic characteristics of
an InGaN-based green µ-PCLED with a NP GaN DBR. Numerical simulations for the 3D
µ-PCLED unit cell model were performed by using a finite element method. The influences
of structural parameters, including the etching hole’s filling factor, PC’s period, QW’s
number, n-GaN’s thickness and refractive index change, on the optical characteristics of
the µ-PCLED, were systematically explored. The simulation results revealed that the green
µ-PCLED with a filling factor of 0.3 achieved the most efficient in-plane and out-of-plane
Bragg diffraction couplings. Based on the figure of merit, which is defined as the product
of the QW and PC confinement factors, the µ-PCLED with four to six pairs of InGaN QWs
is the preferable design for simultaneously obtaining high optical confinement and high
coupling constant. In addition, for a FP cavity, the thickness of n-GaN is controlled to be less
than 920 nm for realizing a mode spacing of lager than 20 nm. The calculated mode shift of
the resonance modes generated by the µ-PCLED integrated with the NP GaN DBR is small
enough to suppress the blue-shift, even with large refractive index change. Accordingly, the
measurement results show that the fabricated µ-PCLED indeed emits 545 nm green light,
for the injection current ranging from 1 to 10 mA. At the same time, the peak wavelength
blue-shift is approximately equal to 3 nm. In general, the measurement results, especially
the emission peak wavelengths and FMHMs, are consistent with the simulation results.
The green µ-PCLED design proposed in this work may offer a foundation for further
investigation of the next-generation light source.
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