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Abstract: In the current study, we aim to limit the power dissipation in amorphous silicon solar cells
by enhancing the cell absorbance at different incident angles. The current improvement is justified by
adding the single-period of ternary 1D photonic crystal with texturing on the top surface, which acts
as an anti-reflecting coating. The texturing shape gives the photons at least two chances to localize
inside the active area of the cell. Therefore, it increases the absorbance of the cell. Moreover, we
add binary one-dimensional photonic crystals with the features of a photonic band gap, which acts
as a back mirror to return the photons that were transmitted inside the cell’s active region. The
considered structure is demonstrated by the well-defined finite element method (FEM) by using
COMSOL multiphysics.

Keywords: amorphous silicon solar cell; one-dimensional photonic crystals; finite element method;
photonic band gap sensor; COMSOL multiphysics

1. Introduction

The photovoltaic effect is the conversion of light into energy by a solar cell, which
is a two-terminal semiconducting device. Despite the fact that the phenomena has been
known for more than a century [1], its uses and influence remained limited due to its initial
high cost when compared to other alternatives such as oil and nuclear power plants. In
1954, Chapin et al. built the first solar cells with a six percent efficiency using crystalline
silicon technology [2]. Since then, Si technology has been regarded as the PV market’s black
horse [3–6]. Furthermore, Si-based PV technology accounts for between 80% and 90% of the
market; however, it is anticipated that c-Si PV panels’ market share will decline from 92%
in 2014 to 44.8% in 2030 [7]. The low efficiency of silicon solar cells pushed researchers to
limit power dissipation by using an artificial material, which is known as photonic crystal
(PCs) [8].

PCs are artificially created inhomogeneous structures with periodic changes in re-
fractive indices in one dimension and a homogeneous in the other two dimensions, and
are classified as 1D-PCs, 2D-PCs, and 3D-PCs [9–12]. PCs alter the propagation of inci-
dent electromagnetic waves in several ways [13,14]. The use of 1D-PCs is widespread
in several applications owing to its low cost, ease of fabrication, and high control of the
electromagnetic wave localization. Therefore, it is used in water desalination [15], wave
guides, sensors [16,17], and advanced optical devices. Additionally, 1D-PCs can be essential
for improving solar cell efficiency [18,19].

Numerous PC topologies were demonstrated as a result, with the aim of decreasing
the reflectance of a silicon surface for solar cell applications [20,21]. Recently, researchers
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and scientists devoted their efforts to limiting the power dissipation in silicon solar cells
to enhance the conversion efficiency by using photonic crystals [22–24]. Due to the high
contrast between silicon and air, most of the incident electromagnetic waves are reflected
from the silicon’s top surface, wherein the reflectivity of amorphous silicon reaches 35%,
as reported by Sprafke et al. [25]. Additionally, without any anti-reflection coating, the
National Renewable Energy Center (CENER) used a chemical approach to alter the surface
morphology of amorphous silicon that is texturized with inverted pyramids: the reflectivity
is increased to 16%, as demonstrated by Anderson et al. [26].

Furthermore, surface texturing for thin-film silicon solar cells was a focus of research
in recent decades [27]. Therefore, the structure of PCs is immersed between air and the
silicon cell as an anti-reflection coating (ARC) to degrade the refractive index and increase
the absorbance of the cell.

For a more practical procedure, physical vapor oblique angle deposition (PV-OAD) in
an electron bombardment evaporator reactor could be used to create the 1D-PCs at room
temperature [28–30]. The thicknesses of layers are regulated by adjusting the evaporation
rate, which ranges from 1 to 1.5 (Å·S−1). ITO glass and a Si (100) wafer are both flat
substrates that are positioned at a zenithal evaporation angle (α) of 70◦ in relation to the
evaporation source. In order to construct the structure with a texturing morphology, the
substrate is rotated by 180 degrees around the azimuthal axis (φ) every 500 nm until the
required thickness is reached. The multilayer structure is then deposited under similar
circumstances. Between each layer, the substrate is additionally azimuthally rotated by
180 degrees [31].

The goal of this research is to develop simple and efficient structures for each anti-
reflection coating (ARC) and back reflector that improves the optical characteristics of a-si
solar cells. To begin, ARC structures are made up of texturing ternary 1D-PCs for one
period, as the texturing shape gives the photons at least two chances to localize inside the
active area of the cell. Moreover, texturing surfaces increase the absorbance at different
incident angles in contrast to planner ternary PCs. Then, we design 1D-PCs with the concept
of photonic band gap (PBG) to deal with the leakage photons within the electronic energy
gap of the hydrogenated amorphous silicon solar cell (Eg = 1.7 ev), which represents the
photons from 350 nm to 730 nm. In Section 2, we provide a basic review of theoretical
modelling. The numerical results and conclusions are then explained separately.

2. Modeling and Simulation

In this part, we are concerned with the designed structure to trap all of the incident
electromagnetic waves in the visible spectrum to generate electron–hole pairs to produce
electricity. Firstly, we study the fundamental concepts of the geometry of the structure and
its effect on light trapping. Then, we show a brief theoretical and simulation model with the
COMSOL multiphysics program, which is based on the fundamentals of the finite element
method (FEM). Here, Figure 1 represents the considered structure of the hydrogenated
amorphous silicon (H: a-Si) solar cell with a modification in each anti-reflection coating and
back reflector. Also, in Figure 2, we illustrate the path of the photon inside the texturing
surface to localize in the active area of the cell, wherein the shape of the pyramid gives
the photons at least two chances to localize on the active layer of the cell. Therefore, the
absorption characteristics of the solar cell in the presence of an anti-reflective coating on
the cell’s top surface could be investigated using wave optics and semiconductor modules,
which is expected to decrease the reflectivity and increase the absorbance of the cell as in
Equation (1) [32,33].

A(λ) = 1− T(λ)− R(λ) (1)

where T(λ), and R(λ) are the transmittance and reflectance as a function of incident
wavelength, respectively. Additionally, it is necessary to solve the Poisson (Equation
(2)) and continuity (Equations (3) and (4)) equations in order to estimate the electrostatic
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potential, electron concentration n (cm−3), and hole concentration p (cm−3) as functions of
space [33,34].

∇·(εs∇φ) = −ρ (2)

∂n
∂t
− 1

q
∇·Jn + Un = 0 (3)

∂p
∂t
− 1

q
∇·Jh + Uh = 0 (4)

where εs and ρ are the semiconductor permittivity and space charge density, respectively, q
is the electron charge, (Jn, Jh) are current densities [A/cm2], and Un, Uh are the net number
of electrons and holes recombined in the unit of time and volume [1/

(
S·cm3)].

P = q(n− p + NA −ND) (5)

Un = Rn −Gn (6)

Uh = Rh −Gh (7)

where Gn, Rn are the generation and the recombination rates of electrons where in, Gh, Rh
are generation and recombination rate of holes, respectively. The active area of the cell
consists of the p-region, intrinsic region, and n-region, with thicknesses of 15 nm, 200 nm,
and 27 nm, respectively. As seen in Figure 1, this disintegrates into a silicon wafer.

For the simulation procedure, the meshing size must be 10 times smaller than the
smallest incident wavelength, in order to obtain more accurate results in the finite element
method, as we discuss in our previous work [19]. The simulation meshing parameters
are the maximum element size equal to 3× 10−9 (m), minimum element size equal to
1.51× 10−10 (m), and the maximum element growth rate is 1.3.
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Figure 2. Schematic diagram of texturing surface with a path length of incident photons. (A) 3D
structure, (B) side view.

3. Results and Discussion

Our results and discussions are displayed through three stages; firstly, we show the
effect of inserting an anti-reflection coating above the upper surface of amorphous silicon
solar cells on the absorbance of the cell by reducing the amount of reflected spectrum.
Then, in the second stage, we show the optical properties of the one-dimensional photonic
crystals that act as a back reflector to the cell. Finally, we show the absorbance of the cell
with each anti-reflection coating and back reflector by changing the incident angle. We also
compute the optical generation of electron–hole pairs, which indicates the overall efficiency
of the cell.

3.1. Anti-Reflection Coating

We design step-index structures to reduce the dielectric contrast between the air
and amorphous silicon to reduce the reflection spectrum. Here, in Figure 3, we compare
1D binary PCs and ternary PCs in reaching low reflectivity at normal incidence. The
binary ARC is composed of (AB)N ; the A layer is silicon dioxide (SiO2), with thickness
(d1 = 54 nm) and refractive index (n1 = 1.46) [35], the B layer is titanium dioxide (TiO2)
with d2 = 82 nm and n2 = 2.5 [36], and N equal one period. Also, the ternary ARC is
composed of (ACB)N ; the A layer is SiO2 with d1 = 54 nm and n1 = 1.46; the C layer
is silicon nitride (Si3N4) with d2 = 33 nm and n2 = 2.0167 [37]; the B layer is TiO2 with
d3 = 82 nm and n3 = 2.5, and N equal one period.
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Figure 3. Hydrogenated amorphous silicon solar cell (a-Si: H) absorption spectrum with anti-reflective
coating The binary ARC is composed of silicon dioxide deposed on titanium dioxide with thickness
54 nm and 82 nm, respectively. Also, the ternary ARC is composed of silicon nitride with a thickness
of 33 nm immersed between silicon dioxide and titanium dioxide with thicknesses 54 nm and 82 nm,
respectively.

Here, we find in the case of 1D ternary PCs, the absorption reaches 80% at an incident
wavelength equal to 500 nm, which is higher than the others. Due to the ternary structure,
we verify the step-index as the following equation.

nair < nSiO2 < nSi3 N4 < nTiO2 < na−Si

Therefore, increasing the number of layers with step-index between the air and amor-
phous silicon causes enhancement of the cell absorbance, as shown in Figure 3. However,
we still have an effective amount of reflective spectrum. Thus, we texture the top surface of
the anti-reflection coating, as the texturing surface give the photons at least two chances to
localize inside the cell, as we discussed previously in Section 2.

In Figure 4, we show the absorbance of amorphous silicon solar cells with the opti-
mized ternary PCs as in Figure 3, and ternary PCs with added texturing from silicon dioxide
on the surface with different heights of the texturing. Here, with height (h) = 25 nm, the
absorbance (A) = 87% is enhanced with respect to the ternary planner (A = 80%) at
incident wave (λ = 500 nm) as shown; also, the result for h = 50 nm is approximately
the same as h = 25 nm. However, by increasing the height to 100 nm, the absorbance is
decreased as (A = 77%) at the same incident wavelength. In addition, the absorbance is
not affected by changing the width of the texturing. All the last results are at the normal
incidence. Therefore, we must study the effect of the incident angle on the cell absorbance,
as in the following Section 3.2.



Photonics 2022, 9, 813 6 of 15
Photonics 2022, 9, x FOR PEER REVIEW 6 of 16 
 

 

 

Figure 4. Hydrogenated amorphous silicon solar cell (a-Si: H) absorption spectrum with ternary 

anti-reflective coating with texturing on the top surface with different heights as shown. The ternary 

ARC is composed of silicon nitride with a thickness of 33 nm immersed between silicon dioxide and 

titanium dioxide with a thickness of 54 nm and 82 nm, respectively. 

3.2. Back Reflector 

In the subsection, before we design the back reflector, we must calculate the reflected 

and transmitted spectrum from the cell with ARC to determine the effective range of the 

designed back reflector. Thus, Figure 5 shows the reflected and transmitted spectrum 

from the modified cell in the last subsection by adding the ARC optimum structure. Here, 

we find that the reflectivity is very small as to the effect of adding ARC. We also find that 

the photons from 550 nm to 730 nm are transmitted from the cell with a remarkable ratio, 

as shown. Therefore, we design one-dimensional binary photonic crystals to create a 

photonic band gap in the range of the transmitted photons from 550 nm to 730 nm. The 

binary back reflector is composed of (𝐴𝐵)𝑁 , the A layer is silicon dioxide (𝑆𝑖𝑂2), with 

thickness (𝑑1 = 40 nm) and refractive index (𝑛1 = 1.46) [32], the B layer is silicon (𝑆𝑖) 

with 𝑑2 = 75 nm and 𝑛2 = 3.3 [38,39], and the number of periods (N) equal to 12 periods, 

as shown in Figure 6. 

300 400 500 600 700 800

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
b

s
o

rp
ti

o
n

Wavelength [nm]

 planner ternary

 Texturing with H = 100 nm

 Texturing with H = 25 nm

 Texturing with H = 50 nm

 

 

Figure 4. Hydrogenated amorphous silicon solar cell (a-Si: H) absorption spectrum with ternary
anti-reflective coating with texturing on the top surface with different heights as shown. The ternary
ARC is composed of silicon nitride with a thickness of 33 nm immersed between silicon dioxide and
titanium dioxide with a thickness of 54 nm and 82 nm, respectively.

3.2. Back Reflector

In the subsection, before we design the back reflector, we must calculate the reflected
and transmitted spectrum from the cell with ARC to determine the effective range of the
designed back reflector. Thus, Figure 5 shows the reflected and transmitted spectrum
from the modified cell in the last subsection by adding the ARC optimum structure. Here,
we find that the reflectivity is very small as to the effect of adding ARC. We also find
that the photons from 550 nm to 730 nm are transmitted from the cell with a remarkable
ratio, as shown. Therefore, we design one-dimensional binary photonic crystals to create a
photonic band gap in the range of the transmitted photons from 550 nm to 730 nm. The
binary back reflector is composed of (AB)N , the A layer is silicon dioxide (SiO2), with
thickness (d1 = 40 nm) and refractive index (n1 = 1.46) [32], the B layer is silicon (Si) with
d2 = 75 nm and n2 = 3.3 [38,39], and the number of periods (N) equal to 12 periods, as
shown in Figure 6.

In Figure 6, we find that the considered structure allows wavelengths between 350 and
550 nanometers to be transmitted through it, as shown in the p-color figure. It completely
blocks the photons in the wavelengths from 550 nm to 750 nm, as in p-color, which
is considered the photonic band gap of the structure, and this is very suitable for our
modified amorphous silicon cell. Therefore, we add the last structure as a back reflector of
our structure of amorphous silicon with a texturing anti-reflection coating.
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Figure 5. Spectrum of transmission and reflection for ternary anti-reflecting solar cells made on
hydrogenated amorphous silicon (a-Si: H) with texturing on the top surface with heights equal to
50 nm. The ternary ARC is composed of silicon nitride with a thickness of 33 nm immersed between
silicon dioxide and titanium dioxide with a thickness of 54 nm and 82 nm, respectively.
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3.3. The Optical Properties of the Cell

In this subsection, we study the optical properties of amorphous silicon solar cells
with each textured anti-reflection coating and one-dimensional photonic crystals as a back
reflector. In addition, we study the effect of incident angle in the environment of the cell to
show the best structure for the cell with high efficiency. Finally, we calculate the optical
generation rate of electron–hole pairs in the active area of the cell.

In Figure 7, we notice that the absorbance is enhanced by adding a back reflector in
the range of photonic bandgap, as in Figure 6. That is why the back reflector reflects the
transmitted photons to localize in the active area, which increases the absorbance of the
cell. These are the last results are at the normal incidence, therefore, we study the effect of
the incident angle to choose the best structure, as the incident angle is varying during the
hours of the day.
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Figure 7. Hydrogenated amorphous silicon solar cell (a-Si: H) absorption spectrum with ternary
anti-reflective coating with texturing on the top surface with a height equal to 50 nm. The ternary
ARC is composed of silicon nitride with a thickness of 33 nm immersed between silicon dioxide
and titanium dioxide with a thickness of 54 nm and 82 nm, respectively. Also, the back reflector is
composed of silicon dioxide and silicon, with thicknesses of 40 nm and 75 nm, respectively. The
number of periods equals 12.

In Figure 8, we study the absorbance of the cell at the oblique incident for planner
ternary ARC and textured surfaces with different heights (25 nm and 50 nm). The ab-
sorbance is decreased by increasing the incident angle for all different structures of ARC,
and the difference between the absorbance of the three structures is increased by increasing
the incident angle. The best structure for all incident angles is the texturing surface with
a height equal to 50 nm, as shown. Therefore, we show in Figure 9 the absorbance of the
cell with texturing ARC when the height of the pyramids equals 50 nm. Here, we notice
that the absorbance is increased by increasing the incident angle from normal incidence
to oblique incidence with an angle of 40 degrees. Also, at an incident angle equal 50
degrees, the absorbance begins to decrease with respect to the normal incident. As a result
of its high absorbance at the oblique incident, this structure is more compatible with the
environmental silicon solar cell. Thus, the average absorption for our optimized structure
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in the visible spectrum is approximately 95%, which means the average reflection is only
about 5% without no transmission photons. To highlight the inspiration and innovation
of our work, we added Table 1 to compare our current work to the earlier works in the
literature review. Hence, we calculate the optical generation rate of this structure to be sure
that the absorbed photons are assisting in the generation of electron–hole pairs as shown in
Figure 10.

Finally, we can conclude from the results that changing the surface morphology of
the solar cell has a significant effect on overall efficiency, and it increases efficiency at the
oblique incidence in comparison to flat surfaces. Texturing and concave surfaces of the
solar cell are a promising solution to overcome the low efficiency of the commercial cells.
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Figure 8. Hydrogenated amorphous silicon solar cell (a-Si: H) absorption spectrum with ternary
anti-reflective coating with texturing on the top surface at different incident angles. The ternary
ARC is composed of silicon nitride with a thickness of 33 nm immersed between silicon dioxide
and titanium dioxide with a thickness of 54 nm and 82 nm, respectively. Also, the back reflector is
composed of silicon dioxide and silicon, with thicknesses of 40 nm and 75 nm, respectively. The
number of periods equals 12. These calculations are determined at the planner surface, a texturing
surface with a height equal to 25 nm, and a texturing surface with height equal to 50 nm, as shown.
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Figure 9. Hydrogenated amorphous silicon solar cell (a-Si: H) absorption spectrum with ternary
anti-reflective coating with texturing on the top surface with a height equal to 50 nm at different
incident angles. The ternary ARC is composed of silicon nitride with a thickness of 33 nm immersed
between silicon dioxide and titanium dioxide with a thickness of 54 nm and 82 nm, respectively. Also,
the back reflector is composed of silicon dioxide and silicon, with thicknesses of 40 nm and 75 nm,
respectively. The number of periods equals 12. These calculations are determined at the planner
surface and texturing surface with a height equal to 25 nm.

Table 1. The average reflection of anti-reflection coating designs for noteworthy findings in the
literature in comparison to our work.

Anti-Reflection Coating Design Average Reflectance (%)
[400–700 nm] Reference

Polished silicon 35.88 [18,25]
Standard silicon solar cell 16.23 [27]

Rectangular PC profile 15.9 [40]
Triangular PC profile 10.6 [40,41]

Circular PC profile 17.13 [40]
1D rectangular PC 26/14.08 [42]
1D triangular PC 7.01/16.62 [42]
1D ternary PCs 20.4 [20]

1D quadrant PCs 7 [34]
1D texturing PCs 5 Our work

Hence, as we optimize the optical properties of the active area of the cell and the
ARC structure, we add the two contacts for our structure to be more compatible with
the experimental data. Figure 11 represents the schematic structure of the cell with the
two electrodes. From the dispersion relation of indium–tin–oxide (ITO) as shown in
Figure 12 [43,44], we notice that the extinction coefficient is very low, so it does not affect
the incident photons on the active area of the cell when we add it on the interface between
the top surface of amorphous silicon and the lower surface of the designed ARC. The
refractive index of ITO is approximately similar to the refractive index of O2 (n3 = 2.5).
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As a result, we can replace the layer of TiO2 in the ARC structure with ITO, as shown in
Figure 11, to serve as the front contact electrode. Also, we add a 50 nm molybdenum (Mo)
electrode to act as a back contact electrode [45].
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Figure 10. The optical generation of electron–hole pairs for the same structure as in Figure 9.
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Figure 11. Schematic structure of an amorphous silicon solar cell with two electrodes.

Here, in Figure 13 we study the optical properties of the considered structure in
Figure 11 and compare them with the optical properties of the cell as in Figure 9 in the case
of normal incidence. By adding the two electrodes, the absorption of the cell is increasing
at the smaller wavelengths, and this adding causes a small difference between the optical
properties with and without the two electrodes, as we show in Figure 13. Thus, our
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structure is compatible with the experimental date. At the same time, the ITO layer is acting
as a grading index and a front electrode for the cell. Therefore, our modified structure of
the textured ARC is an optimum energy-harvesting solar cell.
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Figure 12. The refractive index and extinction coefficient of indium–tin–oxide (ITO) as a function of
the incident wavelengths.
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Figure 13. Hydrogenated amorphous silicon solar cell (a-Si: H) absorption spectrum with ternary
anti-reflective coating, as in Figure 9, is represented by the black line. The replacement of the layer of
titanium dioxide with indium tin oxide is represented by the red line.
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4. Conclusions

At the end of this study, we find that grading refractive index for an anti-reflection
coating structure achieves high absorbance for the normal incidence. However, it loses
this advantage for the oblique incident. Then, adding texturing to the upper surface of
the grating refractive index ARC enhances the absorbance owing to the pyramid structure,
giving the incident photons at least two chances to localize inside the active area of the
cell. Therefore, the texturing surface is a highly trapping structure for all-optical devices,
with high efficiency owing to its good ability to trap light in normal and oblique incidences.
Moreover, we added one-dimensional binary PCs as back reflectors to reflect the transmitted
photons [from 550 nm to 730 nm] within the range of the energy gap of the cell. Finally, by
adding texturing ARC and binary one-dimensional PCs back reflectors, the absorbance is
increased to 97% for the incident angle equal to 30 degrees over a wide range of the visible
spectrum. We also calculated the electron–hole pair generation at different incident angles
in the presence of a texturing anti-reflecting coating with a height equal to 50 nm and a
back reflector. Specifically, when compared to normal incidence, the optical generation is
greatly improved by the oblique incidence of the interacting radiation. Thus, for silicon
solar cells, the presence of a texturing anti-reflecting coating with a height equal to 50 nm is
the most compatible design for catching the majority of incident photons and enhancing
cell absorption.
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