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Abstract: Vortex beams carrying orbital angular momentum (OAM) have increasingly attracted
attention in the field of optical communication. However, transmission is still an issue due to
transmission loss, especially in optical fibers. In this work, we proposed, designed, and fabricated
micro spiral phase plates (SPPs) directly on an end facet of a piece of PbSe-doped ring-core fiber (RCF)
through two-photon polymerization, realizing the integration of OAM beam generation, transmission,
and amplification. The prepared RCF comprises a double-clad structure with a core-clad refractive
index difference of 2.2% and the fluorescence range is 1150 nm–1700 nm. The intensity distribution
of the OAM beam and the spiral interference fringes were obtained, which indicated that the OAM
mode (|l|= 1, 2, 3, 4) was generated and transmitted directly within the fiber. The small-signal
amplification of four OAM modes was accomplished at 1550 nm under a pump power of 634 mW.
The on–off gain is >13.2 dB for all modes and the differential mode gain (DMG) is <1.7 dB. The SPP-
carrying RCF structure demonstrates the integration of generation, transmission, and amplification
of higher-order OAM modes in all-fiber systems.

Keywords: OAM mode; SPP; PbSe-doped RCF; amplification; 3D printing

1. Introduction

The dramatic growth of Internet traffic has placed higher demands on information
transmission rates and communication capacities [1,2]. Vortex beams carry a unique orbital
angular momentum (OAM) that has attracted a lot of attention in multiple fields [3–6]. The
orthogonality between OAM modes with different topological charges is used to realize
the mode-division multiplexing, and theoretically, unlimited transmission capacity can be
obtained [7,8]. It has been shown that OAM beams can be transmitted in free space over
143 km, but are affected by atmospheric turbulence [9]. Hence, the integration of OAM
generation and transmission is still an issue in the field of optical communication.

Compared with other methods, specially designed optical fibers may be employed
to achieve stable transmission of the OAM beam [10,11]. It has been demonstrated that
the ring-core fiber (RCF) exhibits a “donut” shaped intensity pattern, which is similar to
OAM mode distribution, enabling stable transmission of OAM beams while reducing the
differential mode gain (DMG) [12]. However, two key issues should be addressed. One is
the generation of the OAM beam. The traditional free-space coupling methods lead to low
efficiency and low stability [13]. Currently, utilizing a spiral phase plate (SPP) to generate
an OAM beam is one of the most efficient methods, which can be fabricated precisely and
quickly by the 3D laser direct writing technique [14–17]. The micro-scale SPP is easier to
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integrate with micro-optical and microfluidic platforms. The existing 3D-printed SPPs are
fabricated on quartz substrates, single-mode fibers, or lenses [18–23]. The second is the
transmission of the OAM beam. Due to the transmission loss in fiber, the working length
is limited. Therefore, it is necessary to realize the OAM mode amplification. Typically, an
erbium-doped fiber is used to achieve high mode gain, low loss, and low DMG [24–26].
However, erbium ions have a small gain bandwidth and a fixed working band that fail
to satisfy the communication demands. It was demonstrated that PbSe quantum dots
(QDs) are excellent gain media for broadband amplification in amplifiers owing to their
spectral coverage in the near-infrared region, tunable absorption-emission spectra, and
high quantum yields [27–29]. To our knowledge, few studies have focused on the OAM
amplification based on the PbSe QDs with OAM amplifiers.

In this study, we printed micro SPPs directly on an end facet of a piece of a PbSe-doped
RCF using two-photon 3D technology, realizing the integration of OAM beam generation,
transmission, and amplification. The SPP was aligned with the center of the fiber tip face
so that the generated OAM beam could be transmitted directly along the ring-core region.
Finally, an OAM amplifier based on the SPP-carrying fiber was developed to examine
the mode-gain characteristics and DMG. OAM mode (|l|= 1, 2, 3, 4) was generated and
transmitted directly within the fiber. The on–off gain is >13.2 dB for all modes and the
differential mode gain (DMG) is <1.7 dB, demonstrating the proposed method could be a
suitable choice for the integration of OAM generation, transmission, and amplification.

2. Design and Simulations

Figure 1a depicts a cross-sectional schematic of the designed PbSe-doped RCF, which
is composed of a core, ring core, inner cladding, and outer cladding. Their respective
refractive indices are denoted by n1, n2, n3, and n4. The radius corresponds to r1, r2, r3,
and r4, respectively. The core and inner cladding are doped with borides, whereas the
ring core, as the transmission layer, is primarily doped with the gain medium PbSe and
the refractive index-improving GeO2 material. The main material of the outer cladding
is SiO2. The purpose of the double-cladding structure is to increase the refractive index
difference between n2 and n3. We fixed the core radius (r1) and ring core (r2) to be equal to
3 µm and 11 µm, respectively. There is a large refractive-index difference between the ring
core and the inner cladding of 2.2%. The structure of the SPP printed on the end face of
the double-clad PbSe-doped RCF is depicted in Figure 1b. Moreover, the thickness of the
SPP varies with the azimuthal angle ϕ, and the thickness distribution function of the spiral
phase sheet h(ϕ) is given by [23]:

h(ϕ)= h0 +
λlϕ

2π(n− n0)
; ϕ ∈ [0, 2π] (1)

where l and λ denote the topological charge and incident wavelength, respectively, and
the thickness of the spiral phase sheet at ϕ = 0 is h0. Moreover, n and n0 represent
the refractive indices of the SPP material and the refractive index of the surrounding
medium, respectively.

Thus, the thickness of the phase change 2π is:

∆h = h(2π)− h(0) =
λl

n− n0
(2)

The Femtosecond 3D laser direct writing technology can effectively, flexibly, and
quickly develop SPPs. The Gaussian beam enters the SPP from the irregular spiral plane,
resulting in different phase delays and spiral wavefronts. When leaving the regular plane,
it is converted into an OAM beam which carries a phase factor of exp(ilϕ). The OAM beam
is then transmitted directly to the output along the ring core region within the fiber, as
shown in Figure 1c.



Photonics 2022, 9, 823 3 of 10

Photonics 2022, 9, x FOR PEER REVIEW 3 of 11 
 

 

it is converted into an OAM beam which carries a phase factor of exp(ilφ). The OAM beam 
is then transmitted directly to the output along the ring core region within the fiber, as 
shown in Figure 1c. 

 
Figure 1. (a) Cross-section of the designed PbSe-doped RCF in schematic form; (b) Schematic of the 
construction of SPP; (c) Schematic of the OAM beam generated by the SPP at the end face of the 
fiber. 

It is well known that based on the finite element method, the vector modes of 
PbSe-doped RCF can be simulated and calculated by solving differential equations. The 
parameters were set based on the designed fiber, and the wavelength was 1550 nm. 
Firstly, a 2D model of the PbSe-doped RCF was constructed and the material properties 
of each sub-region were added. Then, the boundary conditions were set by adding a 
perfectly matched layer, while the fiber regions were divided into superfine triangular 
meshes. Finally, the vector modes of the fiber were obtained by solving the electromag-
netic field equations in the module. It was found that the vector modes of the fiber were 
HE11, TM01, HE21, TE01, HE31, EH11, HE41, EH21, HE51, EH31, HE61, EH41, HE71, and EH51. The 
OAM modes supported by the RCF can be generated by linear superposition of odd and 
even modes of HE modes and EH modes, which can be defined as [25]: 

OAM±l,m
±  = HEl+1,m

e  ± iHEl+1,m
o

OAM±l,m
∓  = EHl−1,m

e  ± iEHl−1,m
o  (3)

where, the upper corner ± indicates its polarization direction, which is related to spin 
angular momentum (SAM), and the lower corner ±l,m is related to OAM, where ± indi-
cates the direction of phase rotation (+ indicates counterclockwise, − indicates clock-
wise), l is the topological charge and m indicates the radial mode number. Thus, the fiber 
can support the OAM mode with |l| = 1, 2, 3, 4, 5, 6. 

Because the effective refractive index difference between the vector modes synthe-
sizing the same order OAM mode does not reach 10−4, the vector modes degenerate as 
linearly polarized (LP) modes The LP mode may be overlaid to obtain the OAM mode, 
which can be expressed as follows [30]:   xOAM±l,m = LPl,m

c,x  ± iLPl,m
s,x

yOAM±l,m = LPl,m
c,y  ± iLPl,m

s,y  (4)

Figure 1. (a) Cross-section of the designed PbSe-doped RCF in schematic form; (b) Schematic of the
construction of SPP; (c) Schematic of the OAM beam generated by the SPP at the end face of the fiber.

It is well known that based on the finite element method, the vector modes of PbSe-
doped RCF can be simulated and calculated by solving differential equations. The parame-
ters were set based on the designed fiber, and the wavelength was 1550 nm. Firstly, a 2D
model of the PbSe-doped RCF was constructed and the material properties of each sub-
region were added. Then, the boundary conditions were set by adding a perfectly matched
layer, while the fiber regions were divided into superfine triangular meshes. Finally, the
vector modes of the fiber were obtained by solving the electromagnetic field equations
in the module. It was found that the vector modes of the fiber were HE11, TM01, HE21,
TE01, HE31, EH11, HE41, EH21, HE51, EH31, HE61, EH41, HE71, and EH51. The OAM modes
supported by the RCF can be generated by linear superposition of odd and even modes of
HE modes and EH modes, which can be defined as [25]:{

OAM±±l,m= HEe
l+1,m±iHEo

l+1,m
OAM∓±l,m= EHe

l−1,m±iEHo
l−1,m

(3)

where, the upper corner ± indicates its polarization direction, which is related to spin
angular momentum (SAM), and the lower corner±l,m is related to OAM, where± indicates
the direction of phase rotation (+ indicates counterclockwise, − indicates clockwise), l is
the topological charge and m indicates the radial mode number. Thus, the fiber can support
the OAM mode with |l|= 1, 2, 3, 4, 5, 6.

Because the effective refractive index difference between the vector modes synthesizing
the same order OAM mode does not reach 10−4, the vector modes degenerate as linearly
polarized (LP) modes The LP mode may be overlaid to obtain the OAM mode, which can
be expressed as follows [30]: {

x̂OAM±l,m= LPc,x
l,m±iLPs,x

l,m
ŷOAM±l,m= LPc,y

l,m±iLPs,y
l,m

(4)

where, x̂ and ŷ represent the x- and y-polarization directions, respectively. The superscripts
c and s denote the cosine and sine functions corresponding to the even and odd modes of
the LP mode, respectively.
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OAM mode purity is an important parameter to measure the transmission characteris-
tics of OAM fibers. Higher OAM purity means more stable mode transmission, allowing it
to be better employed for OAM multiplexing. The magnitude of the mode purity depends
on the intensity of the light superposition factor, as the following expression [31]:

η =
Ir

Ic
=

s
ring

∣∣∣∣→E ∣∣∣∣2dxdy

s
cross−section

∣∣∣∣→E ∣∣∣∣2dxdy

(5)

where, Ir and Ic denote the electric field intensity of the ring region inside the RCF and the
2D cross-section of RCF, respectively. The results of the OAM purity are shown in Table 1.
The simulation shows that the purity of the OAM mode that the fiber can support is greater
than 98%.

Table 1. OAM mode purity (|l|= 1 ∼ 6).

OAM Mode |l|=1 |l|=2 |l|=3 |l|=4 |l|=5 |l|=6

purity 99.4% 99.4% 99.3% 99.1% 98.4% 98.4%

This study focuses on the generation, transmission, and amplification of OAM modes
for |l|= 1, 2, 3, 4. The SPP is designed with a diameter of 60 µm, a spiral height (∆h) of
2.98 µm at 1550 nm, and a substrate height of 3 µm. The normalized mode intensity and
phase distribution of the OAM modes generated by the SPP based on simulations of the
design data are illustrated in Figure 2. It is known that there is a phase singularity at
the center of the vortex beam, resulting in the central light intensity being zero. It can be
observed that the beam intensity distribution exhibits a doughnut shape. The region in
which the central intensity is zero gradually expands as the OAM order increases.
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3. Fabrication

PbSe-doped RCF was prepared using MCVD technology by the following process [32]:
Firstly, a quartz-based tube was heated to over 1700 ◦C with a hydrogen–oxygen flame
to introduce SiCl4, GeCl4, and borides. Secondly, a boride-doped inner-cladding layer
was deposited. Thirdly, PbSe powder was deposited on the inner surface of the inner
cladding via high-temperature evaporation. Subsequently, boride was introduced again to
form a solid core. Finally, the preform was drawn into a PbSe-doped RCF with a specified
geometric diameter. A cross-sectional image of the actual fiber and its refractive index
distribution is presented in Figure 3a. The ring-core thickness was 8 µm, and the refractive



Photonics 2022, 9, 823 5 of 10

index difference between the ring core and the inner cladding was 2.2%. Additionally, the
fiber loss at 1550 nm was measured to be 0.25 dB/m using the truncation approach. The
fluorescence spectrum of an optical fiber reveals its luminescent qualities. The fluorescence
characteristics of the PbSe-doped RCF were measured using reverse pumping with a
980 nm laser, as shown in Figure 3b. The fluorescence ranged from 1150 nm to 1700 nm
thanks to the different size distributions of PbSe QDs. The intensity of the fluorescence
increased with increasing pumping power. At 800 mW, the fluorescence intensity ceased to
increase and approached saturation, this is due to the complete inversion of particles in the
PbSe QDs two-level system.
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spectrum of the fiber.

In this study, micro-SPP was fabricated using a two-photon professional 3D printing
system (Nanoscribe). This technique enabled a resolution of 100 nm. The procedure was
as follows: first, the end face of the PbSe-doped RCF was cleaned with acetone, isopropyl
alcohol, and distilled water. After that, the photoresist (IP-Dip, Nanoscribe) was dropped
into a 63× immersion objective, which focused the beam and wrote the structure directly on
the end face of the fiber [33,34]. The two-photon photopolymerization effect was generated
when the intensity of the focused beam exceeded the threshold intensity of the polymer.
Finally, the samples were washed with propylene glycol monomethyl ether acetate and
isopropyl alcohol. It took only a few minutes to print one SPP. The refractive index of the
photoresist and that of the surrounding medium were 1.52 and 1. The incident wavelength
suitable for the SPP was 1550 nm. The diameter and overall height of the SPP were 60 µm
and 5.98 µm. SPPs with |l|= 1, 2, 3, 4 were printed sequentially. The SPP morphology
at the center of the fiber was observed using an optical microscope, and the results are
depicted in Figure 4.
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4. Experiments
4.1. Generation and Transmission of OAM Modes

The OAM mode generation, transmission, and amplification systems constructed
utilizing PbSe-doped RCF are depicted in Figure 5. A 1 × 2 coupler divided the Gaussian
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beam emitted by the 1550 nm laser into two beams. One beam was utilized as the trans-
mitted signal beam, whereas the other beam was used as the reference beam for spherical
interference. Before collimating the signal beam, a polarization controller (PC) was used to
adjust the polarization direction. The dichroic mirror (DM) combined a signal beam with a
980 nm pump beam in free space. Subsequently, the combined beam was coupled to the
SPP on the fiber end-face through a 20× objective lens. The generated OAM beam by the
SPP was transmitted through the PbSe-doped RCF for 20 m. The DM at the output of the
fiber was used to filter out the residual pump beam.
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Figure 5. Schematic of the experimental setup for the OAM amplifier. PC: polarization controller;
Col.: collimator; SMF: single-mode fiber; PbSe-doped RCF: PbSe-doped ring-core fiber; DM: dichroic
mirror; OL: objective lens; SPP: spiral phase plate; LP: linear polarizer; PM: power meter.

The intensity distributions of the OAM modes (|l|= 1, 2, 3, 4) measured by the CCD
are shown in Figure 6, along with the spiral interference fringes.
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Figure 6. Spiral interferogram and intensity distribution of the OAM mode at 1550 nm: (a) Intensity
of LP11; (b) Intensity of LP21; (c) Intensity of LP31; (d) Intensity of LP41; (e) Intensity of OAM|l|=1;
(f) Intensity of OAM|l|=2; (g) Intensity of OAM|l|=3; (h) Intensity of OAM|l|=4; (i) Interference
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The intensity of LP11, LP21, LP31, and LP41 modes are shown in Figure 6a–d. Since the
effective refractive index difference between the vector modes of the PbSe-doped RCF is
less than 1 × 10−4, the modes have degenerated to LP mode. The intensity of OAM|l|=1,
OAM|l|=2, OAM|l|=3, and OAM|l|=4 modes shown in Figure 6e–h can be observed by
adjusting the PC to produce a phase difference of π/2 between the odd and even modes
of the LP mode. The interference fringes of each OAM mode are shown in Figure 6i–l.
Here, we can see different spiral interference fringes [7], which indicates that we have
successfully prepared SPPs with different topological charges. It is also demonstrated that
the PbSe-doped RCF supports the transmission of OAM beams generated by SPPs.

4.2. Amplificaition of OAM Modes

To evaluate the mode gain, an optical power meter was used to measure the total
power before and after OAM mode amplification. The variation of on–off gain and DMG
with pump power was investigated, as shown in Figure 7. The pump power varied from
42 mW to 634 mW and the experimental signal power and wavelength were −45 dBm and
1550 nm, respectively. The maximum on–off gains for the OAM|l|=1, OAM|l|=2, OAM|l|=3,
and OAM|l|=4 modes were 14.9 dB, 13.9 dB, 13.2 dB, and 14 dB, respectively, while DMG
was less than 1.7 dB. Evidently, the on–off gain increases with increasing pump power and
tends to saturate. It primarily results from the fact that the particle number reversal in the
PbSe QD energy level system gradually reaches saturation. The DMG values are generally
small, which may be attributed to the pumping mode and the distribution of the PbSe QDs.
The noise in fiber amplifiers is mostly caused by amplified spontaneous emission (ASE).
Because the PbSe-doped RCF has a lower PbSe QD doping concentration, the ASE of the
amplifier has less impact on the signal light.
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The relationship between the gain of each mode and the signal power is illustrated
in Figure 8. When the pump output was 634 mW and the signal power changed between
−45 dBm and −15 dBm, the on–off gain and the DMG both decreased as the input signal
power increases. The gain was close to zero when the signal power was−15 dBm or greater.
This result may be explained by the fact that the number of particles at the upper energy
level is continually depleted by the signal light but not efficiently refilled by the pump light.
Therefore, the gain gradually decreases and approaches zero. During fiber preparation,
PbSe is susceptible to vaporization under high-temperature heating, leading to a decreased
concentration of PbSe doping, which, in turn, lowers the gain of the OAM mode.
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In OAM-mode communication systems, the pump mode can affect the signal-mode
gain and DMG, thereby compromising the balanced transmission of signals. The output
mode of the 980 nm laser is the fundamental mode, but it turns into the OAM mode of
the non-integral topological charge after passing the SPP with a wavelength of 1550 nm.
According to Equation (2), when it passes through an SPP of 1550 nm with l = 1, it can
produce an OAM beam with l = 1.58. The other orders are listed in Table 2.

Table 2. SPP orders at different wavelengths.

l (λ = 1550 nm) l (λ = 980 nm)

1 1.58
2 3.16
3 4.74
4 6.33

5. Conclusions

In summary, we proposed and experimentally validated an amplifier system that
integrates the generation, transmission, and amplification of the OAM beams. The PbSe-
doped RCF was prepared using the MCVD method, and the microscale SPP was printed
on its end face using 3D printing technology. This fiber supports the transmission of the
OAM modes with |l|= 1, 2, 3, 4. At 1550 nm, the on–off gains are >13.2 dB of four modes
and DMG is <1.7 dB. The following two aspects of the experiment can be optimized to
improve the optical amplification gain: Firstly, optimizing the fiber preparation process,
for example, by combining atomic layer deposition with MCVD technology to boost the
doping of PbSe material. Secondly, the luminescence intensity of the fiber can be increased
by using co-doping of active materials, thus improving the performance of the amplification
system. In the future, the broadband amplification of higher-order OAM beams is expected
to be achieved by preparing SPPs with different wavelengths and topological charges.
Additionally, a micro-structured SPP is suitable for all-fiber OAM mode studies, owing to
its structural stability, compactness, and integrability.
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