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Abstract: Solar photovoltaic (PV) panel parameter estimation is vital to manage solar-based microgrid
operations, for which several techniques have been developed. Solar cell modeling using metaheuris-
tic algorithms is found to be one of the accurate techniques. However, it requires experimental
datasets, which may not be available for most of the industrial modules. Therefore, this study pro-
posed a new model to estimate the solar parameters for two types of PV panels using manufacturer
datasheets only. In addition, two optimization techniques called particle swarm optimization (PSO)
and genetic algorithm (GA) were also investigated for solving this problem. The predicted results
showed that GA is more accurate than PSO, but PSO is faster. The new model was tested under
different solar radiation conditions and found to be accurate under all conditions, with an error
which varied between 7.6212 × 10−4 under standard testing conditions and 0.0032 at 200 W/m2 solar
radiation. Further comparison of the proposed method with other methods in the literature showed
its capability to compete with other models despite not using experimental datasets. The study is of
significance for the sustainable energy management of newly established commercial PV micro grids.

Keywords: photovoltaics; sustainable energy; sustainable development goals; microgrids; meta-
heuristic techniques

1. Introduction

Solar technologies are the most efficient resources of energy and have been extensively
utilized for power generation worldwide in the last decades. About 48TW of energy is
available daily on earth, which can easily be harvested using photovoltaic (PV) panels
to generate electricity [1]. However, before installing any solar plant, investors need to
know the plant’s performance and efficiency. The estimation of generated power from
photovoltaic (PV) microgrids is important for energy management to balance generation as
per demand in small townships/higher education institutions.

The main aim of this study was to develop a new model to predict power generation
by roof top microgrids for reliable energy management using metaheuristic algorithms.
Several techniques were used to estimate the power generation of photovoltaic microgrids.
Solar cell modeling, in combination with metaheuristic algorithms, can effectively be used
for accurate power generation extraction. A solar cell can be represented by single (SDM)-,
double (DDM)-, or triple (TDM)-diode models with several parameters. The modeling
accuracy is highly dependent on solar cell parameters. However, all these parameters are
not provided by the manufacturing industry. Single-diode models (SDM) are usually used
in the literature due to their simple structure and efficient identification [2]. Modeling
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solar cells is vital for different applications, such as power generation estimation [3],
maximum power point tracking [4], and degradation analysis [5]. Therefore, it is important
to determine the modeling parameters accurately.

Analytical methods, which are used to solve this problem, depend significantly on
some key points on the characteristic curves of the module such as the open circuit voltage
and short circuit current. Thus, analytical methods are not very reliable and provide
unsatisfactory results in most cases when many local minima points exist. Therefore,
numerical methods are implemented to overcome this issue by considering all points.
Some studies are carried out to solve this problem mathematically [6,7], which are also
complex, slow, and based on assumptions. However, metaheuristic algorithms are mostly
used due to their efficiency and accuracy. Zagrouba et al. [8] used a genetic algorithm
(GA) to find the solar cell parameters values and the maximum power point (MPP) and
found that GA is accurate and suitable with high efficiency. In refs. [9,10], the simulated
annealing (SA) algorithm was compared with other techniques for SDM and DDM, and
it was found to be much accurate and promising for two different experimental data.
Mono-crystalline, multi-crystalline, and thin-film technologies were studied in ref. [11],
wherein particle swarm optimization (PSO) with inverse barrier constraint was used to
estimate the missing parameters of the modules. Another PSO algorithm was proposed
in ref. [12] for physical systems’ parameters extraction considering the Spectral Richness
in the fast Fourier transform of the signals, which was found to reduce the variability
of the estimates. A modified teaching-learning based optimization technique was used
in ref. [13] to optimize the parameters of SDM and DDM for four different PV modules.
Whippy Harris Hawks Optimization (WHHO) [14] is also used to find the optimal values
of the solar models for three commercial modules under different conditions. Many other
techniques are used in the literature for the same purpose, such as flexible PSO [15],
Bacterial foraging algorithm [16], pattern search [17], Tree Growth-Based Optimization
Algorithm [18], Coyote optimization algorithm [19], improved equilibrium optimizer [20],
and enhanced ant lion optimizer [21]. A Firefly algorithm was proposed in ref. [22] for five,
seven, and eight-parameter estimation for three types of modules, namely, R.T.C. France,
flexible hydrogenated amorphous silicon a-Si:H, and a 36-cell module called PWP-201 and
compared to other methods from the literature. For nine-parameter estimation, an Artificial
Ecosystem-based Optimizer was proposed in ref. [23] and compared to other algorithms
by testing on three commercial modules. An integration of the guaranteed convergence
arithmetic optimization algorithm and Levenberg−Marquardt with the adaptive damping
nonlinear parameter method was proposed for TDM in ref. [24] and was found to reduce
the error to zero.

Machine learning techniques are data-driven techniques that require more datasets,
tuning, and careful inputs selection [25]. They are also used for power generation and solar
radiation forecasting and found to be effective to deal with big systems with a huge amount
of uncertainty [26,27]. In these types of techniques, there is no need to define what circuit
or parameters to use; rather, the algorithm will find the best relation between the inputs
and outputs.

The performance of solar cells changes under different solar radiation and temperature
conditions [28]. Therefore, the characteristics of any module are required to be drawn in
order to analyze and estimate its performance. This can be completed by varying the
voltage/current between certain values to obtain the I-V\P-V curves, but this requires ex-
perimental data, which require expensive setups and a lot of time, resources, and effort [29].
Therefore, this study proposed a new model to estimate the models’ parameters using the
manufacturing datasheets instead.

The novelty of this study is as follows:

• In the present study, a new model was proposed to estimate solar cell parame-
ters using metaheuristic techniques requiring only manufacturer data instead of
experimental data.
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• The present model is more efficient as compared with other models in terms of
accuracy, computational cost, and data required, whereas numerical methods are
complex, slow, and based on assumptions. In addition, machine learning techniques
require big datasets, more tuning, and careful input selection. Our model requires only
three data points, which is even lesser than the requirements of solar cell modeling
using experimental datasets.

• The three data points used from the manufacturer data sheet of PV modules were short
circuit current Isc, open circuit voltage Voc, and the maximum power point current and
voltage Imp, Vmp.

• Two different types of solar modules, a single-cell module called R.T.C. France and a
36-cell module called PWP-201, were used for validation.

• A comparison of two metaheuristic algorithms, namely, genetic algorithm and particle
swarm algorithm was presented.

• The results of the proposed model were further validated under varying solar irradi-
ance conditions and compared to the same model using experimental datasets from
the literature.

This paper is organized as follows In Section 2, the materials and methods are de-
scribed; the results and discussion are exhibited in Section 3, and the conclusions and
follow-up research are finally described in Section 4.

2. Materials and Methods

This study discussed the benefit of using PV module manufacturer datasheets for
parameter estimation in order to model any given PV module. In this scenario, GA, PSO
algorithms were used to solve the non-linear equation of a single-diode five parameters
model for two types of modules: a single-cell module called R.T.C. France and a 36-cell
module called PWP-201. Experimental datasets from the literature were collected to validate
the proposed models, and a comparison of the measured data with the predicted ones
was carried out. In addition, the algorithms used in this study were compared to other
algorithms from the literature. Figure 1 depicts the methodology proposed in this study.
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2.1. Single-Diode Five Parameters Model

Using SDM with five parameters is sufficient to model these types of modules [30].
The SDM contains a photocurrent source connected to one diode and one parallel resistor
called a shunt resistor, Rsh, in addition to the Rs resistor, which was connected in series as
demonstrated in Figure 2.
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The current generated from the SDM was calculated using Equations (1) and (2)
considering only one cell.

Ipv = Iph − I0 −
Vpv + Ipv ∗ Rs

Rsh
(1)

I0 = Is ∗ (e
Vpv+Rs∗Ipv

n VT − 1) (2)

where, Ipv, Vpv are the cell current and voltage, the reverse saturation current is Is, n is
the ideality factor, and the thermal voltage was calculated by the formula VT = kT

q ,
where, T is the operating temperature of the cell, k is the Boltzmann constant, and q is the
electron charge.

Iph =
[

Iphn + Ksc ∗ (T − TSTC)
]
∗ G

GSTC
(3)

where Iphn is the photocurrent of the cell at the standard test conditions (which are usually
equal to 25 ◦C and 1000 W/m2), Ksc is the temperature coefficient of Isc, TSTC is the
reference temperature of the cell, GSTC is the reference irradiance, and G is the irradiance
in W/m2.

Solar cells were combined in series and parallel circuits in order to increase the gener-
ated power, since a single solar cell generates very low power. Therefore, the aforemen-
tioned equations can be modified to include the number of series cells Ns and parallel cells
Np used to form photovoltaic modules. The equation was derived from these equations
as follows

Ipv = Np Iph − Np Is(e

Vpv
Ns

+
Rs∗Ipv∗ Ns

Np
n VT − 1)−

Vpv + Ipv ∗ Rs ∗ Ns
Np

Rsh ∗ Ns
Np

(4)

In this study, the value of Np was considered to be 1 as no cells were connected in
parallel. Therefore, by considering Equations (1)–(4), the values of the 5 parameters (I0, Rs,
Rsh, n, Iph) can be derived using optimization techniques and the proper objective function
and data points.
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2.2. Objective Function

Minimizing the difference between the predicted current and the current, which is
actually measured, is the main objective of modeling. Root Mean Square Error (RMSE) is
commonly used for evaluating such problems, and it can be formulated as in Equation (5):

RMSE =

√√√√∑N
i=1

(
Ii,actual − Ii,predict

)2

N
(5)

where the number of data points is N, the measured current is Ii,actual , and Ii,predict is the
predicted current using Equation (4).

2.3. Modeling Using MATLAB/Simulink

Simulink was used to model the circuit of single-diode models in order to assess
the performance of the solar cells used in this study by drawing the I-V and P-V curves.
MATLAB provides very useful tools to deal with such plots and compares them easily.
The powerful features of Simulink make it easy to implement SDM and simulate the
performance under different conditions. The entire block diagram of the model is given in
Figure 3 and the sub-systems are given in Figures 4 and 5.
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2.4. Genetic Algorithm

GA is a well-known optimization method belonging to the metaheuristic techniques.
It imitates the rule “survival of the fittest” of natural evolution. GA can be implemented as
shown in Figure 6 [31,32].

1. Selection of the main GA parameters, which are the size of the initial population, the
number of maximum generations that can be reached, and the crossover and mutation
probabilities.

2. Random initialization of the population. Generate matrix (X) representing (I0, Rs, Rsh,
n, Iph)

3. Calculation of the fitness using Equation (5) f(X)
4. Selection of the best population

Max (f (X))

5. Reproduce the selected individuals using variation operators considering the chosen
probability, such as Crossover and Mutation, to generate new offsprings.

{If rand () < probability:
Operate Crossover (Equation (7))/Mutation (Equation (6));

Else:
Don’t Change anything;

End}

Gaussian mutation x′i =
√

2 σ ( bi − ai) er f−1 u′i (6)C1 =
(

1−
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7. Compare the fitness of each individual and determine which ones will survive from
the offsprings and the parents

Min (fitness (parents), fitness (offsprings))

8. Stop criteria identification

In this manner, GA proved to be more applicable for complex and real-world problems
when multiple local minima occur. GA is adaptive to its environment, as this type of
method is a platform which appears in a changing environment.
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2.5. Particle Swarm Optimization

PSO is inspired by the swarm theory and the observation of the social behavior of
animals. PSO can be implemented as follows (Figure 7) [33,34].

1. Choosing the main parameters, such as the number of particles, the velocity, and the
positions;

2. Initialization of the population. Generate matrix (X) representing (I0, Rs, Rsh, n, Iph);
3. Calculate the fitness of each particle using Equation (5);
4. Compare each particle with other particles based on the fitness and choose the best

position to be the global point;
5. Update the particles’ velocities using (Equation (9)) and send them to new positions:

Vt+1
i = W.Vt

i + C1.Ut
1

(
Pt

b1
− Pt

i

)
+ C2.Ut

2
(

gt
b − Pt

i
)

(9)

6. Move the particles to new positions:

Pt+1
i = Pt

i + Vt+1
i (10)

7. Check the stopping criteria.
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Where, Vt
i is the velocity of the particle/agent i, W is the inertia weight, C1 is the

cognitive constant, Ut
1 and Ut

2 are random numbers, C2 is the social constant, Pt
b1

is personal
best, and gt

b is global best.
This makes PSO fast, computationally effective, and applicable for this kind of problem.
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2.6. The New Approach

In general, researchers take experimental measurements to feed the optimization
techniques and find the parameters’ optimal values. However, in some cases it is difficult
to obtain such data, as it requires a set-up environment, particular tools, and time, and in
some cases it is not worth it. Therefore, this study tried to solve this issue while maintaining
a similar accuracy. This can be achieved by only taking the data available for all solar PV
modules in the manufacturing datasheet.

Two PV panels were chosen in this study: R.T.C. France solar cell (which has a single
cell) and PWP-201 PV module (which has 36 cells), to validate the proposed methodology
results. The manufacturing values of the two panels are given in Table 1, which were taken
under the standard condition of each module, and these values were used in the proposed
methodology to find the five parameters with the help of Equations (1)–(4). Additionally,
so were the experimental datasets which were taken from ref. [14].

Table 1. Manufacturing parameters for the R.T.C. France cell and PWP-201 module [14].

Variables R.T.C. France Cell PWP-201

Isc, short circuit current 0.760 1.0317
Voc, open circuit voltage 0.5728 16.778

Imp, current at MPP 0.69119 0.912
Vmp, voltage at MPP 0.45 12.649
Ns, number of cells 1 36

PSO and GA were used in this study, as these algorithms are mature enough and well-
studied in the literature where their efficiency to solve non-linear problems has been proven
in various domains. Moreover, there are many stable and open-source libraries available
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for both of them. In this study, MATLAB libraries were used for the implementation of
these algorithms.

Both PSO and GA algorithms were used for parameter optimization using Equation
(4) and the objective function given in Equation (5). The upper and lower limits of the
parameters given in Table 2 for each PV panel were taken as suggested in refs. [14,35–41]
in order to compare the proposed model with other models in the literature. However,
changing the limits will result in changing the complexity and search time of the algorithms,
which may or may not change the results as the used algorithms are known for their stability
and accuracy; besides, one needs to follow the same used limits in order to compare and
validate the results. These constraints are based on the maximum generation by one solar
cell, cell number, and the material used.

Table 2. Parameter constraints.

PWP-201 R.T.C. France

I0∗10−6 Rs Rsh N Iph I0∗10−6 Rs Rsh n Iph

Lower limit 0 0 0 1 0 0 0 0 1 0
Upper limit 50 2 1000 50 2 1 0.5 100 2 1

The obtained values by using the entire dataset were used as the global optimum
solution for the modules, which are also compared by the values obtained in litera-
ture. Therefore, the models which use these global optimum values were considered
as reference models.

After finding the optimum values using only three data points, the predicted output
current was compared to the actual measurements and the error was also compared with
the results achieved by the reference models.

3. Results and Discussion

The experimental data of R.T.C. France cells and PWP-201 module are given in
Tables 4 and 6. The first step is to use the experimental data to find the optimal solu-
tions of the five parameters and to compare them with the other studies; then, these values
were considered as the optimal values and used as a reference to evaluate the proposed
methodology.

First of all, R.T.C France data were used for validating the proposed methods. The
optimization results of PSO were (0.3218 × 10−6, 0.0364, 53.4489, 1.4808, and 0.7608) for the
parameters (I0, Rs, Rsh, n, and Iph), respectively, with an RMSE equal to 9.8636 × 10−4. This
was achieved by PSO using five swarms and the algorithm converged within 0.605784 s.
However, GA estimated the values (0.3231, 0.0364, 53.7378, 1.4812, and 0.7608) for the same
parameters, respectively, with an RMSE equal to 9.8602 × 10−4. This was achieved by
GA using a population size equal to 20 and the algorithm converged within 1.035257 s. A
comparison of these results with previous studies, as shown in Table 3, showed similar
values have been estimated in the literature. Indeed, GA provides more accurate results
than PSO, but requires more time to converge.

As shown in Table 3, the estimated parameters of all techniques were almost equal
with minor variations in some cases. Therefore, based on these values, a baseline model
was considered as a reference and the proposed methodology was validated by comparing
the performance of the new model to the baseline model.

After that, both PSO and GA were used to do the same, but considering only three
data points given by the manufacturing datasheet, which are the short circuit current Isc,
where the output of the circuit is shorted and the voltage is equal to zero, the open-circuit
voltage Voc, where the output of the circuit is open and the current is equal to zero, and,
finally the maximum power point. These three points are available for all PV panels, in
contrast to the measured data. The results, as shown in Table 3, showed that PSO achieved
better accuracy, 9.6481 × 10−8, than GA. Note that the values of I0 and Rsh were slightly
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different from the reference model due to using only three points and due to setting a
wide range of constraints for these two parameters while optimizing. Moreover, the RMSE
was lower as compared with the reference model due to using fewer points for evaluation.
Therefore, in order to validate the models accurately, further assessment for PSO using the
experimental values was carried out.

Table 3. Comparison of the results of different algorithms on RTC France cell.

Algorithm I0 × 10−6 Rs Rsh n Iph RMSE × 10−4

GA (This Study) 0.3231 0.0364 53.7378 1.4812 0.7608 9.8602

PSO (This Study) 0.3218 0.0364 53.6067 1.4808 0.7608 9.8636

PCE [35] 0.323021 0.036377 53.718525 1.481074 0.760776 9.86022

ABC [36] 0.3251 0.0364 53.6433 1.4817 0.7608 9.8620

CSO [37] 0.3230 0.03638 53.7185 1.48118 0.76078 9.8602

BMO [38] 0.32479 0.03636 53.8716 1.48173 0.76077 9.8608

ABC-DE [39] 0.32302 0.03637 53.7185 1.47986 0.76077 9.8602

With Three Points

GA 0.4696 0.0285 38.2219 1.5207 0.7606 1.4153 × 10−3

PSO 0.2994 0.0375 67.4972 1.4733 0.7604 9.6481 × 10−4

The results of the proposed PSO using three data points were compared with the
outputs of PSO using all data and the result of the WHHO algorithm [14], ABC [36], and
BMO [38] in Table 4, where Ipred is the estimated current. The results showed close results
of the proposed model to other models with slightly more error in the range of 10–4, which
makes it reasonable.

Table 4. Experimental I-V dataset for R.T.C. France solar cell [14].

S.N
Experimental Data WH [14] ABC [36] BMO [38] PSO Reference

Model
PSO with 3 Data

Points

VL IL Ipred Error Ipred Error Ipred Error Ipred Error Ipred Error

1 −0.2057 0.764 0.764067 −0.000088 0.7641 −0.0001 0.763965 0.00004 0.76412 0.000119 0.76302 −0.000977

2 −0.1291 0.762 0.762647 −0.000849 0.7626 −0.0006 0.762593 −0.00059 0.76269 0.000691 0.76189 −0.00011

3 −0.0588 0.7605 0.761344 −0.001109 0.7613 −0.0008 0.761334 −0.00083 0.76138 0.000881 0.76085 0.000349

4 0.0057 0.7605 0.760148 0.000462 0.7601 0.0004 0.760177 0.00032 0.76018 −0.000323 0.75989 −0.000607

5 0.0646 0.76 0.759054 0.001246 0.759 0.0010 0.759117 0.00088 0.75908 −0.000924 0.75902 −0.000982

6 0.1185 0.759 0.758044 0.001259 0.758 0.0010 0.758135 0.00087 0.75806 −0.000939 0.75821 −0.00079

7 0.1678 0.757 0.757096 −0.000127 0.7571 −0.0001 0.757205 −0.00021 0.75711 0.000108 0.75745 0.000447

8 0.2132 0.757 0.75615 0.001123 0.7561 0.0009 0.756262 0.00074 0.75616 −0.000844 0.75667 −0.000329

9 0.2545 0.7555 0.755097 0.000532 0.755 0.0005 0.755193 0.00031 0.7551 −0.000399 0.75578 0.000277

10 0.2924 0.754 0.753676 0.000428 0.7536 0.0004 0.753732 0.00027 0.75368 −0.000323 0.7545 0.000503

11 0.3269 0.7505 0.751401 −0.001199 0.7513 −0.0008 0.751397 −0.00090 0.7514 0.000904 0.75237 0.001865

12 0.3585 0.7465 0.74736 −0.001151 0.7473 −0.0008 0.747287 −0.00079 0.74737 0.000868 0.74844 0.001941

13 0.3873 0.7385 0.740107 −0.002171 0.7401 −0.0016 0.739973 −0.00147 0.74013 0.001633 0.74128 0.002776

14 0.4137 0.728 0.727403 0.00082 0.7273 0.0007 0.727243 0.00076 0.7274 −0.0006 0.72853 0.000532

15 0.4373 0.7065 0.706954 −0.000642 0.7069 −0.0004 0.706819 −0.00032 0.707 0.00049 0.708 0.001488

16 0.459 0.6755 0.67529 0.00031 0.6752 0.0003 0.675224 0.00028 0.6753 −0.0002 0.676 0.000478

17 0.4784 0.632 0.630875 0.001782 0.6307 0.0013 0.630895 0.00111 0.63077 −0.00123 0.63095 −0.001055

18 0.496 0.573 0.572071 0.001623 0.5718 0.0012 0.572157 0.00084 0.57194 −0.00106 0.57145 −0.001546

19 0.5119 0.499 0.49948 −0.000962 0.4995 −0.0005 0.499589 −0.00059 0.49961 0.000606 0.49844 −0.000558

20 0.5265 0.413 0.413485 −0.001173 0.4136 −0.0006 0.413569 −0.00057 0.41364 0.000637 0.41189 −0.001114
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Table 4. Cont.

S.N
Experimental Data WH [14] ABC [36] BMO [38] PSO Reference

Model
PSO with 3 Data

Points

VL IL Ipred Error Ipred Error Ipred Error Ipred Error Ipred Error

21 0.5398 0.3165 0.317214 −0.002251 0.3175 −0.0010 0.317245 −0.00074 0.3175 0.0001 0.31544 −0.00106

22 0.5521 0.212 0.212101 −0.000477 0.2121 −0.0001 0.212075 −0.00008 0.21213 0.000131 0.21021 −0.001794

23 0.5633 0.1035 0.102722 0.00757 0.1022 0.0013 0.102659 0.00084 0.10223 −0.001268 0.10097 −0.002527

24 0.5736 −0.0100 −0.009246 0.081536 −0.0086 −0.0014 −0.00931 −0.00069 −0.0087 0.001279 −0.0086 0.00136

25 0.5833 −0.1230 −0.124378 −0.011080 −0.1254 0.0024 −0.12439 0.00139 −0.1255 −0.002487 −0.12348 −0.000482

26 0.59 −0.2100 −0.209190 0.00387 −0.2084 −0.0016 −0.20914 −0.00086 −0.2084 0.001577 −0.20447 0.00553

RMSE 9.8602 × 10−4 9.8629 × 10−4 9.8608 × 10−4 9.8624 × 10−4 16 × 10−4

Moreover, the proposed model output current was compared to the outputs of the
reference model and other models from the literature, and the proposed model showed
similar behavior as compared to the other models. The boxplot in Figure 8 shows the
variation of the current for the models, which were similar in all models. Figure 9 represents
the boxplot of the variation in the error for each model. The figure shows that the BMO
model was more stable than other models; however, the proposed model was still able to
achieve accurate results with a slight difference.
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For further validation, the proposed model was compared with the reference model, by
comparing both I-V and P-V characteristic curves using Simulink. As indicated in Figure 10,
the I-V and P-V curves of the reference model and the proposed model were identical,
with a difference of only 7.6212 × 10−4 RMSE between the I-V lines under the standard
conditions. This implies that the proposed model is just as accurate as the reference model.
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Moreover, the models were compared under different solar radiation values, as shown
in Figures 11–14; it is clear from these curves that under all conditions the proposed model
followed the pattern of the reference model with very little error. The I-V lines of the
proposed and the reference models were compared under different conditions using RMSE,
which was found to be equal to 0.0012, 0.0017, 0.0025, and 0.0032 under 800, 600, 400, and
200 W/m2 solar radiations, respectively. Therefore, it can be noticed that the error increased
when the radiation decreased; however, it is still a reasonable range of error.
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The comparison between the reference model and the proposed model was also
carried out using Taylor graph, Figure 15, which represents how both models are close to
the reference value, being the actual measurements. Moreover, the mean bias error (MBE)
and mean absolute error (MAE) of the proposed model were calculated and found to be
0.001213 and 0.00014, respectively. In addition, the correlation between the predictions and
the actual measurements is plotted in Figure 16, where the R value was very close to 1.
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To make sure that this methodology does not work only with single-cell modules,
another module, the PWM201 PV module, with 36 solar cells was used and the manufac-
turing data of the module are shown in Table 1. The same objective function was used, and
the constraints are given in Table 2. Both PSO and GA were applied for this module as well.
The results, given in Table 5, showed that both techniques had similar accuracy when using
the full dataset for training. However, PSO (1.9172 × 10−8) showed less error compared
with GA (1.2167 × 10−7) when using only three points.
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Table 5. Comparison of the proposed methodology and other methods in finding the PWM201
module’s parameters.

Algorithm I0 × 10−6 Rs Rsh n Iph RMSE × 10−3

GA (This Study) 3.4650 1.2018 975.7689 1.3507 1.0305 2.4

PSO (This Study) 3.4203 1.2029 951.6120 1.3493 1.0307 2.4

WHHO [14] 3.482109 1.201274 981.905230 1.349987 1.030514 2.42507

EHHO [42] 3.459968 1.201853 971.276026 1.349314 1.030583 2.42516

JAYA [43] 3.4931 1.2014 1000 1.3514 1.0307 2.42778

STLBO [44] 3.4824 1.2013 982.0387 1.3511 1.0305 2.42507

TLABC [45] 3.4826 1.2013 982.1815 1.3512 1.0305 2.42507

Using only three points

GA 1.0023 1.4927 858.7274 1.2296 1.0318 1.2167 × 10−4

PSO 4.8783 1.0698 741.0845 1.3889 1.0315 1.9172 × 10−5

To ensure that the proposed models using PSO and GA with three data points have
reasonable behavior compared to the reference one, both models were tested using the
experimental dataset and the output is shown in Table 6 and compared to the reference
model, in addition to WHHO [14], JAYA [43], and EHHO [42] from the literature. RMSE
for all methods were compared and it was found that PSO achieved better accuracy
(0.0093) than GA (0.0196); however, it had a lower accuracy compared with the reference
model, which was trained using the full dataset points (0.0024) where the difference was
in the range of 10–3, which makes it reasonable for applications where such an error does
not matter.

Table 6. Comparison of the estimated output current for the the proposed methodology and the
reference model for the PWM201 modules.

S.N Experimental data WHHO [14] JAYA [43] EHHO [42] PSO Output Using
Three Data Points

GA Output Using
Three Data Points

V I Ipred Error Ipred Error Ipred Error Ipred Error Ipred Error

1 0.1248 1.0315 1.029122 0.00231 1.02911964 0.00238036 1.0286 0.0029 1.0298 −0.001665 1.0299 −0.001641
2 1.8093 1.03 1.027385 0.002546 1.02738133 0.00261867 1.0269 0.003 1.0275 −0.002464 1.0279 −0.002112
3 3.3511 1.026 1.025742 0.000251 1.02574186 0.00025814 1.0255 0.0005 1.0254 −0.000623 1.0261 5.9 × 10−5

4 4.7622 1.022 1.024104 −0.00205 1.02410704 0.00210704 1.0239 0.0019 1.0233 0.001254 1.0243 0.002301
5 6.0538 1.018 1.022283 −0.00419 1.02229155 0.00429155 1.0222 0.0042 1.021 0.002973 1.0225 0.004467
6 7.2364 1.0155 1.019917 −0.00433 1.01993032 0.00443032 1.0199 0.0044 1.0182 0.002661 1.0203 0.00475
7 8.3189 1.014 1.016351 −0.00231 1.01636269 0.00236269 1.0164 0.0024 1.0142 0.000165 1.017 0.003042
8 9.3097 1.01 1.010491 −0.00049 1.01049575 0.00049575 1.0106 0.0006 1.0079 −0.002066 1.0118 0.001755
9 10.2163 1.0035 1.000679 0.00282 1.00062866 0.00287134 1.0007 0.0028 0.9979 −0.00564 1.0026 −0.000938

10 11.0449 0.988 0.984653 0.003399 0.98454823 0.00345177 0.9847 0.0033 0.9819 −0.006115 0.9869 −0.001068
11 11.8018 0.963 0.959697 0.003441 0.95952173 0.00347827 0.9596 0.0034 0.9575 −0.005518 0.9616 −0.001418
12 12.4929 0.9255 0.923049 0.002656 0.92283908 0.00266092 0.9229 0.0025 0.9221 −0.003365 0.9232 −0.002343
13 13.1231 0.8725 0.872588 −0.0001 0.87260009 0.00010009 0.8727 0.0002 0.874 0.001497 0.8694 −0.003142
14 13.6983 0.8075 0.80731 0.000235 0.80727477 0.00022523 0.8074 0.0001 0.8115 0.00401 0.7985 −0.009035
15 14.2221 0.7265 0.727958 −0.002 0.72833695 0.00183695 0.7284 0.0019 0.7357 0.009169 0.713 −0.013542
16 14.6995 0.6345 0.636466 −0.00309 0.63713835 0.00263835 0.6372 0.0027 0.6474 0.012892 0.6152 −0.019293
17 15.1346 0.5345 0.535696 −0.00223 0.53621321 0.00171321 0.5362 0.0017 0.5487 0.014183 0.5091 −0.025423
18 15.5311 0.4275 0.428816 −0.00307 0.42951127 0.00201127 0.4295 0.002 0.4429 0.015351 0.4002 −0.027318
19 15.8929 0.3185 0.318669 −0.00053 0.31877424 0.00027424 0.3188 0.0003 0.3315 0.012952 0.2907 −0.027798
20 16.2229 0.2085 0.207857 0.003093 0.20738914 0.00111086 0.2074 0.0011 0.2176 0.009058 0.1848 −0.023694
21 16.5241 0.101 0.098354 0.026901 0.09616674 0.00483326 0.0962 0.0048 0.1021 0.001117 0.0829 −0.018135
22 16.7987 −0.008 −0.00817 −0.02073 −0.0083257 0.00032571 −0.0082 0.0002 −0.0089 −0.000887 −0.007 0.000956
23 17.0499 −0.111 −0.11097 0.000284 −0.1109366 0.00006337 −0.1108 0.0002 −0.1193 −0.008342 −0.0924 0.018616
24 17.2793 −0.209 −0.20912 −0.00056 −0.2092472 0.00024715 −0.2091 8.80 × 10−5 −0.2268 −0.017807 −0.1708 0.038223
25 17.4885 −0.303 −0.30202 0.003237 −0.3008631 0.00213691 −0.3007 0.0023 −0.3288 −0.025837 −0.2399 0.063061

RMSE 2.42507 × 10−3 2.42507 × 10−3 2.42516 × 10−3 9.3 × 10−3 19.6 × 10−3

For further comparison, the proposed model output current was compared to the outputs
of the reference model and other models from the literature, as shown in Figures 17 and 18,
and the proposed model showed similar behavior as compared to the other models. The
boxplot in Figure 17 shows the variation of the output current of the models and it was
similar for all with a slight difference in the negative current. Figure 18 represents the
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boxplot of the variation in the error for each model. The figure shows that WHHO model
was more accurate than other models; however, the proposed model was still able to
achieve accurate results with a slight difference.
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Figure 18. Boxplot of the error in current for the proposed model and other models from the
literature (WHHO [14], JAYA [41], and EHHO [40]) compared to the original data regarding the
PWM201 model.

The comparison between the reference model and the proposed model was also carried
out using a Taylor graph, Figure 19, which represents that the proposed model slightly
differed from the actual measurements. Moreover, the MBE and MAE of the proposed
model were found to be 0.01256 and −0.00156, respectively. In addition, the correlation
between the predictions and the actual measurements is plotted in Figure 20, where the R
value was very close to 1.
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As the proposed model works efficiently for both R.T.C France solar cell and PWP201
modules, it will work for other types of modules and can be further experimented with
in future studies. However, these two types of solar cells/modules were selected due to
the availability of the experimental data for validation only, whereas the proposed method
does not require any experimental data, which is promising for commercial modules for
which no experimental datasets are available.

4. Conclusions and Follow-Up Research

A new model for parameter estimation of solar modeling for reliable energy manage-
ment using metaheuristic algorithms was presented for the newly established commercial
PV microgrids. In this study, a new model was presented to predict solar cells’ power
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generation. The developed model was validated using experimental data. Both genetic
algorithm (GA) and particle swarm algorithm (PSO) were investigated to estimate the
values of the solar cell parameters. The developed new model was tested under different
solar irradiance conditions and compared with a reference model and was found to be
accurate under all conditions. Based on the study, the following conclusions are drawn:

1. The results showed that using the full data points, both GA and PSO algorithms
obtained reasonable optimization results, which led to similar or sometimes better
results than those obtained in previous studies.

2. The proposed model considers only three measurements, taken from the manufacturer
datasheets, and this makes it a very effective methodology to estimate solar cell
parameters for all commercial modules as there is no need to set up any experimental
measurements for newly established PV-based microgrids.

3. Testing the proposed model on the R.T.C France solar cell proved that this new model
is able to perform as accurately as the reference model under all conditions; however,
the error increased when the solar radiation decreased where the maximum RMSE
detected under 200 W/m2 solar radiation was 0.0032 as compared with 7.6212 × 10−4

under standard conditions.
4. Using PWP201 for validation also showed that this model can be used for all commer-

cial solar modules.

This model can be used for all types of photovoltaic systems, especially commercial
microgrids for which no long-term experimental data are available and provides accurate
results, which are comparable to modeling with multiple measurement data points. This
model can also be utilized for maximum power point tracking research and development
in addition to the analysis of PV-based microgrids to facilitate the management of the
microgrids, which will be discussed in a follow-up study.
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