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Abstract: The decay of OAM entanglement in non-Kolmogorov turbulence has been numerically
evaluated. In this work, we explore the evolution of OAM entanglement with higher-order OAM
mode in the weak scintillation regime. In particular, the results of the numerical evaluation show that
the OAM entanglement state with higher value of the azimuthal mode and larger radial quantum
number survives over a longer distance. Meanwhile, the beam parameters and turbulence parameters
usually have significant influences on OAM entanglement. In addition, it is demonstrated that the
effect of turbulence on the OAM entanglement is the most serious when the generalized exponent is
around 3.07.
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1. Introduction

Orbital angular momentum (OAM) photons have gained more and more attention
in recent years. The orbital angular momentum (OAM) eigenstates of photons form an
infinite-dimensional system, providing larger storage capacity and a number of potential
benefits for quantum information purposes [1–5], which make them promising candidates
for higher dimensional quantum key distribution [6].

Quantum entanglement is an essential physical resource, which can be applied sig-
nificantly in the field of quantum information processing [7,8] but is highly fragile to the
environment [9]. Recently, an enormous number of theoretical and experimental studies
have been devoted to the turbulence-induced decay of OAM entanglement [9–21]. Nonethe-
less, it is still difficult to describe the behavior of OAM photons in turbulence. It is known
that OAM-entangled photonic states are encoded in finite-dimensional Hilbert spaces.
While OAM-entangled photons go through atmospheric turbulence, the scintillation pro-
cess distorts the photons’ wave fronts and makes OAM modes spread throughout the entire
Hilbert space [22]. In practice, however, only the information of the output states contained
in the finite-dimensional encoding subspace can be extracted. As a consequence, it is essen-
tial to truncate the Hilbert space and calculate the truncated density matrix for predicting
OAM entanglement evolution. The truncated density matrix can obtain the scattering to
density matrix elements from outside the subspace, but the effect of backward scattering
from the outside subspace to elements in the subspace is always lost [20]. However, when
the coupling of states between inside the encoding subspace and outside is strong, the
truncation of the Hilbert space unavoidably leads to a decay of the output state’s norm [23],
and the backward scattering is particularly important to higher-order OAM modes [24].
Moreover, most previous theoretical studies on the effects of atmospheric turbulence on
OAM entanglement have always considered the entangled OAM states with a zero radial
index [14–20], but the entanglement decoherence of OAM photons with non-zero radial
index has seldom been mentioned.
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In the present contribution, the OAM-entangled two-photon state’s propagation
through a non-Kolmogorov turbulent atmosphere has been numerically evaluated. We
consider that the evolution of the OAM entanglement is in the weak scintillation regime.
Therefore, the turbulence-caused intensity scintillation is ignored. Here, we significantly
focus on the evolution of OAM entanglement with higher-order OAM mode in turbulence
when the backward scattering is taken into account. In addition, Wootter’s concurrence
is introduced to quantify the OAM entanglement [25]. The rest of the paper is organized
as follows: In Section 2, the numerical procedure will be introduced, while the results of
numerical evaluation and its analysis will be provided in Section 3. The discussion and
conclusions are presented and provided in Section 4.

2. Numerical Procedure

The quantum communication system is presented in Figure 1. A pair of entangled
photons are emitted by the source field. Initially, it is in a Bell state and can be expressed as

|ψ〉in =
1√
2
(|`, p〉A|−`, p〉B + |−`, p〉A|`, p〉B), (1)

where the footnotes A and B represent two different paths of photons, p is the radial
quantum number, and ` is the azimuthal mode order of the Laguerre-Gaussian (LG) beam.
In the cylindrical coordinates, a single photon LG mode can be expressed as [22].

〈r |`〉 = 1√
2π

R`,p(r, z) exp(i`θ), (2)

where r2 = x2 + y2, and the parameter θ is the azimuthal angle. The LG function R`,p(r, z)
in normalized cylindrical coordinates can be written as [26–28]

R`,p(r, z) =
Alp

w(z)

( √
2r

w(z)

)|`|
L|`|p

(
2r2

w2(z)

)
exp

(
− r2

w2(z)

)
exp

i(`+ 1) tan−1(z/zR)−
ikr2

2z
[
1 + (zR/z)2

]
, (3)
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Figure 1. Sketch of the setup. A pair of entangled photons are generated by a source, and propagate
along two weakly turbulent atmospheres which are labeled by A and B toward two detectors.

Here A`p =

(
p!2|`|

π(p+|`|)!

)1/2
is a normalization constant, the parameter w = w0

√
1 + (z/zR)

2

is related to the propagation distance z and initial beam radius w0, and the Rayleigh range zR = kw2
0/2

is the waist radius of the Gaussian beam in the receiver plane. The Rayleigh range is cor-
related with the wavelength λ by the ratio k = 2π/λ (the wave number), and L|`|p (·)
represents the associated Laguerre polynomials.

As the photons travel through the turbulent atmosphere, OAM modes are distorted
by the modulations of the random phase of the turbulent atmosphere, leading to the decay
of OAM entanglement. Generally, the output density matrix ρout is used for determining
the OAM entanglement after passing through turbulence [14,17,24], and

ρout = ∑
mnm′n′

ρm,n,m′ ,n′ |`m, `m′〉AB〈`n′ , `n|. (4)
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ρm,n,m′ ,n′ is the density matrix element of output state [17,24], and

ρm,n,m′ ,n′ = 〈`m′ , `m|ψI〉〈ψI |`n, `n′〉, (5)

where |`m〉(|`m′〉) and |`n〉(|`n′〉) are direct measurement states. The input state |ψ〉in
propagating through the atmospheric turbulence changes into the state |ψI〉. In the weak
turbulence regime, the impacts of the turbulent atmosphere on OAM photons are equivalent
to phase errors in the transverse beam profile [22], leading to

〈r |ψI〉 =
1√
2

(
〈r |`〉A〈r |−`〉Bei(φA(r)+φB(r))+〈r |−`〉A〈r |`〉Bei(φ′A(r)+φ′B(r))

)
, (6)

where the random perturbations φj(r) and φ′ j(r) (j= A, B) are induced by two weakly
turbulent atmospheres.

Note that the scintillation process can make the OAM modes spread through the entire
Hilbert space. To deal with an infinite-dimensional Hilbert space of output states upon
detection, the truncated Hilbert space is necessary. In this paper, at first we extract the
OAM information contained in the modes, which are ±`± 1 and ±`, and then project
the transmitted state on encoding subspace |`, `〉, |`,−`〉, |−`, `〉, |−`,−`〉. Hilbert-space
truncation does keep track of the scattering to density matrix elements that are inside
the subspace, but the backward scattering from outside the subspace to elements in the
encoding subspace is lost. Because OAM modes that are outside the subspace can also be
scattered back to the encoding subspace due to scintillation, the backward scattering is
very important for evaluating the evolution of OAM entanglement through turbulence.
Considering the effect of backward scattering, the output density matrix ρout is readily
found to be [24] 

ρ11 0 0 0
0 ρ22 ρ23 0
0 ρ32 ρ33 0
0 0 0 ρ44

. (7)

For |`|= 1, the matrix elements are described by

ρ11 = 4abc1c2+2ab, (8)

ρ22 = c2
1c2

2 + 2a2c1c2+2b2c1c2 + a2 + b2, (9)

ρ23 = c2
1c2

2+2a2c1c2 + a2, (10)

ρ32 = ρ23, (11)

ρ33 = ρ22, (12)

ρ44 = ρ11. (13)

Otherwise
ρ11 = 2ab(2c1c2+2c1c3+1), (14)

ρ22 = c2
1(c2 + c3)

2 +
(

a2 + b2
)
(2c1c3+2c1c2 + 1), (15)

ρ33 = 2c2
1c3(c2 + c3) +

(
a2 + b2

)
(3c1c3 + c1c2 + 1), (16)

ρ44 = 2ab(c1c2+3c1c3+1), (17)

ρ23 = c2
1(c2 + c3)

2 + a2(2c1c3+2c1c2) + a2, (18)

ρ32 = c2
1(c2 + c3)

2 + a2(2c1c3+2c1c2) + a2, (19)

where a is the survival amplitude with |∆`| = 0 [14], b is crosstalk amplitude with
|∆`| = 2` [14], and cj(j= 1, 2, 3) is also crosstalk amplitude but |∆`| = 1 [24],
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a = |〈ψ±`|±`〉|2 =
1

2π

∫ ∞

0
r
∣∣∣R`,p(r)

∣∣∣2dr
∫ 2π

0
dθ exp[−0.5Dφ(2r|sin(θ/2)|)], (20)

b = |〈ψ±`|∓`〉|2 =
1

2π

∫ ∞

0
r
∣∣∣R`,p(r)

∣∣∣2dr
∫ 2π

0
dθ exp(−2i`θ) exp[−0.5Dφ(2r|sin(θ/2)|)], (21)

c1 = |〈ψ±`|±`± 1〉|2 =
1

2π

∫ ∞

0
r
∣∣∣R`,p(r)

∣∣∣2dr
∫ 2π

0
dθ exp(−iθ) exp[−0.5Dφ(2r|sin(θ/2)|)], (22)

c2 = |〈ψ±`±1|±`〉|2 =
1

2π

∫ ∞

0
r
∣∣∣R±`±1,p(r)

∣∣∣2dr
∫ 2π

0
dθ exp(−iθ) exp[−0.5Dφ(2r|sin(θ/2)|)], (23)

c3 = |〈ψ±`∓1|±`〉|2 =
1

2π

∫ ∞

0
r
∣∣∣R±`∓1,p(r)

∣∣∣2dr
∫ 2π

0
dθ exp(−iθ) exp[−0.5Dφ(2r|sin(θ/2)|)]. (24)

Here we use the non-Kolmogorov power spectrum for the investigation of the evolu-
tion of OAM entanglement in turbulence. The non-Kolmogorov power spectrum for the
refractive index fluctuations is given by [29,30]

Φn(κ, α) = A(α)C̃2
n(κ

2 + κ2
0)
−α/2

exp(− κ2/κ2
m), 3 <α < 4, (25)

α being the generalized exponent, C̃2
n (in units of mα−3) being a generalized refractive-

index structure parameter, κ0 = 2π/L0, L0 representing the outer scale of turbulence,
κm = c(α)/l0, l0 representing the inner scale of turbulence, and κ being the magnitude of
the three-dimensional wave number vector, and

c(α) = (Γ(5− α/2)A(α)2π/3)
1

α−5 , (26)

A(α) = 1/4π2Γ(α− 1) cos(απ/2), (27)

where Γ(x) is the gamma function of the term. When α= 11/3, L0 = ∞, l0= 0, and C̃2
n = C2

n,
Equation (25) can be reduced to the conventional Kolmogorov spectrum [29]

Φn(κ) = 0.033C2
nκ−11/3. (28)

Dφ(r) is a two-point spherical wave structure function that contains the influence of
atmospheric turbulence, which can be expressed as [31,32]

Dφ(r1, r2; z) = 8π2k2z
∫ 1

0
dς
∫ ∞

0
{1− J0[κ|ς(r1 − r2)|]}Φn(κ, α)κdκ, (29)

where ς denotes the normalized distance variable, J0(·) is the zero-order Bessel function of
the first kind and has the approximation

J0(κ|ς(r1 − r2)|) = 1− 1
4
(κ|ς(r1 − r2)|)2. (30)

Under the quadratic approximation of Rytov’s phase structure function [32–35], the
term exp[−0.5Dφ(2r|sin(θ/2)|)

]
can be written as

exp[−0.5Dφ(2r|sin(θ/2)|)] = exp
[
−(2r|sin(θ/2)|/ρ0)

2
]
, (31)

where ρ0 is the spatial coherence length of a spherical wave propagating in a non-Kolmogorov
turbulent atmosphere, and [32]

ρ0 =

(
π2k2zA(α)

6(α− 2)
C̃2

n[κ
2−α
m exp(

κ2
0

κ2
m
)
(

2κ2
0 − 2κ2

m + ακ2
m

)
Γ(2− α

2
,

κ2
0

κ2
m
)− 2κ4−α

0 ]

)−1/2

. (32)

The propagation of the states |`〉(|−`〉) and |±`± 1〉(|±`∓ 1〉) through atmospheric
turbulence change into the states |ψ`〉(|ψ−`〉) and |ψ±`±1〉(|ψ±`∓1〉), respectively.
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Wootter’s concurrence is used to evaluate the entanglement degree of the output
bipartite OAM state [25], which is given by

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (33)

where λi are the eigenvalues of the Hermitian matrix ξ, which are ranked by decreasing
order, and

ξ = ρout
(
σy ⊗ σy

)
ρ∗out

(
σy ⊗ σy

)
, (34)

Asterisk (*) indicating the conjugate of a complex number, σy given by

σy =

(
0 −i
i 0

)
. (35)

3. Numerical Results and Analysis

Firstly, our results of numerical evaluation are compared with the results based on S&R
theory [9]. The turbulence parameters are set to be α = 11/3, L0= 500 m, and l0= 1 mm.
As shown in Figure 2, the results of numerical evaluation agree with S&R theory well when
|`| ≤ 3 and p= 0. In other cases, the results of numerical evaluation deviate significantly from
the result in S&R theory. Consequently, the effect of backward scattering can be ignored when
OAM is in lower-order mode, but it is very crucial for higher-order OAM entanglement.
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Figure 3. Concurrence versus propagation distance for different beam parameters. (a) For the dif-
ferent values of radial quantum number and (b) for the different values of azimuthal mode order. 

Figure 2. Concurrence plotted as a function of ratio w0/ρ0(the turbulence strength) for different
OAM modes. In (a) ` = 1, p = 0, in (b) ` = 3, p = 0, in (c) ` = 3, p = 1, in (d) ` = 3, p = 2.

Now the entanglement evolution of the higher-order OAM entangled state in non-
Kolmogorov weak turbulence is investigated. In the following numerical examples, the beam
parameters are set to be `= 3, p = 2, w0 = 0.08 m, and λ = 1064 nm, and the parameters
of turbulence are set to be α= 3.6, L0= 10 m, l0 = 1mm, and C̃2

n= 8× 10−14 m3−α, unless
otherwise specified. The results of the numerical evaluation are presented in Figures 3–6.
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Figure 3 shows the concurrence versus the propagation distance z for different beam
parameters. As shown in Figure 3a,b, the concurrence lasts longer for higher value of
the azimuthal mode and larger radial quantum number. Moreover, one observes that
when the entangled photon propagates only a relatively short distance within 100 m, the
concurrence decays quickly for larger radial quantum number, shown in Figure 3a. Such
results can be interpreted as follows. As shown in Figure 4, the density matrices for a
pair of entangled qutrits are 4× 4 matrices. For z = 0 m, the magnitudes of the central
density elements are all 0.5, and the input states have the highest purity. The same heights
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(magnitudes of the elements) indicate that the input state is maximally entangled [21]. For
z = 50 m, the central elements in the density matrix vary more significantly as the value
of radial quantum number increases, meaning that the purity decreases quickly for OAM
entanglement with the radial quantum number increasing. When the propagation distance
is 300 m, the diagonal elements in the density matrix grow more rapidly at the cost of the
central density elements that represent the original input state [21]. However, the diagonal
elements dominate over the other elements more slowly as the value of the radial quantum
number increases, meaning that OAM entanglement with higher radial quantum number
is more robust. These results also reflect the fact that scattering from one OAM state to
another depends not only on the change in OAM (∆`) [9], but also on different radial
intensity profiles R`,p(r, z).

Figure 5 presents the dependence of the concurrence on turbulence parameters for
different propagation distances. From Figure 5a, it can be seen that as the generalized
exponent increases, the concurrence drops off sharply to a minimum value at about 3.07,
and then gradually increases to the maximum value. In addition, when α reaches around
3.07, OAM entanglement gradually decreases to zero for z ≥ 100 m. Such a phenomenon
suggests that the condition of turbulence with the generalized exponent around α= 3.07 is
not suitable for OAM entanglement transmission. This can be understood as follows: as
shown in Figure 6, the spatial coherence length ρ0 first decreases as α increases, reaches a
minimum value when α is about 3.07, and then increases with further increase of α. The
LG beam suffers the most serious perturbation when α is about 3.07 [28]. As a result,
the influence of turbulence on the OAM entanglement is the most serious near α=3.07.
Figure 5b demonstrates the fact that the OAM entanglement always decays in the weak
turbulence, but the rate of decay becomes very slow when the value of the refractive-index
structure parameter decreases. That is, the entanglement evolution of the OAM state will be
impacted less by turbulence with a smaller refractive-index structure parameter. Figure 5c
denotes that the concurrence lasts longer for a smaller value of the turbulence outer scale,
revealing that the entanglement evolution of the OAM state will be impacted more severely
by turbulence with a larger outer scale. It can also be seen that under the condition L0 ≥ 1m,
the influence of outer scale on the entanglement evolution of the OAM state is very slight.
In Figure 5d, it can be found that the concurrence can survive over a longer distance with
increasing turbulence inner scale. This means that turbulence with a lager inner scale has
less influence on the OAM entanglement.

4. Discussion and Conclusions

In this paper, the entanglement evolution of OAM photons with higher-order OAM mode
propagating across a non-Kolmogorov turbulent atmosphere has been numerically evaluated.
Here, we only considered the case that two photons both have passed through turbulence. The
expression for the output density matrix of entangled photons with higher-order OAM mode
has been obtained. In contrast with the result based on S&R theory, the output density matrix
takes into account the effect of backward scattering. The results of numerical evaluation show
that the effect of backward scattering can be ignored for OAM entanglement in lower-order
mode, while it is very crucial for higher-order mode OAM entanglement.

Quadratic approximation of the non-Kolmogorov phase structure function is used to
estimate the evolution of OAM entanglement. When the non-Kolmogorov power spectrum
is reduced to the Kolmogorov spectrum and the effect of backward scattering can be ignored,
our numerical results are consistent with the results reported by Bachmann et al [36], who
analyzed the universal entanglement decay laws for the quadratic approximation.

There are various aspects that pose challenges to experimental work on the prop-
agation of entangled photons with higher-order OAM mode entangled states through
turbulence. In practical scenarios it is more difficult and complex to produce entangled
photon pairs with larger radial quantum number. In addition, it is also observed that modes
with higher value of the azimuthal mode are more difficult to measure experimentally.
Therefore, more work remains to be done in the future.
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In summary, the decay of entangled orbital angular momentum (OAM) photons
propagating across non-Kolmogorov turbulence has been investigated. In this work, we
explore the evolution of OAM entanglement in the weak scintillation regime and consider
the effect of backward scattering on OAM entanglement with higher-order OAM mode.
The results of the numerical evaluation reveal that the concurrence monotonically decreases
in turbulence, but the OAM entangled state with higher value of the azimuthal mode and
larger radial quantum number lasts much longer, which means OAM entangled states
with higher value of the azimuthal mode and larger radial quantum number are more
appropriate to quantum communication over long distances. Meanwhile, non-Kolmogorov
turbulence with a smaller refractive-index structure parameter, a smaller turbulence outer
scale or a larger turbulence inner scale affects OAM entanglement evolution less. In
addition, the influence of turbulence on the entanglement evolution of the OAM state is
the most serious when the generalized exponent is around 3.07, and thus the condition of
turbulence with the generalized exponent around 3.07 is not suitable for OAM entanglement
transmission. Our findings will be very important to improve the performance of a free-
space quantum communication system.
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