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Abstract: In recent years, convolutional neural network architectures have become increasingly
complex to achieve improved performance on well-known benchmark datasets. In this research, we
have introduced G-Net light, a lightweight modified GoogleNet with improved filter count per layer
to reduce feature overlaps, hence reducing the complexity. Additionally, by limiting the amount
of pooling layers in the proposed architecture, we have exploited the skip connections to minimize
the spatial information loss. The suggested architecture is analysed using three publicly available
datasets for retinal vessel segmentation, namely DRIVE, CHASE and STARE datasets. The proposed
G-Net light achieves an average accuracy of 0.9686, 0.9726, 0.9730 and F1-score of 0.8202, 0.8048,
0.8178 on DRIVE, CHASE, and STARE datasets, respectively. The proposed G-Net light achieves
state-of-the-art performance and outperforms other lightweight vessel segmentation architectures
with fewer trainable number of parameters.

Keywords: deep learning; convolutional neural networks; medical image segmentation

1. Introduction

Diabetic retinopathy (DR) has gained a great deal of attention recently due to its
connection with long-standing diabetes, which is one of the most common causes of
avoidable blindness in the world [1,2]. Additionally, diabetic retinopathy is one of the
major contributors of vision loss, especially in those of working age [3,4]. Lesions are the
first signs of diabetic retinopathy. They include exudates, microaneurysms, haemorrhages,
vessel abnormalities and leakages [5–7]. The number and type of lesions that form on the
surface of the retina affect the severity and diagnosis of the disease. Thus, the effectiveness
of an automated system for extensive screening may depend on the precision of segmenting
blood vessels, optical cup/disc and retinal lesions [8]. Along these lines, it has long been
thought that detecting retinal blood vessels is the most difficult problem, and it is frequently
thought that it is the most crucial part of an automated computer-aided diagnostic (CAD)
system [1,9]. This is because the vessels in the retina are hard to see because of their tortuous
shape, density, diameter and branching pattern [10]. Even more challenging to identify
are the centerline reflex and the many components that make up the retina, including the
macula, optic cup/disc, exudates and so on, all of which may have lesions or other flaws.
Finally, the settings used for camera calibration and the acquisition method can also bring
unpredictability into the imaging process.

For the purpose of blood vessels segmentation, when a machine learning or deep
learning architecture is used, training is usually conducted using a dataset of manually
labelled segmented images [11]. In order to diagnose serious disorders including retinal
vascular occlusions [12], glaucoma [13], AMD [14], DR [15] and chronic systematic hypox-
emia (CSH) [16], these techniques have been used to detect retinal vessels. Kadri et al. [17]
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introduced a multi-scale filter (MSMF) utilising the slime mould optimization technique.
Furthermore, deep learning-based approaches have attained cutting-edge accuracy in ap-
plications including vessel detection and optic cup/disc detection [18]. Therefore, it is
believed that the predominant technique for creating retinal diagnostics systems is now
supervised machine learning models [19,20]. Despite considerable success of supervised
ML models [21,22], it is still challenging to find blood vessels when there are noticeable
differences and abnormalities. It becomes significantly more challenging when the vessels’
diameter is small. Moreover, training these architectures is time-consuming, despite the
fact that the results of supervised segmentation obtained by these methods are superior
to those of unsupervised segmentation. The lack of comprehensively (labelled) data for a
variety of ailments and imaging modalities makes this more challenging.

According to [23,24], the usage of intricate CNN architecture based models does not
produce the optimal results for the majority of segmentation algorithms. Keep in mind that
the quantity of hidden layers and the number of filters used in each layer have a significant
impact on the number of trainable parameters. In these circumstances, shallow networks
are frequently suggested as a deep network substitute [20]. In comparison to their deep
counterparts, these shallow networks employ fewer filters per layer. Our network’s layout is
intended to utilize the most filters possible in each layer while minimizing the complexity of
the system as a whole. If an image has less feature variation, performance does not rise with
more filters in a convolution layer, but complexity does [25,26]. By recommending small-
scale networks with fewer layers, convolution networks’ complexity has been lowered
in the literature [27–32]. Furthermore, the significance in terms of the performance and
complexity is not addressed in [27]. Here, the characteristic complexity is used to determine
the number of filters.

To the best of our knowledge, GoogleNet based encoder–decoder architecture for
image segmentation is not proposed so far, hence one of the major contributions of the
proposed work is to design a decoder of GoogleNet. Inspired from the GoogleNet [33], this
study introduces G-Net lite, a simple yet effective small scale neural network architecture
for retinal blood vessels’ segmentation. This is because G-Net light only has a small number
of parameters, which means that it requires relatively lesser memory and GPU resources
than alternatives with significantly higher parameters. In addition, the encoder employs
only two max-pooling layers to reduce the spatial information loss. Experiments are
conducted on three different datasets of retinal blood vessels segmentation to demonstrate
the efficacy of the proposed architecture for medical image segmentation.

2. Related Work

Recent research has been presented where the U-Net structure is extended with chang-
ing module design and network building, demonstrating its potential on numerous visual
analysis tasks. V-Net [34] extends U-Net to higher dimension pixels while retaining the
vanilla internal structures. W-Net [35] adapts U-Net to address the problem of unsu-
pervised segmentation by concatenating two U-Nets using an autoencoder style model.
In contrast to U-Net, M-Net [36] appends different scales of input characteristics to dif-
ferent levels, allowing a sequence of downsampling and upsampling layers to capture
multi-level visual information. U-Net++ [37] has recently adopted nested and dense skip
connections to more efficiently depict fine-grained object information. Furthermore, atten-
tion U-Net [38] employs extra branches to apply the attention mechanism adaptively on
the fusion of skipped and decoded data. However, these suggestions may include extra
building pieces, resulting in a bigger number of network parameters and, as a result, more
GPU RAM. It has been established that using recurrent convolution to repeatedly modify
the features extracted at different periods is feasible and successful for many computer
vision problems [39–42]. Guo et al. [39] advocated reusing residual blocks in ResNet to
completely utilise available parameters and greatly reduce model size. Such a mechanism
is also beneficial to the evolution of U-Net. As a result, Wang et al. [42] created R-U-Net,
which recurrently connects multiple paired encoders and decoders of U-Net to improve its
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discrimination strength for semantic segmentation; however, as a trade-off, extra learnable
blocks are included.

3. G-Net Light

This section presents and explains the the proposed network architecture. In Figure 1,
overall architecture of G-Net light is presented. The proposed network starts with an input
image layer, then a convolutional layer, and finally the essential final layers that create the
pixel-wise segmentation map. We have performed nonlinear activations (ReLU) on the
segmentation map. The feature maps are then fed into the max-pooling layer. The inception
block is used after the max-pooling layer, followed by another max-pooling layer. There
is an inception block which connects the encoder and decoder blocks. At the decoder
side, the up-sampling layer (max-unpooling) is used followed by the same inception block,
another up-sampling layer and another inception block. Once the spatial information
is restored using up-sampling layers, a convolutional layer (CL) followed by nonlinear
activations (ReLU), and the batch normalization layer (BN) is applied. After a soft-max
layer, the final classification layer is a dice pixel classification layer. Note that the proposed
architecture has four inception blocks, where the first block is used after the first down-
sampling. There is an intermediary inception block that connects the encoder and decoder
blocks. There are two inception blocks at decoder followed by the convolutional layer,
which is supplied with the necessary final layers required for constructing the pixel-wise
segmentation map. Using the convolution layers in between the filter banks and input
feature maps, each encoder block creates its own collection of features. We have performed
nonlinear activations (ReLU) on these features. Depending on whether the block is up-
sampling or down-sampling, the produced feature maps are subsequently supplied to
the max-pooling or unpooling layers. All max-pooling and unpooling layers are 2 × 2,
non-overlapping, with a stride size of 2.

Figure 1. Block diagram of the proposed network.

It is worth noting that the proposed network design responds to multiple motivations.
To begin, we wanted to use as few pooling layers as possible in the proposed architecture.
This is due to the fact that pooling frequently reduces the size of the feature maps and
can also result in a spatial information loss. Second, we have used a limited number of
convolutional layers. Finally, within each layer, the total number of convolutional filters
are minimized. Skip connections have been used between the encoder and the associated
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decoder blocks to preserve structural information. Figure 1 depicts these as dotted lines
with arrowheads. Another motivating force behind the choice to adopt skip connections
as an alternative to dense skip paths is the assumption that feature retention within each
convolutional layers may assist with reducing the semantic gap of the encoder side and
decoder side while keeping computational overhead under control. In order to preserve
fine-grained structures, which are frequently important in medical image segmentation,
the number of pooling layers is reduced in the proposed network.

The Inception Block

The key idea of the inception block is to apply the dimension reductions wisely.
These reductions are computed using the 1 × 1 filter size for the convolution operations
prior to the 3 × 3 and 5 × 5 filter size for the convolutions operations. They are dual-
purpose because, in addition to being utilised as reductions, they also utilise rectified linear
activation. Figure 2 depicts the ultimate design of the inception block. An Inception block
generally is an architecture made up of the above-mentioned modules that are vertically
stacked with intermittent max-pooling layers with stride 2 that result in the reduction of
the grid’s resolution. It appeared preferable to start using the inception blocks only at
higher layers and leave the lower layers in typical convolutional form for technical reasons
during the training. One of this architecture’s key benefits is that it permits significant
increases in the number of units at each step without increasing the complexity in terms
of computations. The widespread use of reduction of the dimensions enables hiding the
high volume of input filters from the preceding stage to the succeeding layer. This is
achieved by initially lowering their dimension prior to convolving over them with a large
patch size. This method also adheres to the idea that visual data should be processed at
various scales before being aggregated, allowing the subsequent stage to simultaneously
extract features from different scales. Because the processing resources are being used
more efficiently, it is possible to increase both the total number of stages and the width of
each stage without encountering computational challenges. Developing significantly less
effective but computationally less expensive variations of the inception block is another
way to use it. It can be seen that all of the available knobs and levers enable a controlled
balancing of computational resources. This can lead to architectures that are twice as
fast or three times as fast as similarly performing networks without the inception blocks,
though this requires a careful manual design.

Figure 2. The inception block.
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4. Experimental Setup
4.1. Datasets

For the segmentation of retinal vessels, we tested our proposed network using three
public image data sets: DRIVE [43], CHASE [44] and STARE [45]. DRIVE [43] is made up
of 20 colour images for testing and 20 colour images for training, both of which are saved
584 × 565 image size in JPEG format and cover a wide range of age of DR patients. A field
of view (FOV) binary mask is available for all images. Both the test and training images
contain manually segmented ground truth vessels’ labels.

The CHASE [44] dataset includes 28 colour images acquired with a 30◦ FOV centred
at the optical disc and an image resolution of 999 × 960 pixels. Two distinct manually
segmentation ground truth maps are available. For the experiments, the first expert’s
segmentation map is used.

The STARE [45] dataset consists of 20 colour retinal fundus images with a size of
700 × 605 pixels per image that were taken at a 35◦ FOV. Each of these images has two sep-
arate manual segmentation maps available. Here, we have used the initial ophthalmologist
segmentation as the benchmark.

4.2. Implementation and Training

All of our studies have been run using a GeForce GTX2080TI GPU and an Intel(R)
Xeon(R) W-2133 3.6 GHz CPU with 96GB RAM. With a fixed learning rate, stochastic
gradient descent was used in our RC-Net implementation. A weighted cross-entropy loss
is employed as an objective function for training in all of our experiments. This decision
was made after it was discovered that, in each retinal image’s vessel segmentation, the non-
vessel pixels outweighed the vessel pixels by a significant margin. Various techniques can
be employed to assign the loss weights. Here, we use median frequency balancing to
determine class association weights [46]. Note that STARE and CHASE datasets do not
have a specified test set available. In the literature, a “leave-one-out” strategy is frequently
utilised for STARE [47]. With 10 images for training and 10 for testing, we have employed
“leave-one-out” data split in this paper. We have also employed data augmentation to gener-
ate sufficient images for training since the retinal vascular segmentation image datasets
used are relatively small. Contrast enhancement and rotations were utilised for the data
augmentation. Each image is rotated by 1◦ for the rotations at the training stage. The image
brightness was randomly increased and decreased to enhance the contrast.

4.3. Evaluation Criteria

Remember that pixel markings on blood vessels segmentation are binary, indicating
whether a pixel is a vessel or the background. Publicly accessible datasets include ground
truth that is manually annotated by experienced clinicians. As a result, each pixel is
categorized as vessel pixel, if the area of interest is present in a image such as blood retinal
vessels.There can be four possible outcomes for each output image: pixels that are correctly
categorized as areas of interest (TP: true positive), pixels that are correctly categorized as
non-interest (TN : true negative), pixels of non-interest that were incorrectly categorized
(FP: false positive), and finally area of interest pixels that were falsely categorized as such
((FN): false negative). Four commonly used performance parameters Accuracy, Sensitivity,
Specificity, and F1-score are frequently used in the literature to compare approaches using
these components:

Acc =
TP + TN

FP + FN + TP + TN
(1)

The term accuracy (Acc) in Equation (1) denotes the proportion of successfully seg-
mented pixels to all of the pixels in the expertly annotated (labelled) mask. The Sp and Se
indicate the model’s specificity and sensitivity, which demonstrate how the no-vessel and
vessel pixels are correctly distinguished and given in Equations (2) and (3), respectively:

Sp =
TN

TN + FP
(2)
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Sn =
TP

TP + FN
(3)

The F1-score, which is the harmonic mean of Sn and precision, is another technique to
assess the model’s performance and can be calculated using Equation (4):

F1 − score =
2 × TP

(2 × TP) + FP + FN
(4)

5. Analysis of the Results and Comparisons

The qualitative and quantitative analysis of the proposed architecture with a number
of commonly used alternatives methods in retinal image segmentation is included in this
section. Table 1 shows the summary of quantitative performance of the proposed G-Net
light w.r.t the ground-truths marked by different observers on DRIVE, CHASE and STARE
dataset. The average performance on each data set is also shown in Table 1.

Table 1. Quantitative performance of the proposed G-Net light on DRIVE, CHASE and STARE dataset.

Dataset Ground-Truth
Performance

Sn Sp Acc F1-Score

DRIVE

1st Manual 0.8192 0.9829 0.9686 0.8202
2nd Manual 0.8714 0.9734 0.9807 0.8724

Average 0.8453 0.9782 0.9747 0.8463

CHASE

1st Observer 0.8210 0.9838 0.9726 0.8048
2nd Observer 0.8932 0.9823 0.9847 0.8770

Average 0.8571 0.9831 0.9787 0.8409

STARE

Dr. Adam Hoover 0.8170 0.9853 0.9730 0.8178
Dr. Valentina
Kouznetsova 0.8892 0.9838 0.9851 0.8900

Average 0.8531 0.9846 0.9791 0.8539

The qualitative segmentation findings for the retinal vessels on the DRIVE dataset
are analysed and discussed first. In Figure 3, the analysis of the segmented output is
illustrated. In Figure 3a, noisy test images 3, 4 and 19 from the DRIVE dataset are presented.
Corresponding ground truth images of the 1st observer are given in Figure 3b. Figure 3c,d
presents the output of the networks SegNet [48] and U-Net [49], respectively. The seg-
mentation output of the proposed architecture is given in Figure 3e. The segmentation
maps’ black and green colours represent accurately predicted pixels, whereas the blue and
red colours represent false negatives and false positives, respectively. It is apparent that
the suggested G-Net Light outperforms the U-Net [49] and SegNet [48] in terms of visual
performance. The segmentation maps’ black and green colours represent accurately pre-
dicted pixels, whereas the blue and red colours represent false negatives and false positives,
respectively. It can be clearly observed that the visual performance of the proposed G-Net
Light is better than the SegNet [48] and U-Net [49].

The vessel segmented maps of the proposed architecture on CHASE dataset are
given in Figure 4. The segmentation maps’ black and green colours represent accurately
predicted pixels, whereas the blue and red colours represent false negatives and false
positives, respectively. In the 1st row, noisy images of CHASE dataset are illustrated,
and the corresponding ground truth images marked by 1st observer are shown in the 2nd
row of the Figure 4. The final vessels’ segmented vessels map images of the proposed
architecture are shown in the 3rd row of Figure 4.
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Figure 3. Analysis of segmented output. The segmentation maps’ black and green colours represent
accurately predicted pixels, whereas the blue and red colours represent false negatives and false
positives, respectively: (a) noisy test images 3, 4 and 19 of the DRIVE dataset; (b) corresponding
ground truth images from the 1st manual; (c) the output of SegNet [48]; (d) the output of U-Net [49];
(e) the output of the proposed G-Net light architecture.

Figure 4. Analysis of segmented output. The segmentation maps’ black and green colours represent
accurately predicted pixels, whereas the blue and red colours represent false negatives and false
positives, respectively: in row one, noisy test images of CHASE dataset; in row two, corresponding
ground truth images marked by 1st observer. In row three, the output of the proposed network
is presented.

Tables 2 and 3 compare the G-Net light network performance to some state-of-the-art
supervised approaches. The proposed architecture obtains an average sensitivity of 81.92%
for the DRIVE database and 82.10% for the CHASE database. In terms of the sensitivity
parameter, the proposed G-Net light architecture outperforms all other techniques on
the DRIVE dataset and is the 3rd highest on CHASE dataset. The average accuracies of
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the proposed G-Net light are 96.86% and 97.26%, the highest on the DRIVE and CHASE
datasets, respectively. The proposed architecture achieves an average specificity of 98.29%
on DRIVE and 98.38% on CHASE, the 3rd and 2nd highest, respectively. Finally, the
proposed network achieves 82.02% of F1-score, the highest on DRIVE dataset and the 3rd
highest value of 80.48% on CHASE dataset.

Table 2. Comparison results on DRIVE dataset. Red is the best, green is the 2nd best, and blue is the
3rd best.

Method Year Sn Sp Acc F1-Score

SegNet [46] 2017 0.7949 0.9738 0.9579 0.8180
MS-NFN [50] 2018 0.7844 0.9819 0.9567 N.A
FCN [51] 2018 0.8039 0.9804 0.9576 N.A
BTS-DSN [52] 2019 0.7891 0.9804 N.A N.A
Three-stage CNN [53] 2019 0.7631 0.9820 0.9538 N.A
DE U-Net [54] 2019 0.7986 0.9736 0.9511 N.A
EL Approach [55] 2019 0.7880 0.9819 0.9569 N.A
GGM [56] 2019 0.7820 0.9860 0.9600 N.A
VessNet [57] 2019 0.8022 0.9810 0.9655 N.A
Vessel-Net [58] 2019 0.8038 0.9802 0.9578 N.A
CcNet [59] 2020 0.7625 0.9809 0.9528 N.A
AWS FCM [60] 2022 0.7020 0.9844 0.9605 0.7531

Proposed Method 2022 0.8192 0.9829 0.9686 0.8202

Table 3. Comparison results on the CHASE dataset. Red is the best, green is the 2nd best, and blue is
the 3rd best.

Method Year Sn Sp Acc F1-Score

U-Net [61] 2016 0.7764 0.9865 0.9643 N.A
R2u-net [62] 2018 0.7756 0.9820 0.9634 N.A
Laddernet [63] 2018 0.7978 0.9818 0.9656 0.8031
Ce-net [64] 2019 0.8008 0.9723 0.9633 N.A
Iternet [65] 2020 0.7969 0.9820 0.9702 0.8073
SA-Unet [66] 2021 0.8151 0.9809 0.9708 0.7736
AACA-MLA-D-Unet [67] 2021 0.8302 0.9810 0.9673 0.8248
MC-UNet [68] 2022 0.8366 0.9829 0.9714 0.7741

Proposed Method 2022 0.8210 0.9838 0.9726 0.8048

In Figure 5, the analysis of the segmented output is illustrated. In Figure 5a, noisy
test images from STARE dataset are presented. Corresponding ground truth images
marked by Adam Hoover are given in Figure 5b. Figure 5c,d presents the output of
the networks SegNet [48] and U-Net [49], respectively. The vessels’ segmentation maps
of the proposed architecture are shown in Figure 5e.The segmentation maps’ black and
green colours represent accurately predicted pixels, whereas the blue and red colours
represent false negatives and false positives, respectively. It can be clearly observed that
the visual performance of the proposed G-Net Light is better than the SegNet [48] and U-
Net [49]. Table 4 compares the proposed network performance to state-of-the-art supervised
approaches. The proposed architecture obtains an average sensitivity of 81.70%, which is
2nd highest among the all methods. The average accuracy of the proposed G-Net light
architecture is 97.30%, which is 3rd highest. Finally, the proposed network achieves 81.78%
of F1-score, the 2nd highest among the all methods on the STARE dataset.
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Figure 5. Analysis of segmented output. The segmentation maps’ black and green colours represent
accurately predicted pixels, whereas the blue and red colours represent false negatives and false
positives, respectively: (a) noisy test images of STARE dataset; (b) corresponding ground truth images
marked by Adam Hoover; (c) the output of SegNet [48]; (d) the output of U-Net [49]; (e) the output
of the proposed G-Net light architecture.

Table 4. Comparison results on the STARE dataset. Red is the best, green is the 2nd best, and blue is
the 3rd best.

Method Year Sn Sp Acc F1-Score

U-Net [61] 2016 0.7764 0.9865 0.9643 N.A
R2u-net [62] 2018 0.7756 0.9820 0.9634 N.A
Laddernet [63] 2018 0.7822 0.9804 0.9613 0.7994
BTS-DSN [52] 2019 0.8212 0.9843 N.A N.A
Dual Encoding U-Net [54] 2019 0.7914 0.9722 0.9538 N.A
GGM [56] 2019 0.7960 0.9830 0.9610 N.A
Ce-net [64] 2019 0.7909 0.9721 0.9732 N.A
CcNet [59] 2020 0.7709 0.9848 0.9633 N.A
Iternet [65] 2020 0.7969 0.9823 0.9760 0.8073
SA-Unet [66] 2021 0.7120 0.9930 0.9521 0.7736
AACA-MLA-D-Unet [67] 2021 0.7914 0.9870 0.9665 0.8276
MC-UNet [68] 2022 0.7360 0.9947 0.9572 0.7865

Proposed Method 2022 0.8170 0.9853 0.9730 0.8178

Comparisons of the segmentation of retinal vessels using the proposed G-Net light
and current lightweight networks in terms of learnable parameters and quantitative perfor-
mance are also carried out in Table 5. The accuracy and F1-score results are compared from
G-Net light to current lightweight networks on the DRIVE, CHASE and STARE datasets.
Table 5 shows that G-Net light outperforms the state-of-the-art alternatives in terms of
accuracy and F1-score with a minimal learnable parameters.
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Table 5. Comparison with recent light-weight networks in terms of accuracy and F1-score on DRIVE,
CHASE and STARE datasets. Best results are highlighted in bold font. The measures that are not
available are represented by N.A.

Method Parameters (M) Size in (MB)
DRIVE CHASE STARE

Acc F1-Score Acc F1-Score Acc F1-Score

Image BTS-DSN [52] 7.80 N.A 0.9551 0.8201 0.9627 0.7983 0.9660 N.A
MobileNet-V3-Small [27] 2.50 11.00 0.9371 0.6575 0.9571 0.6837 N.A N.A
ERFNet [69] 2.06 8.00 0.9598 0.7652 0.9716 0.7872 N.A N.A
Sine-Net [70] 0.69 N.A 0.9685 N.A 0.9676 N.A 0.9711 N.A
M2U-Net [71] 0.55 2.20 0.9630 0.8091 0.9703 0.8006 N.A 0.7814

Proposed G-Net Light 0.39 1.52 0.9686 0.8202 0.9726 0.8048 0.9730 0.8178

In Figure 6, the analysis of the quantitative results is illustrated. In Figure 6a, com-
parison of the quantitative results of G-Net light with other methods on DRIVE dataset
are given. Figure 6b,c, shows the comparison of the quantitative results of G-Net light
with other methods on CHASE and STARE datasets, respectively. It can be observed from
Figure 6 that the performance of the proposed G-Net light is clearly comparable with the
other state-of-the-art methods.

(a) (b) (c)

Figure 6. Quality measurements for datasets: (a) DRIVE; (b) CHASE; (c) STARE.

6. Discussion

A sizeable portion of the global population is affected by a variety of retinal illnesses
that can compromise one’s vision. This significant worry has arisen in part as a result of the
high cost of the necessary equipment that is required for the diagnosis of ophthalmological
diseases, and in part as a result of the scarcity of ophthalmological specialists who are
readily available. It is essential to make a prompt diagnosis of these retinal illnesses
in order to avert vision loss and blindness. In this regard, accessible computer-aided
diagnostic techniques have the potential to play a pivotal role. The majority of the deep
learning models that have been developed for the diagnosis of retinal disorders function
effectively, despite the fact that they computationally expensive. This constitutes a major
obstacle in the way of the deployment of such models on portable edge devices. Therefore,
the proposed lightweight model for the segmentation of retinal vessels can play a vital role
in the development of computationally less expensive diagnostic systems. The proposed
model uses significantly less trainable parameters without sacrificing performance.

7. Conclusions

In this research paper, we have introduced and analyzed G-Net light, a lightweight
modified GoogleNet with improved filter count per layer to reduce feature overlaps and
complexity. Additionally, by reducing the amount of pooling layers in the proposed
architecture, we have exploited the skip connections to minimize the spatial information
loss. Our investigations are examined on publicly available DRIVE, CHASE and STARE
datasets. In the experiments, the proposed G-Net light achieves state-of-the-art performance
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and outperforms other lightweight vessel segmentation architectures in terms of accuracy
and F1-score with fewer trainable number of parameters.
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