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Abstract: Light detection and ranging (LiDAR) is widely used in the automotive industry as it
can provide point cloud information containing precise distances. Three-dimensional (3D) object
detection based on LiDAR point clouds is significant for environment perception tasks. However,
feature learning for point clouds remains challenging. This paper proposes a two-stage voxel-based
LiDAR 3D object detector, referred to as density-aware and neighborhood attention (DenNet), that
focuses on the neighborhood information of objects. DenNet mainly integrates two modules: voxel
density-aware (VDA) and neighborhood attention (NA). VDA introduces density information of the
point cloud. Here, point cloud density information was added as voxel features in the voxel-based
framework to alleviate the information loss during voxelization. Additionally, to extract neighbor
information, the characteristics of 3D objects were analyzed for traffic scenes. The NA mechanism
was adopted, which localizes the receptive field for each query to its nearest neighboring points.
DenNet yielded competitive results, as compared with state-of-the-art methods, for the KITTI and
One Million Scenes (ONCE) datasets; notably, it afforded an improvement of 3.96% relative to the
baseline mean average precision on the more challenging ONCE dataset.

Keywords: density; 3D object detection; LiDAR; neighborhood attention

1. Introduction

Driven by the rapid developments in the intelligent vehicle industry over recent years,
various advanced photonic sensors have been deployed on vehicles to meet the growing
demands for environmental perception in the intelligent automotive industry. Among these,
light detection and ranging (LiDAR) sensors provide more accurate distance information
and are more useful under various adverse conditions, including darkness and backlight,
as compared with passive sensors such as cameras. These sensors are widely used in
lane line detection, urban scene segmentation, simultaneous localization and mapping,
and object detection. Three-dimensional (3D) object detection based on LiDAR is another
essential task; its main function entails using the point cloud information obtained via
LiDAR to classify other traffic participants in surrounding environments, such as cars and
pedestrians, and yield accurate 3D boxes [1]. It provides the basic perception information
for a series of downstream tasks such as path planning and driving following. Unlike
object detection in the image domain, 3D object detection affords 3D prediction frames.
This detection frame can be expressed using Equation (1):

B = [xc, yc, zc, l, w, h, θ, class ] (1)

where (xc, yc, zc) represents the center coordinate of a 3D box; l, w, h are the length, width,
and height of a cuboid on the ground, respectively; θ is the heading angle; and class denotes
the category of the 3D object.

Furthermore, unlike the uniform and regular pixels in 2D images, point cloud data are
sparse, unstructured, and disordered [2]. Thus, extracting features from point cloud data
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has remained an extremely challenging task. Even widely used backbone networks such as
VGG and ResNet cannot be directly employed for 3D point cloud data. Therefore, point-
and grid-based methods have emerged as possible solutions for processing. Point-based
methods use the point cloud feature network represented by PointNet to learn the original
point cloud information through downsampling and feature learning. Alternatively, grid-
based methods use the idea of image detection and divide the point cloud data into
uniform grids before processing. The mainstream division methods include pillars and
voxels. Voxels are 3D cubes that comprise certain points; the points in each cube are then
averaged and used as the feature of each voxel and input into the subsequent feature
extraction backbone network. Pillars can be considered as special voxels, wherein the voxel
size is unlimited along the vertical direction; this highlights their main advantage. Because
the vehicles do not overlap when driving normally, we divide the point cloud data evenly
according to equal-sized columns in the 3D space and extract the point cloud features in
the columns to generate a bird’s-eye view (BEV) feature map. The mature image detection
can then be used for processing. Owing to the high efficiency and ease of computation,
this is a mature detector used for intelligent driving applications. However, because of the
significant quantization loss, the upper limit of the accuracy for the pillar-based method
remains low. Hence, a voxel-based algorithm was adopted in this current study.

Based on a comparison of the object detection results on the image with the detection
results on the point clouds, as shown in Figure 1, three important pieces of knowledge are
noted: (1) In the image, the detection frames may overlap; however, in a 3D space, there will
be no overlap among the objects. Due to the imaging characteristics of LIDAR, there will be
some occlusion, which is also clearly shown in the red circle in the right picture in Figure 1.
Except for some special cases such as the moment passengers exit a car, the detection
bounding boxes and the objects on the BEV map will not overlap. (2) There is no significant
semantic correlation between two different cars. In the typical self-attention operation,
the global feature weight for a certain area is considered. However, in the autopilot scene,
vehicles moving in the opposite direction of the road are not explicitly related to the vehicles
in this lane. Therefore, it is not ideal to blindly extract global attention; instead, the main
focus should be on the perception of vehicles and their surroundings. (3) There exists a
significant difference in the density of the point clouds situated at short and long distances;
a significant difference is also noted in the density features between the vehicle and the
ground, which are clustered for target recognition and semantic segmentation in traditional
machine learning. Considering this analysis, we plan to improve the voxel-based method
based on the density characteristics and neighborhood information of the objects.
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Figure 1. Comparison between 2D object detection and 3D object detection.

Density is based on the basic principle that the closer the object is to the LiDAR,
the higher the density is. Based on this principle, there are several other flexible forms.
For instance, the density at the edge of the object is often lower than that at the center,
and the density of an occluded object is less than that of an object that is not occluded.
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Existing methods utilizing point cloud density information mainly focus on the sampling
and region-of-interest (ROI) optimization parts.

Some point-based detectors [3,4] use density information during the process of point
cloud downsampling, because point clouds with high densities occupy a large proportion
in a limited dataset if they are uniformly sampled, while the distant sparse point cloud that
needs to be sampled cannot be collected in sufficient quantities. Therefore, it is beneficial to
use the density to adjust the sampling of point clouds. Point cloud density information also
plays an important role for small objects. Compared to cars, objects such as pedestrians
tend to have a smaller reflective area and an irregular distribution. PDV [5] uses the
correlation among the density information to optimize the detection frame for the ROI
stage. It is often used in existing voxelization-based methods to adaptively adjust the ROI
receptive field as supplementary information in the ROI stage. In this paper, we believe
that the density information can directly reflect the state of the object, such as distance
and occlusion. However, the existing voxel feature extraction (VFE) algorithms ignore
the density information. The voxel features obtained in the previous steps do not contain
density features, and this can be regarded as a significant loss of information.

Based on a thorough investigation and analysis of the data in the KITTI [6] and
ONCE [7] datasets, as shown in Figure 2, under the general setting, the voxel size was set
as (0.1 m, 0.1 m, 0.15 m) for KITTI and (0.1 m, 0.1 m, 0.2 m) for ONCE, the voxels without
points which are named as empty are not included in the statistics. The number of points
in most voxels is 1 and 2, indicating a typical long-tailed distribution. Using the number
of points in each voxel as a feature of the voxel will not result in an obvious increase in
the volume of information. Therefore, we refer to the multi-scale calculation method and
interactively calculate the point cloud of a single voxel and the surrounding point cloud to
obtain the density feature and add it to the voxel.
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In the 2D backbone stage, we add the neighborhood attention (NA) [8] module, which
is based on improvements in existing transformers for point cloud applications. Currently,
there are several challenges associated with the application of transformers on point clouds,
including computational complexity and additional data for training. Analyzing the reality
of 3D objects in traffic scenes reveals that there is no overlap of the object detection frames
in the point cloud space and no strong correlation between a single object and another
object. Hence, blindly applying the global information will not afford a significant change.
Instead, this may result in an increase in the computational cost and subsequently have an
adverse impact on the detector. Thus, we apply the NA mechanism, which localizes the
receptive field for each token to its neighborhood. This helps improve the accuracy of the
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regression of the object bounding box. We also add the coordinate attention (CA) module
to improve convolutional feature representation.

The novelty and contributions of this work can be summarized as follows:

1. This work summarizes the use of density information in existing 3D object detectors
and proposes DenNet, which focuses on the density and neighbor information of
3D objects.

2. Voxel density-aware (VDA) is proposed to retain the density information during
voxelization. We also introduce NA and CA to the 2D backbone network to efficiently
enrich the token representations with fine-level information.

3. In this manner, we achieved competitive performance for the KITTI dataset, especially
in the cyclist category, where we realized state-of-the-art (SOTA) results. On the more
complex ONCE dataset, which conforms with the Chinese traffic environment, we
achieved an improvement of 3.96% relative to the baseline mAP.

2. Related Works
2.1. Voxel-Based 3D Object Detection

Unlike images, 3D point clouds are disordered and scattered across a 3D space. A
potential approach to handle such 3D point clouds is the voxelization of point clouds into
regular 3D voxels. The voxel-based 3D object detector was first proposed by Zhou et al. [9],
and its approach for extracting voxel point cloud features using VFE has been widely
integrated into subsequent studies. Yan et al. [10] proposed SECOND, which is a milestone
for voxel-based methods; under this approach, sparse convolution makes the heavy 3D con-
volution feasible in theoretical and practical applications. Deng et al. [11] proposed Voxel
R-CNN, whereby they broke the traditional perception that the accuracy of voxelization
is inferior to that of point-based detectors owing to the loss of information caused by the
voxelization of point clouds. They demonstrated that by using their process, the detection
accuracy can be improved significantly. Compared with the PV R-CNN proposed by Shi
et al. [12], its operating efficiency is also improved considerably. Moreover, Mao et al. [13]
proposed VOTR, which was the first voxel-like detector to incorporate transformers into a
3D backbone; notably, this was a successful start for the next step to introduce transformer-
like algorithms, which were highly successful in the image and natural language processing
(NLP) domains. Generally, the accuracy of voxel-based detectors is lower than that of
point-based detectors, mainly because of the inherent voxel quantization errors. This work
is based on Voxel R-CNN, which is computationally efficient and performs well on the
KITTI dataset.

2.2. Point Density Estimation

Mao et al. [14] proposed the density-aware radius prediction module, which can
adapt to different point density levels by dynamically adjusting the focusing range of
the ROIs. PDV is then used for second-stage optimization by locating voxel features
using point centroids, and ROI grid pooling is included as an additional feature to encode
local point densities. Further, kernel density estimation is used to encode the local voxel
feature density at each grid point ball query, and subsequently, a novel point density
location encoding is employed for self-attention between the grid points coding. Starting
from the classical approach, Gao et al. [15] proposed a dynamic clustering algorithm in
order to accommodate the spatial inhomogeneity of the point cloud distribution. The
algorithm uses elliptic functions to describe the neighborhood and dynamically adjusts
the semi-minor and semi-major of the nearest neighbors according to the location of the
core points. Ning et al. [4] proposed DA-3DSSD, which was a point-based detector. By
introducing density information, a density-aware factor was added to the sampling process,
and the density weight was introduced into the process of sampling the farthest point. This
helped improve the detection of sparse objects by retaining additional foreground points.
Compared with the aforementioned studies, in this work, we directly added the density
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information in the voxelization process, which afforded a good foundation for high-quality
proposals in a single stage.

2.3. Transformers for 3D Object Detection

Transformer models such as encoder–decoder architectures have become the most
widely adopted algorithms in NLP. They have been integrated into computer vision as well,
owing to their ability to model long-range dependencies. As a type of irregular variable-
length data, 3D point cloud data are more suitable for the transformer, and thus, they have
attracted significant attention worldwide. Sheng et al. [16] proposed a two-stage detector
called CT3D, which was based on channel transformation, to improve 3D object detection
performance. The input to the channel transformer originated from the region proposal
network. Further, a channel-wise decoding module was used to enrich the query–key
interactions through channel-wise reweighting, which effectively incorporated multi-level
contexts. Mao et al. [13] further introduced VOTR, which was the first transformer-based
backbone for 3D object detection. They proposed a submanifold voxel module and a
sparse voxel module to extract features from non-empty and empty voxels, respectively.
Fan et al. [17] also proposed SST, which adopted a pure transformer structure and replaced
the stride with a single stride. Driven by its local attention mechanism and ability to handle
sparse data, the detector could overcome receptive field shrinkage under the single-stride
setting and also prevent heavy computational overheads. The proposed NA module is
based on the neighborhood attention transformer that was proposed by Hassani et al. [8],
which is an efficient, accurate, and scalable hierarchical transformer.

3. Methods

As shown in Figure 3, a VDA module was added to the original Voxel R-CNN with
the aim of extracting voxel density features. Further, the multi-scale NA module and
coordinate attention (CA) module were added to the 2D backbone to deal with BEV maps.
We introduce these two modules separately in the following sections.
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R-CNN. First, we design the voxel density-aware (VDA) module, which can extract density features.
Second, the 2D backbone is optimized by adding the NA and CA modules; the original structure is
subdivided into three stages such that additional contextual information can be extracted.
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3.1. Revisiting Voxel R-CNN Backbone

The baseline of the proposed approach is the Voxel R-CNN, which is a voxel-based
detector. Many existing high-performance 3D detectors are point-based because their
structure helps in preserving precise spatial information better. However, point-wise
features incur high computational overheads because of the unstructured storage. By
contrast, the voxel-based structure is more suitable for feature extraction. Voxel R-CNN
breaks this notion, and even coarse-grained voxel blocks can provide sufficient spatial
information. The previous voxel-based method was not so effective because the original
3D voxel features were no longer used after the 3D voxel feature map was reshaped into
a 2D BEV feature map; hence, spatial information was lost. Usually, the feature and
region information of the two-level detection framework is obtained directly from the 2D
backbone, while the Voxel R-CNN obtains the feature information from the 3D backbone to
avoid information loss.

VFE and 3D Backbone: Currently, the most common approach for point cloud fea-
ture aggregation within voxels is performing simple coordinate averaging and intensity
averaging over all point clouds. Given a point cloud, VFE subdivides the 3D space into
equally spaced voxels. The 3D backbone can then extract voxel-wise features and convert
the sparse 3D data into a 2D BEV image along the Z-axis; its overall structure follows the
design of SECOND. In the 3D backbone, there are four stages of downsampling, with each
stage consisting of two submanifold convolutional blocks (SubM block) and one sparse
convolution (SpConv).

The 2D Backbone: The BEV feature map, which is a 256× X/8×Y/8 pseudo-image
representation that is transformed from the 3D feature map, is the input for the 2D backbone.
X and Y mean the original input to the 3D backbone. The 2D backbone consists of two stages
for extracting multi-scale features. Specifically, each stage starts with a 3 × 3 downsampled
convolution layer for 2× downsampling; the following five 3 × 3 convolutions are used
for feature extraction. BatchNorm and ReLU layers are applied after each of the five 3 × 3
convolutional layers. We then upsample the output of each stage to a feature map with the
same size and concatenate these feature maps into one feature map. Compared with the
original 2D backbone, our improvements are mainly reflected in the 2 OA modules. We
use a 64-dimension NA module and a 128-dimension NA module to obtain multi-scale
information including cross-channel, direction-aware, and position-sensitive information.
The modified 2D backbone is presented in Figure 4.
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3.2. Voxel Density-Aware Module
3.2.1. Original Mean VFE

We assumed that the point cloud encompasses 3D spaces with ranges D, H, and W
along the Z-, Y-, and X-axes, respectively. We defined each voxel of size vD, vH , and
vW accordingly. The resulting 3D voxel grid has the size: D′ = D/vD, H′ = H/vH ,
W ′ = W/vW . Thereafter, the points were grouped according to the voxel they occupy. To
balance the number of points within a voxel, if a voxel has more than five points, it needs
to be downsampled to five points.

The voxel feature is denoted as V =
{

fi = [xi, yi, zi, ri]
T ∈ R4

}
i=1...t

, that is, as a non-
empty voxel containing t ≤ T LiDAR points, where fi contains X, Y, and Z coordinates for
the i-th point and ri is the received intensity. The mean VFE indicates the average of the
coordinates and intensities of each point, and the coordinate average is used as the center
of the voxel.

3.2.2. VDA Module

To add density information, we proposed the VDA module. The density of a point in
a point cloud can be defined by the number of points within a fixed distance around the
point, or it can be defined by the average distance of a fixed number around the point. In
this article, we focus on the number of points. Thus, this work defines the point density as
the number of points within the fixed radius of the point. If the original point cloud is used
as input, when the query radius is set as 1.2 m, the density of dense points can reach 3000,
and the density of sparse points is less than 5, which is negative for extracting features.
Thus, we use the voxel-filtered point cloud as our input, which ensures that the density of
the point cloud is not too high in dense areas. Considering that the number of point clouds
in a single voxel contains less information under the current voxel size setting, we adopted
a multi-scale method to extract the point cloud density.

As shown in Figure 4a, to reduce the computational cost, we first added the virtual
center point (red point) of the voxel in the point cloud set. The number of points in a sphere
with a fixed radius r at a certain point is defined as the density of the point.

As illustrated in Figure 4b, to better model the interaction between the point and
the surrounding points in different ranges, we used a multi-scale method to extract the
density feature of the center point. Multi-scale means that the number of point clouds
in different-radius spherical regions is used as a multi-scale feature. Figure 4c shows the
process of extracting the density features. We used a light 3D sparse convolution with
kernel size = 3, stride = 2, and depth = 16. Then the density features extracted by 3D
sparse convolution were projected onto the BEV map through height compression and
concatenated with the original BEV features from the sparse convolution network.

3.3. Modified 2D Backbone
3.3.1. Neighborhood Attention (NA)

NA is a simple and flexible attention mechanism for vision; it localizes the receptive
field for each token to its neighborhood. We adopt NA based on the reality of 3D object
detection: it has no physical correlation with another vehicle for a LiDAR point cloud object.
Although in some datasets it may be possible to include certain implicit data through
global attention, this will affect the generalization of the model. Therefore, coarse-grained
global attention is not necessary for 3D object detection. For a single object, the correlation
among the various modules in the object is more significant. Further, owing to the imaging
characteristics of LiDAR, object point clouds do not exist on the periphery of the object;
thus, none of the objects appear as significantly large or small on the BEV, and their sizes
are relatively fixed. Therefore, limiting the receptive field for each token to its neighbor is
essential for improving the object detection effect and avoiding high computing costs.

As shown in Figure 5, NA is similar to self-attention. However, each pixel in the BEV
map can only attend to its neighboring pixels. H and W represent the length and width of
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the feature map, respectively, and C represents the number of channels. The neighborhood
set of a pixel at (i, j) is denoted as n(i, j), and the length of the neighborhood set is fixed by
the kernel size K. For a neighborhood with the size L × L, || n(i, j) || = L2. NA on a single
pixel can be defined as follows:

NA
(
Xi,j
)
= softmax

(
Qi,jKT

ρ(i,j) + Bi,j

scale

)
Vn(i,j) (2)Photonics 2022, 9, x FOR PEER REVIEW 9 of 16 
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Here, Q is the linear projection of pixel (i, j), K and V are linear projections of n(i, j),
and Bi,j denotes the relative positional bias, which is added to each attention weight
based on its relative position. This equation can further be extended to all pixels (i, j),
adopting a localized attention form. If the pixel is located at the corner, the neighborhood
will also be an L × L grid; however, the query will not be positioned at the center. The
computing cost of the original self-attention is O

(
3HWC2 + 2H2W2C

)
, whereas that of

NA is O
(
3HWC2 + 2HWCL2).

3.3.2. 2D Backbone with Neighborhood Attention and Coordinate Attention

As shown in Figure 6, we modified the 2D backbone by adding NA and CA modules.
The NA module can help extract neighboring features, whereas the CA module can aid
in embedding the location information into channel attention. The BEV map output from
the 3D backbone contains rich spatial information, and the resulting region proposals are
important for the final classification and regression analyses. Further, the BEV map is a 3D
space extrusion for generating a 2D image; hence, its spatial structure appears with a certain
degree of aliasing. Remote spatial interaction information (long-distance interactions) can
be captured using accurate location information via coordinate attention; this, in turn, can
help in separating the correct target area from the background.
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4. Experimental Results
4.1. Dataset and Network Details

ONCE: The ONCE dataset, which was made available in 2021 as an autonomous
driving dataset, contains 1 million LiDAR scenes. It uses 40-beam LiDAR and contains rich
urban scenes from China. The distribution of traffic participants in this dataset is similar
to that in China, and it contains rich weather conditions. Additionally, unlike the simple,
medium, and difficult forms of segmentation in the KITTI dataset, the ONCE dataset is
divided into three distance ranges: far, medium, and near. In particular, it subdivides
vehicles into three classes: cars, buses, and trucks; this detailed division facilitates better
testing of the detection performance as it allows for greater inter-class distances and fewer
intra-class variations. In our experiments, we considered 4000 sheets for the training set
and 4000 sheets for the test set.

KITTI: The KITTI dataset is widely used in the autonomous driving community. It
contains 7481 training samples and 7518 testing samples. As the main collection location
was a city in Germany, it represents a more ideal environment. According to the division
provided by OpenPCDet [18], we divided the 7481 training samples into two further
categories, i.e., the training and validation sets, during the process of optimizing the
algorithm. The KITTI dataset also contains three categories for detection: cars, pedestrians,
and cyclists. It should be noted that as pedestrians and cyclists are fewer in number, their
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results fluctuate considerably, and the difference between the validation and test sets is
large. Hence, we prefer to use the moderately difficult car detection results to measure the
performance of the detector. Evaluations of the detection effectiveness for small objects
such as pedestrians and bicycles were performed using the ONCE dataset. The authority
of the KITTI dataset is ensured by the fact that it strictly limits the number of test results
submitted to its official server.

We trained DenNet with a batch size of 8 for 100 epochs, using two Nvidia RTX
Quadro 6000 GPUs. The Adam optimizer with a one-cycle policy was used to train our
DenNet model. The maximum learning rate was set to 0.003, division factor was set to 10,
momentum range was set from 0.95 to 0.85, and weight decay was set to 0.01. The voxel
size was set as (0.1 m, 0.1 m, 0.15 m) for the KITTI dataset, whereas it was set as (0.1 m,
0.1 m, 0.2 m) for the ONCE dataset. VDA adopts ball queries with radii of 0.6 m and 1.8 m
to extract density features. The kernel size of the NA module was set as 7 × 7.

The average precision (AP) is the main evaluation metric used for object detection
models. The evaluations of both the test and validation sets entailed 40 recall positions,
represented as AP_40, which is more ideal than the assessment method based on 11 recall
positions.

4.2. Results and Analysis
4.2.1. Evaluation with KITTI Dataset

Table 1 shows the results of our DenNet module on the test set of the KITTI dataset.
Our method yields competitive results on the KITTI test set when using LiDAR point
clouds alone. Specifically, on the KITTI test set, our model achieves AP values of 82.03%,
40.23%, and 64.15% for the vehicle, pedestrian, and cyclist categories at moderate difficulty,
respectively. In general, the results obtained are not significantly better than the baseline
on the KITTI set. We believe that this might be because the KITTI dataset does not contain
sufficient data for training, especially under the vehicle and pedestrian categories. Table 1
shows the results for the validation set of the KITTI dataset. It is important to note the large
discrepancy between the validation and test sets for the pedestrian and cyclist detection
results. Based on a comparison of the performance of other algorithms under these two
categories, we consider the existence of this difference to be acceptable. This was likely
caused by the inter-domain differences between the two datasets, given that the number
of pedestrians and bicycles is limited in the KITTI dataset. Owing to the limitations in
submissions to the official servers of the KITTI dataset, we conducted more extensive
experiments on the validation set, as shown in Table 2. As a result, we achieved SOTA
results under the cyclist category. Figure 7 shows the qualitative results achieved on the
KITTI validation set. It should be noted that after the visualization results, we found
that the data annotations of certain pedestrians in the KITTI dataset were not accurate;
specifically, some evident pedestrians were not labeled. This may explain the decrease in
the accuracy of our model under the pedestrian category.

4.2.2. Evaluation with ONCE Validation Set

Comparison with Baseline: As indicated in Table 3, the mAP of DenNet is 60.31%,
which indicates an increase of 3.96% over that of the original Voxel R-CNN. In terms of
vehicle detection, the proposed method afforded improvements of 2.81%, 7.97%, and 10.52%
for the short, medium, and long distances, respectively, as compared with the baseline. The
proposed DenNet also achieved the best detection performance for cyclists, with results
4.20%, 6.01%, and 7.59% higher than those of Voxel R-CNN in the short, medium, and long
distances, respectively. By adding the original Voxel R-CNN, in terms of the detection of
pedestrians, the average accuracy of DenNet was roughly the same; however, its results
were 3.08% and 0.64% better than those of the original Voxel R-CNN in the medium and
long distances, respectively. Based on a comparison of the original Voxel R-CNN with the
proposed DenNet, it was found that our DenNet performs much better on long-distance
and small objects. In particular, for vehicles located at a distance of 50 m, the detection
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accuracy exceeds the baseline by 10.52%. The visualization results for the ONCE dataset
are shown in Figure 8.

Table 1. Performance comparison on the KITTI test set. All results were evaluated based on the mean
average precision with 40 recall positions via the official KITTI evaluation server. The best results are
presented in bold, whereas the second-best results are underlined.

Method Type
Car 3D Detection (IoU = 0.7) Ped. 3D Detection (IoU = 0.7) Cyc. 3D Detection (IoU = 0.7)

Easy Mod. Hard. Easy Mod. Hard. Easy Mod. Hard.

SECOND [10] 1-stage 84.65 75.96 68.71 45.31 35.52 33.14 75.83 60.82 53.67
PV-RCNN [12] 2-stage 90.25 81.43 76.82 52.17 43.29 40.29 78.60 63.71 57.65

PointPillars [19] 1-stage 82.58 74.31 68.99 51.45 41.92 38.89 77.10 58.65 51.92
PointRCNN [20] 2-stage 86.96 75.64 70.70 47.98 39.37 36.01 74.96 58.82 52.53
PointGNN [21] 1-stage 88.33 79.47 72.29 51.92 43.77 40.14 78.60 63.48 57.08

Part-A2 [22] 2-stage 87.81 78.49 73.51 53.10 43.35 40.06 79.17 63.52 56.93
TANet [23] 2-stage 84.39 75.94 68.82 53.72 44.34 40.49 75.70 59.44 52.53
3DSSD [24] 1-stage 88.36 79.57 74.55 - - - - - -
SASA [25] 1-stage 88.76 82.16 77.16 - - - - - -

Voxel R-CNN [11] 2-stage 90.90 81.62 77.06 - - - - - -
PDV [5] 2-stage 90.43 81.86 77.36 - - - 83.04 67.81 60.46

DenNet (Ours) 2-stage 90.72 81.93 77.48 46.10 40.23 33.47 78.89 64.15 56.81

Table 2. Performance comparison on KITTI validation set. The best results are presented in bold,
whereas the second-best results are underlined.

Method
Car 3D Detection Ped. 3D Detection Cyc. 3D Detection

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PV-RCNN [12] 90.25 81.43 76.82 52.17 43.29 40.29 78.60 63.71 57.65
3DSSD [24] 91.04 82.32 79.81 59.14 55.19 50.86 88.05 69.84 65.41
IA-SSD [26] 91.88 83.41 80.44 61.22 56.77 51.15 88.42 70.14 65.99
CT3D [16] 92.34 84.97 82.91 61.05 56.67 51.10 89.01 71.88 67.91
PDV [5] 92.56 85.29 83.05 66.90 60.80 55.85 92.72 74.23 69.60

SASA [25] 91.82 84.48 82.00 62.32 58.02 53.30 89.11 72.61 68.19
Voxel R-CNN [11] 92.86 85.13 82.84 69.37 61.56 56.39 91.63 74.52 70.25

DenNet (ours) 92.62 85.39 82.83 66.26 59.52 54.15 93.22 75.27 70.59
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Table 3. Performance comparison on ONCE validation set. The best results are presented in bold,
whereas the second-best results are underlined.

Method
Vehicle Pedestrian Cyclist

mAP
Overall 0–30 m 30–50 m >50 m Overall 0–30 m 30–50 m >50 m Overall 0–30 m 30–50 m >50 m

PointPillars [19] 68.57 80.86 62.07 47.04 17.63 19.74 15.15 10.23 46.81 58.33 40.32 25.86 44.34
SECOND [10] 71.19 84.04 63.02 47.25 26.44 29.33 24.05 18.05 58.04 69.96 52.43 34.61 51.89

CenterPoints [27] 66.79 80.10 59.55 43.39 49.90 56.24 42.61 26.27 63.45 74.28 57.94 41.48 60.05
PV-RCNN [12] 77.77 89.39 72.55 58.64 23.50 25.61 22.84 17.27 59.37 71.66 52.58 36.17 53.55

PointRCNN [20] 52.09 74.45 40.89 16.81 4.28 6.17 2.40 0.91 29.84 46.03 20.94 5.46 28.74
IA-SSD [26] 70.30 83.01 62.84 47.01 39.82 47.45 32.75 18.99 62.17 73.78 56.31 39.53 57.43

Voxel R-CNN [11] 73.53 87.07 65.59 49.97 35.66 42.38 29.80 18.15 59.85 73.57 51.59 33.65 56.35
DenNet (Ours) 80.24 89.88 73.57 60.49 35.68 41.72 32.88 18.79 65.59 77.77 57.60 41.24 60.31
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Comparison with State-of-the-Art Methods: Table 3 also shows the performance of
other SOTA methods on the ONCE benchmark. It can be observed that the proposed
method fared well against these SOTA methods in the vehicle categories, which is the most
important metric; notably, our proposed method exceeded the second-best results, which
come from PV-RCNN, by 0.49%, 1.07%, and 1.85%. Under the cyclist category, the average
accuracy of our method was similar to those of the SOTA methods. The performance of our
method is better than the central point method in the vehicle and cyclist classes, but not
as good as the center-based [27] method in the pedestrian class. This is mainly due to the
shortcomings of the anchor-based method. Nevertheless, compared with SOTA methods, it
is evident that the proposed DenNet is better at detecting small and far-away instances.

4.3. Ablation Study

Due to the lack of significant changes in the results evaluated on the KITTI dataset and
certain errors found in the KITTI labeling, for a detailed comparison of the performance of
each proposed module, the ONCE dataset was used for ablation studies. The corresponding
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results are shown in Table 4. In this case, we adopted the overall mAP of each class of
objects as the result.

Table 4. Ablation study on ONCE validation set.

VDA NA CA Vehicle Pedestrian Cyclist mAP Inference Time (ms)

73.53 35.66 59.85 56.35 27.72
X 78.82 28.94 61.24 55.89 32.99
X X 79.94 32.28 64.35 58.86 34.68
X X X 80.24 35.68 65.59 60.31 35.56

4.3.1. Effectiveness of VDA Module

After adding the VDA module, the mAP was reduced by 0.46%, as compared with the
baseline; in particular, the value for the pedestrian category was 6.72% lower than the base-
line. However, the values for the vehicle and cyclist categories showed improvements of
5.29% and 1.39%, respectively. This indicates that the density information, as an important
physical quantity, implicitly encodes the distribution of point clouds, thus restoring the
loss of point cloud details caused by voxelization, albeit to a certain extent.

4.3.2. Effectiveness of NA and CA Modules

Based on the modified 3D backbone, the proposed NA module and CA module were
added to the original 2D backbone. In the first stage, the NA module offers the advantage
of self-attention, that is, identifying correlations across different parts. Simultaneously,
considering the actual situation of the three-dimensional target, the receptive field is limited
to its local area, which significantly reduces the computational time. The mAP of the NA
module exceeds that of the original Voxel R-CNN by 2.51%. Multi-scale CA modules model
the inter-channel relationships and capture the long-range dependencies with precise
positional information; this augments the input features and increases the expressiveness
of the object. Thus, the CA modules afforded an improvement of 1.45% over Voxel R-CNN
with VDA and NA modules.

5. Conclusions

In this study, a novel, two-stage voxel-based LiDAR 3D object detector, called DenNet,
was developed; in particular, DenNet accounts for the importance of densities in 3D
detection by introducing the density information of point clouds as an important voxel
feature at the initial stages. To better aggregate the information around the voxel, NA in
the BEV map was used to explore the relationship between local structures. Furthermore,
coordinate attention was also introduced to the inter-channel relationships of the model for
capturing long-range dependencies with precise positional information. DenNet afforded
better results than SOTA methods on the KITTI and ONCE datasets. The results of this
study are expected to serve as guidelines for future 3D object detectors and help understand
the significance of density information. Moreover, in industrial applications, our results
can help smart cars perceive the surrounding environment better.
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