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Abstract: Bi2S3is a semiconductor with rational band gap around near-IR and visible range, and its
nanostructures (or nano-Bi2S3) have attracted great attention due to its promising performances in
optoelectronic materials and devices. An increasing number of reports point to the potential of such
nanostructures to support a number of optical applications, such as photodetectors, solar cells and
photocatalysts. With the aim of providing a comprehensive basis for exploiting the full potential of
Bi2S3 nanostructures on optoelectronics, we review the current progress in their controlled fabrication,
the trends reported (from theoretical calculations and experimental observations) in their electrical
properties and optical response, and their emerging applications.
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1. Introduction

Chalcogenide materials are chemical compounds consisting of at least one chalcogen
ion, i.e., a chemical element in column VI of the periodic table, also known as the oxygen
family [1]. More precisely, the term chalcogenide refers to the sulphides (S), selenides
(Se), and tellurides (Te). These compounds show similar patterns in their electron config-
uration (Figure 1), especially the outermost shells, resulting in similar trends in chemical
behavior. On one hand, they are different from IV family elements such as silicon (Si) and
germanium (Ge), serving as the “classic” semiconductors with tetrahedral coordinated
lattices due to their strong covalent bonding. On the other hand, unlike the elements of the
halogen family, with strong sp-hybridization for forming crystalline molecular structures,
chalcogenide elements could form rich materials, including insulators, semiconductors
as well as semimetals. These materials could be either molecular crystals or polymeric
and layered crystals with distorted octahedral coordination. Such rich chemical and lattice
structural features produce abundant electrical and optical properties. Accordingly, over
the last decade, chalcogenide materials have attracted much attention, and intensive studies
demonstrate their promising applications in phase change memory (PCM) [2], topological
insulators [3], photo-catalysts [4], light-sources [5], etc.

Besides the unique properties of chalcogenide elements themselves, the chemical and
physical behaviors of the chalcogenide materials also strongly depend on the elements
to be chemically combined. Bismuth (Bi), as an outstanding p-block semimetal with a
highly anisotropic Fermi surface [6], small effective electron mass, low carrier density,
and long carrier mean-free path, can produce a strong relativistic effect [7]. Therefore the
bismuth chalcogenide compounds, such as Bi2Se3, Bi2Te3 and Bi2S3, have a number of
notable chemical and physical properties [1,3,7], and have attained increasing significance
for several fields, including quantum confinement [8], topological insulators [3], abnormal
magnetoresistance [9], energy storage and conversion [10,11], thermoelectricity [12], etc.
Hence, it is of value to review the current status of bismuth chalcogenide materials. In
recent years, however, more attention has been paid to Bi2Se3 and Bi2Te3, which are “star”
materials, being well-known topological insulators [3], whereas the awareness of the
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advances on Bi2S3 materials is relatively sparse. However, as a n-type semiconductor with
relative low symmetric space group [13], Bi2S3 shows great potential in solar cells [14],
hydrogen storage [15], photo-catalysts [16], optical-detection [17], memristors [18,19], etc.
Moreover, in these applications, constructing nanostructures with rich surface sites seems
of great significance, thanks to their strong nano-size effect [13,18,20–22]. Therefore, it is
valuable to review the research progress on nano-bismuth-sulfide. In this paper, we review
recent advances in bismuth-sulfide nanostructures for optoelectronics to track the rapid
development in this field, highlight the most recent scientific discoveries, and predict future
trends for nano-bismuth-sulfide as well as its applications.
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The remainder of this paper is organized as follows: Section 2 discusses various
fabrication methods of nano-Bi2S3; Section 3 describes the basic electronic and optical
properties of Bi2S3; Section 4 focuses on the emerging optoelectronic applications. Finally,
conclusions and perspectives are drawn in Section 5.

2. Fabrications

Amount of Bi2S3 nanostructures were successfully prepared, namely 0D nanostruc-
tures (e.g., nanoparticles and nanospheres), 1D nanostructures (including nanowires and
nanorods), and 2D nanostructures (including nanoplates, nanosheets, and thin films), with
continuously improved crystalline quality [13,16–18,23–47]. The sizes of these structures
range from a few atoms to a few microns, which makes them broadly suitable for studies
in various fields, including hydrogen storage [48], thermoelectricity [46], memristors [21],
photocatalysts [49], solar cells [26], and photodetection [50]. It is doubtless that the broad
size range of the existing Bi2S3 nanostructures could provide abundant building blocks for
constructing optical responsible systems.

Actually, over the past few years, the fabrication methods of Bi2S3 nanostructures were
explored intensively (see Table 1). Physical or chemical deposition and direct solvothermal
synthesis are commonly employed, while some other methods, including chemical precipi-
tation, reflux, sol-gel method, hot-injection, and high power sonication process have also
been reported [4,16,32,51,52]. These methods can produce 0D nanoparticles, 1D nanorods,
and nanoribbon, as well as 2D nano-thin film. The solution-phase synthesis is the most
frequently employed method utilized to prepare various Bi2S3 nanostructures [23,27,28]
while physical vapor depositions (PVD, including magnetron sputter thermal evaporation
and pulse laser deposition) have demonstrated their value in the photovoltaic field for
electron-transport layers (ETL) and light-absorption layers [14,26]. Especially for hybrid
perovskite solar cells, when potential contamination and variations introduced by the sol-
vents are undesired, thermal evaporation is proposed as a rational route for preparing Bi2S3
nano-thin film as the ETL without introducing any solvents [26]. Generally, the fabrication
methods of the nano-Bi2S3 can be cataloged as two types: “top-down” and “bottom up”. It
is quite straightforward that several vapor or liquid phase-deposition methods belong to
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the “top-down” family, and direct surface sulfurization is also an alternative “top-down”
approach, while solvothermal synthesis is the most popular “bottom up” method. In the
following, these two kinds of methods are discussed sequentially.

Vapor phase deposition (VPD) is one of most frequently used methods for nanofabri-
cation, with the potential for mass production [7]. It has achieved great successes in various
field, including integrated circuits [53], semiconductor lasers [54], bio-sensing [55], etc.
For the preparation of nano-Bi2S3, especially thin film, VPD, such as thermal evaporation
(Figure 2a), pulse laser deposition (PLD), and low-pressure metal–organic chemical vapor
deposition (LP-MOCVD) could be feasible tools [14,26,56]. Moreover, while regularly
employed in light-absorption layers [56], VPD-fabricated nano-Bi2S3 also exhibits unique
value as high performance inorganic electron transport layers for perovskite solar cells
to avoid contamination and variations introduced by the solvent process [26], as well as
serving as energy conversion media for quantum dot-sensitized solar cells (QDSSCs) [14].
In addition to the VPD methods, Bi2S3 thin film can also be prepared by chemical bath
or electrochemical deposition [33,57]. These deposition routes may introduce impurity
or contamination, but could be more cost-effective (Figure 2b). Moreover, using a vapor-
phase sulfur source to sulfurize the bismuth-based metal-organic framework or bismuth
oxide could achieve “top-down” Bi2S3 nanostructures (Figure 2c–e) [29]. These surface
sulfurization routes need high temperature, but could provide better crystalline quality.

Aside from the “top-down” deposition, “bottom-up” solvothermal synthesis seems
more popular for the fabrication of various Bi2S3 samples with a high level of control
in their shapes, such as 0D, 1D, and 2D nanostructures [17,28,30,34,58,59]. As the liquid-
phase progresses, it employs the bismuth source and sulfur source to react in solution.
Bi(NO3)3 is the most popular bismuth source, but some other choices, such as BiCl3 and
BiOX (X = Cl, Br, I) are also available [11,33,60,61], while the sulfur source could be either
organic (TAA, KSCN, etc.) or inorganic (Na2S, Na2S2O3). The reaction temperatures
are usually moderate (<200 ◦C), and the synthesis duration varies from a few minutes
to a few days [39,58]. The most typical product of the solvothermal synthesis is the 1D
rod or wire (Figure 2f). The diameter of the nanorod or nanowire is <100 nm, while the
length could be facile to tens µm. Such 1D growth often tends to extend along the [001]
direction, with a corresponding length-to-diameter ratio greater than 10 [22]. When the
hydrothermal synthesis is assisted with glucose, hollow nanotubes can also be produced
by 1D growth [60]. In addition, nanoribbon can also be solvothermally synthesized, and
interestingly, the process is rather fast (a few minutes), possibly representing an highly
efficient route to mass production [58]. Moreover, in some other cases, due to the change
in the sulfur source, the morphology could transform from nanowire to nanoparticles,
wire bundles, urchin-like nano-/microspheres, or microspheres with cavities, as well as
chrysanthemum-like Bi2S3 nanostructures [59].

Table 1. Selected reports on “top-down” and “bottom-up” fabrication of the nano-Bi2S3.

Method Growth Condition Starting Materials Product Size

“Top-down” fabrications

Vapor phase deposition

Thermal evaporation [26] RT Bi2S3 power Amorphous film 50 nm thickness

LP-MOCVD [56] 450 ◦C [Bi(S2CNMen-Hex)3]
[Cd(S2CNMen-Hex)2] Fiber-like particles Length (L): 1 µm

diameter (D): 50 nm

Pulsed laser deposition [14] RT Bi2S3 target Quantum dots D < 5 nm

Liquid phase deposition

Cathodic electrodeposition [41] RT Na2S2O3,
Na3C6H5O7Bi(NO3)3, Thin film /

Electrodeposition [62] RT Na2S2O3, Bi(NO3)3, EDTA Thin film /

Chemical bath deposition(CBD) [33] RT Bi(NO3)3, thioacetamide (TA),
ammonium citrate (AC)

Nanowall Bi2S3
films /
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Table 1. Cont.

Method Growth Condition Starting Materials Product Size

CBD [26] RT Bi(NO3)3,triethanolamie
(TEA), TA, Thin film Thickness (T):

50–140 nm

Non-aqueous CBD [63] RT Bi(NO3)3,acetic acid, TA Thin films T: 241 nm

Non-aqueous CBD [42] RT Bi(NO3)3, Na2S2O3,
formaldehyde, Thin film T: 50–100 nm

Surface Sulfurization

High-temperature reaction of sulfur
source with bismuth-based

metal–organic framework [64]
300~600 ◦C Bi(BTC)(DMF)·DMF·(CH3OH)2

Trimesic acid (H3BTC) Nanorod (NR) D: 60 nm

Surface sulfurization [29] 450 ◦C Bi2O3 Nanosheets 2D nanosheets T: 2.5 nm

“Bottom-up” fabrications

Solvothermal synthesis

Hydrothermal synthesis [30] 160 ◦C Bi(NO3)3, NH2CSNH2,
thiourea NR D: 50~100 nm

L: 1~2 µm

Hydrothermal process [11] 180 ◦C BiCl3, HCl, TAA Bi2S3 nanomeshes L: 200 nm
D: 20~40 nm

Hydrothermal process [65] 180 ◦C Bi(NO3)3, Thiourea, Urea,
Methyl orange Microsphere D: 3 µm

Hydrothermal methods [59] 180 ◦C

Bi(NO3)3, thiourea (TU),
potassium thiocyanate
(KSCN), TAA, sodium

thiosulfate (Na2S2O3·5H2O)

Nanowires (NW),
wire bundles,

urchin-like nano-
/microspheres

microspheres with
cavities

NW
D:15~40 nm

L: Tens µm bundles
D: 2~3 µm

L: 13~20 µm
sphere

D: ~1 µm/

Solvothermal synthesis [66] 160 ◦C Bi(NO3)3, ethylene glycol (EG),
TAA, TU, L-cysteine

Nanoparticles,
urchin-like spheres /

solvothermal method [67] 80 ◦C Bi(NO3)3, EG, TU,
poly(vinylpyrrolidone) (K-30)

Chrysanthemum-
like nano-Bi2S3

D: ~500 nm.

Solvothermal method [58] 150 ◦C
5 min

Oleyl amine, sulfur powder,
BiCl3, oleic acid, hexane,

1-octadecene
Nanoribbons D:10~80 nm

L:100~500 nm

Hydrothermal route [68] 160 ◦C
Bi(NO3)3, TAA, DA, ascorbic

acid (AA), uric acid (UA),
paracetamol

NR L:100 nm

Hydrothermal method [60] 180 ◦C Bi(NO3)3, Na2S2O3, glucose Hollow nanotubes L: dozens µm
D: few µm

Hydrothermal method [43] 180 ◦C
2 days Bi(NO3)3, Na2S2O3, NW D: 20–60 nm

Hydrothermal method [39] 180 ◦C
3 day

Tetramethylammonium
Bi(NO3)3, hydroxide, Na2S NW D: 60 nm

Wet chemical synthesis [69] 150 ◦C/1 h
and then 240 ◦C/2 h

Bi(NO3)3,methanol,
hydrochloric acid, thiourea NR D: 20–40 nm

L: 200–600 nm

Other methods

Chemical precipitation [32] 70 ◦C Bi(NO3)3,Thioacetamide
(C2H5NS), HCl Nanoparticle D: 10~50 nm

Reflux [16] 140 ◦C Bi(NO3)3, citric acid, TU,
CTAB DMF, EG, PEG NR, nanoparticle D < 40 nm

Sol-gel method [51,52] 180 ◦C
Bi(NO3)3, TU, polyvinyl

pyrrolidone, lithium
hydroxide, EG

NR D: 200 nm

Hot-injection [4] 180 ◦C Bismuth chloride
thioacetamide NR D: 7~20 nm,

L: 30~70 nm

High power sonication process [24] RT Bi2S3 powder Nanoribbons L: ~10 µm
Width (W): ~40 nm
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Figure 2. SEM of (a) Bi2S3 thin film prepared by thermal evaporation (reprinted with permission
from [70] © 2022, Elsevier), (b) Bi2S3 thin film prepared by CBD (reprinted with permission from [42]
© 2022, Elsevier). TEM image of (c) Bi2S3 nanosheet, as well as its (d) S-element and (e) Bi-element
mapping (reprinted with permission from [29] © 2022, Wiley-VCH); SEM image of (f) Bi2S3 nanowire
prepared by solvothermal synthesis (reprinted with permission from [43] © 2022, Elsevier) and
(g) BiOCl–Bi2S3 hierarchical nanosheet (reprinted with permission from [28] © 2022, Wiley-VCH).

Besides the pure Bi2S3 nanostructures, there are also several hierarchical and/or
heterogeneous structures based on nano-Bi2S3 (Table 2), and they are fabricated (usu-
ally) through the combination of “top-down” and “bottom-up” routes [49,51,52,71–74]
(Figure 2g). Thanks to the high surface-to-volume ratio of such nano-Bi2S3-based hierarchi-
cal and/or heterogeneous structures, they are quite promising for applications such as Li-
or Na- ion battery, photocatalysts, and so on [10,52,73,75].



Photonics 2022, 9, 790 6 of 23

Table 2. Selected reports on the fabrication of Bi2S3-based hierarchical and heterogeneous microstructures.

Method Growth
Condition Start Materials Product Size

Topotactical transformation [72] 180 ◦C Bi(NO3)3, TU Bi2S3/Bi2WO6 hierarchical
microstructures D: ~2 µm

Topotactical transformation [76] 80 ◦C BiOCl, TAA Bi2S3 hierarchical
microstructures D: 30~200 nm

In situ ion-exchange process [73] 120 ◦C BiCl3, ethanol. Bi2S3/ZnS microspheres D: 200~500 nm

Solvothermal method [77] 160 ◦C Bi(NO3)3, glycol, L-lysine,
CuCl2

CuS–Bi2S3 microspheres and
cockscomb-like structures D: 500–5 µm

Hydrothermal route [10] 180 ◦C Thioacetamide, ethanol,
glycerol, BiCl3

Nanostructured Bi2S3
encapsulated within 3D

N-doped graphene
500–2000 nm

3. Optoelectronic Properties of Nano-Bismuth-Sulfide
3.1. Electronic Band Structure and Conduction Properties

Bi2S3 has an orthorhombic crystal structure (a = 11.305 Å, b = 3.981 Å, c = 11.147 Å)
with the space group pbnm (62) [13]. It has four molecules per unit cell [18,19], and each
molecule contains two bismuth atoms and three sulfide atoms, which add up to 20 atoms
per unit cell (Figure 3a). The relatively low symmetry of the space group implies that
the crystal structure of Bi2S3 consists of five non-equivalent atoms: two non-equivalent
Bi sites and three non-equivalent S sites [13]. It has a special layered structure and weak
bonds between the layered units, which leads to the anisotropy of Bi2S3 growth [24]. Its
band gap is 1.3~1.7 eV at room temperature (RT), and the first principle calculated value
is 1.335 eV using a local density approach, as shown in Figure 3b [19]. However, if spin-
orbit coupling (SOC) is considered, the band gap would decrease to ~1.2 eV [13]. These
experimental and theoretical results indicate that Bi2S3 could produce a large absorp-
tion coefficient around the near-infrared and visual range [17,19,78]. Moreover, Bi2S3 is
intrinsically n-type, with a carrier concentration of n = 3 × 1018 cm−3 at RT, and its RT elec-
tron mobility is µn = 200 cm2/Vs [26]. Accordingly, the intrinsic RT resistivity of Bi2S3 is
~105 Ω cm. Furthermore, the electrical conduction of Bi2S3 is temperature dependent due to
its semiconduction nature, and highly anisotropic due to its low crystalline symmetry [79].
It can exhibit temperature-dependent conduction activation behavior, and potentially
unique thermoelectric behavior, which could be used for thermal power devices [12,80].
It also has several other interesting electrical properties, including the Meyer–Neldel rule
(MNR), resistive switching, etc. [18,19,81].

For the thermal power feature of Bi2S3, the typical Seebeck coefficient of Bi2S3 could
be higher than 400 µV K−1, and its figure of merit (ZT value) could reach 0.72 at 773 K with
rational CuBr2 doping (Figure 4a–d), and even the average ZT value over the temperature
from 300 K to 773 K, for more accurate evaluation of the thermoelectric efficiency, is still
up to 0.40 (see Figure 4e) [82]. These promising reports make Bi2S3, Bi2Se3, and Bi2Te3 a
potential material family for heat-energy conversion [12,46,83]. Moreover, nano-structured
bulk samples of Bi2S3 made from surface-treated Bi2S3 nanonetworks present ZT of 0.5 at
723 K [76], thanks to its improved electrical conductivity and low thermal conductivity
compared with samples made from solution-synthesized materials or ball-milled powders.
Moreover, as nano-scale Bi2S3 precipitates, it seems beneficial to improve the thermoelectric
property of CuxBi2SeS2 [28]. Some selected reports about Bi2S3-based the thermal power
device are listed in Table 3.
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Figure 4. Bi2S3 with rational CuBr2 doping: (a) scanning electron microscopy (SEM) of CuBr2-doped
Bi2S3 and (b) its high amplified imaging to sample details; (c) transmission electron microscopy
(TEM) of CuBr2-doped Bi2S3 and its selective area electron diffraction (SAED); (d) high-resolution
TEM for lattice nature of the sample; (e) ZT value comparison between CuBr2-doped Bi2S3 and other
Bi2S3-based thermal power systems. (Reprinted with permission from [82] © 2022, Elsevier).

Table 3. Selected reports about the Bi2S3-based thermal power device.

Sample
Electrical

Conductivity
(S/cm)

Thermal
Conductivity
(W·m−1·K−1)

Seebeck
Coefficient

(µV/K)

Power Factor
(µW·cm−1·K−2) ZT Value

Bi2S3 powder [12] 7.153@628 K 0.54~0.75 390~440 ~1.15@628 K ~0.11@628 K

Bi2S3@Ni powder [12] 28.9~38.4 0.4~0.48 180~291 2.44@628 K 0.38@628 K

Pristine Bi2S3 [80] 2.6 0.45~0.85 455@673 K ~1.6 ~0.15@773 K

I-doping Bi2S3 [80] ~30 0.42~0.82 375@773 K 3.1 0.58@773 K

Bi2S3 nanobeads [84] ~160@RT / ~65 / /

Bi2S3 nanoparticles [32] / / 315~375 / /
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Table 3. Cont.

Sample
Electrical

Conductivity
(S/cm)

Thermal
Conductivity
(W·m−1·K−1)

Seebeck
Coefficient

(µV/K)

Power Factor
(µW·cm−1·K−2) ZT Value

CuBr2 doping Bi2S3 [82]

2.2 1.3 418.5 1. ~0.1@773 K

187.6 1.0 155.9 / ~0.4@773 K

309.6 1.0 113.9 / 0.72@773 K

225.2 0.7 114.6 / ~0.5@773 K

Se and Cl doping Bi2S3 [35] / / / 2.0 ~0.6@723 K

Surface-treated
Bi2S3 nanonetwork [76] 333 / 56.8 / 0.5@723 K

As for the thermal activation of the conduction, MNR has been found in a wide variety
of thermally activated processes [13,81]. Basically, MNR is ascribed to the disorder [48],
which could introduce a (large) density of localized states (traps) in material, and accord-
ingly the EMN of the material is deemed as a measure of its disorder. MNR states generate
in a thermally activated process, such as the temperature-dependence of the resistivity (ρ)
of semiconductors [18]

ρ = −ρ0 exp (Ea/kT) (1)

The increase in activation energy Ea is partially compensated by the increase in prefac-
tor (ρ0) [18]:

lnρ0 = lnρ00 + Ea/EMN (2)

where EMN is “Meyer–Neldel” energy, and ρ00 is the “intrinsic” resistivity related to the
material itself. In Bi2S3 systems, MNR reveals several carrier-trapping-related transport
behaviors [13,81]. In Bi2S3 nested nanonetworks (BSNNN, Figure 5a), normal MNR is
observed with EMN as 43 meV, as shown in Figure 5b [81]. This is in line with the studies of
single Bi2S3 nanowires, where EMN is 38 meV (see Figure 5c,d) [13,48]. However, the anneal-
ing treatment of the samples could change the positive EMN to negative (Figure 5e) [13,48].
Different MNR behaviors can be understood under the unified framework based on the
trap-limited-current-based model of MNR, which could naturally produce either positive
or negative EMN [48].

Moreover, Bi2S3 could also be resistively switchable. Specifically, the conductance of
the interfaces of Pt/Bi2S3 and FTO/Bi2S3 can be bipolar switched [57]. Such bipolar switch-
ing can be highly continuous, and seems quite promising for application in memristors for
neural computing, thanks to its good bivariate-continuous-tunable memristance, as shown
in Figure 6 [21]. The atomic origin of such memristive features is the carrier-trapping at the
interface induced by oxygen-doping [19], which is revealed by combining I–V characteriza-
tion (Figure 6b,c), electron energy-loss spectroscopy (EELS, Figure 7a–d), and first-principle
calculation (Figure 7e).
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Nanowires” (2005), Dissertation.

Photonics 2022, 9, x FOR PEER REVIEW 10 of 23 
 

 

  

Figure 6. (a) Scheme of FTO/Bi2S3–based memristor for neural emulation; bivariate-continuous tun-

able memristance of FTO/Bi2S3 with both (b) voltage strength and (c) stimulus duration tunability. 

(Reprinted with permission from [21] ©  2022, Springer Nature). 
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Figure 7. (a) EELS of BSNNN and its energy-loss filtering imaging and/or element mapping at
(b) Zero-eV, (c) S-peak, and (d) O-peak. (e) Density of state (DOS) of Bi2S3 and Bi2S3 with different
O-doping site predicted by first-principal calculation. (VB: valence band; CB: conduction band; TS:
trap state; reprinted with permission from [21] © 2022, Springer Nature).

3.2. Optical Properties

As proposed in Section 3.1, the bandgap of (bulk) Bi2S3 is ~1.3 eV, hence could pro-
duce a large absorption coefficient around near-infrared and visual range. Especially for
applications such as solar energy, the high absorption coefficient of Bi2S3 in the order of



Photonics 2022, 9, 790 11 of 23

104 cm−1 enables it to serve as a highly efficient absorbing layer for sunlight, as shown in
Figure 8a [27]. Such an effective absorber might be also beneficial for constructing laser
thermal lithography resist [85], whose transparent level could be proportional to the laser
intensity of the metal-transparent-metal-oxide system [86], while the obtained pattern
might be grayscale and useful for the photomask on 3D lithography [86]. These observa-
tions agree well with the first-principle calculation of the linear optical spectra response
of Bi2S3 [13], while the optical non-linearity of Bi2S3 is important due to its relationship
with the control of light in optical switching devices. Typically, the three-order nonlinear
coefficient χ(3) of Bi2S3 nanocrystal measured by Z-scan technique is at 1.43 × 10−11 (esu)
level [87], which is smaller than the first-principle calculated value of (bulk) Bi2S3 due to
the quantum confinement effect in the nanocrystals [13].
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Figure 8. (a) Light absorption of Bi2S3 thin film (reprinted with permission from [27] © 2022, Wiley-
VCH); (b) the photoluminescence of an exfoliated Bi2S3 nanosheet with different processing durations
from 0 h to 3.5 h; the inset is the TEM image of typical exfoliated sample (reprinted with permission
from [24] © 2022, American Chemical Society).

The photoluminescence (PL) of Bi2S3 shows strong size effect, as shown in
Figure 8b [24,41,88]. The studies of the samples synthesized via a high power sonica-
tion process can be taken as examples [24]: basically, the PL spectrum of bulk Bi2S3 consists
of a main peak around 946 nm, which is ascribed to the band edge emission. However,
as the Bi2S3 is high-power sonically treated for different durations from 0.5 h to 3.5 h,
and accordingly exfoliated to van der Waals strings with different sizes [24], the emission
from the Bi2S3 could show the new peak centered at 685 nm along with the initial main
peak, which seems to be shifted to ~900 nm [24]. This can be attributed to the crystal
defects, such as sulfur vacancies, which create deep trap states and accordingly provide
alternative recombination pathways for excitonic recombination and shallowly trapped
electron–hole pairs, resulting in the observed PL [24,29]. However, it is well-known that
crystal defects might also increase the non-radiative recombination [89], and more physical
details of the shifted-peak should be revealed by combining with other characterizations,
such as absorption spectra and/or photo-carrier relaxing kinetics [90]. Further-exfoliated
nanoribbons of Bi2S3 have been inserted with oxide atoms resulting in a marked reduction
in the bulky band edge emission [24,29]. The CVD-grown and hydrothermal synthesized
Bi2S3 nanosheet and nanorod also show similar new a PL peak around 624 nm beyond the
band gap of bulk Bi2S3 [16,38]. Likewise, Bi2S3 nanoparticles prepared by reflux method
could produce a PL peak near 580 nm even larger than the band gap of bulk Bi2S3 [16].

The Raman spectra of Bi2S3 mainly locates within the range of 30–300 cm−1 [78] (see
Table 4). Most observed phonons are Ag and B1g modes; there are two major peaks ob-
servable in some samples (Figure 9a), which are contributed by transverse Ag mode at
237.2 cm−1 and longitudinal B1g vibration mode at 260.7 cm−1 revealed by first-principle
calculation [78]. Actually, the wave number differences between the theoretical calcula-
tions and the experiment observations could be less than 5 cm−1 (Figure 9b). However,
the Raman modes of the 2D nanosheets would unanimously shift toward higher wave
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numbers when compared with bulk Bi2S3 samples [24,29]. Such a shift can be associated
with decreased long-range Coulombic interaction in few-layers nanosheets [29]. Moreover,
due to the breaking of symmetry in bulk or nanostructures that can occur as a result of
displacement defects in the lattice, which allows for the relaxation of Raman selection rules,
some infrared (IR)-only mode could become Raman-active [78], resulting in the emergence
of new peaks. Additionally, the peaks of some modes could occur with broadened FWHM,
similarly to the observations in other bismuth compounds [61]. Moreover, Bi2S3 tend
to be thermally oxidized by annealing [57], and therefore the laser-heating effect during
Raman characterization should be carefully considered. The temperature-dependent Ra-
man spectrum shows that the Bi2S3 nanostructure (e.g., nested nanonetwork) could be
thermally -stable under 500 K [22]. However, at a higher temperature of ~573 K, thermal
oxidization would occur [57], resulting in the variations of the optical properties, such as
band-edge emission reduction due to oxygen-atom insertion into the 2D Bi2S3 nanosheet
after long-term exfoliation [24].

Photonics 2022, 9, x FOR PEER REVIEW 13 of 23 
 

 

compared with bulk Bi2S3 samples [24,29]. Such a shift can be associated with decreased 

long-range Coulombic interaction in few-layers nanosheets [29]. Moreover, due to the 

breaking of symmetry in bulk or nanostructures that can occur as a result of displacement 

defects in the lattice, which allows for the relaxation of Raman selection rules, some infra-

red (IR)-only mode could become Raman-active [78], resulting in the emergence of new 

peaks. Additionally, the peaks of some modes could occur with broadened FWHM, simi-

larly to the observations in other bismuth compounds [61]. Moreover, Bi2S3 tend to be 

thermally oxidized by annealing [57], and therefore the laser-heating effect during Raman 

characterization should be carefully considered. The temperature-dependent Raman 

spectrum shows that the Bi2S3 nanostructure (e.g., nested nanonetwork) could be ther-

mally -stable under 500 K [22]. However, at a higher temperature of ~573 K, thermal oxi-

dization would occur [57], resulting in the variations of the optical properties, such as 

band-edge emission reduction due to oxygen-atom insertion into the 2D Bi2S3 nanosheet 

after long-term exfoliation [24]. 

 

Figure 9. (a) Raman spectra of exfoliated Bi2S3 nanosheet with different processing durations from 0 

h to 3.5 h; the inset is a TEM image of a typical exfoliated sample (reprinted with permission from 

[24] ©  2022, American Chemical Society); (b) comparison of first-principle calculation and experi-

ment observation of the Raman spectra of Bi2S3 nanowire (inset) (reprinted with permission from 

[24] ©  2022, American Physical Society); (c) temperature-dependent Raman spectra of BSNNN (re-

printed with permission from [22] ©  2022, Royal Society of Chemistry). 

Figure 9. (a) Raman spectra of exfoliated Bi2S3 nanosheet with different processing durations from 0 h
to 3.5 h; the inset is a TEM image of a typical exfoliated sample (reprinted with permission from [24]
© 2022, American Chemical Society); (b) comparison of first-principle calculation and experiment
observation of the Raman spectra of Bi2S3 nanowire (inset) (reprinted with permission from [24] ©
2022, American Physical Society); (c) temperature-dependent Raman spectra of BSNNN (reprinted
with permission from [22] © 2022, Royal Society of Chemistry).
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Table 4. Raman frequencies and corresponding phonon modes in Bi2S3 [78].

Raman Modes Theoretical Peak Site (cm−1) Experimental Peak Site (cm−1)

B1g 32.8 33.6

B2g 38.1 37.6

Ag 40.4 46.3

Ag 53.5 53.1

Ag 70.9 70.1

B1g 86.0 81.1

Ag 99.3 100.0,

B1g 173.4 168.7

Ag 184.0 186.0, 187 a, 190.2 b

Ag 195.5 196.0

Ag 211.1 218.7

B3g 228.2 224.1

Ag 237.2 237.1, 237 a, 235.4 b, 235 c, 238.2 d

Ag 253.3 254.5

B1g 260.7 262.4, 264 a, 262.4 b, 263 c, 260.9 d

B1g 277.3 276.3
All the theoretically and experimentally observed Raman frequencies and corresponding phonon modes are from
Ref. [78], except the marked data: a from Ref. [29], b from Ref. [18], c from Ref. [24], and d from Ref. [22].

4. Applications

In early years, Bi2S3 nanostructures were considered as interesting candidates for
applications in fields such as thermoelectricity and light-absorption layers [31,35]. More
recently, the special optical and electronic properties of Bi2S3 have appealed to applications
in new fields, such as photocatalysis, photodetection, solar energy conversion, optical-
switching, and biology [4,22,43,91]. As this review is concerned with the optoelectronics of
nano-Bi2S3, here we mainly discuss its representative optoelectronic applications, including
photodetection, solar cells and photocatalysis.

4.1. Photodetection

As typical binary V-VI semiconductors, bismuth chalcogenides of Bi2X3 (X = S, Se, Te)
are a category of distinctive photoresponsive materials, owing to their environment-friendly
chemical compositions and dramatic optical, electrical, and photoelectric conversion char-
acteristics [3,4,22,43,91]. Among them, Bi2S3 is provided with an optimal band gap of
1.3–1.7 eV and high absorption coefficient of 104~105 cm−1 and has become a promising
candidate for photodetection (Table 5) [91]. The responsive spectral range of nano-Bi2S3
for photodetection is from visible to the near-infra band [17,22]. In most cases, the on/off
ratio of the nano-Bi2S3 photodetector could be higher than 100 [44,92], however, perhaps
due to the existence of plentiful carrier traps, the temporal response of some samples is
at the level of a few seconds [18,71,93,94], far from the requirements of real-time imag-
ing, which uses speeds of, e.g., 30 frames per second (FPS). Rational trap-passivation by
post-processing and junction barrier modification, as well as improving the crystalline
quality or introducing heterogeneous structures, could markedly shorten the response time
to sub-ms or even tens µs [23,50,95]. The high-quality nano-Bi2S3 flexible photodetector
developed by H. Yu et.al. shows 10 µs rise time and 350 µs decay time (Figure 10a–d) [23,95].
Ref. [50] proposes a single-nanowire-device, in which Bi2S3 NW is surface-oxidated to fill
the vacancies of sulfur with oxygen atoms and in situ form a Bi2S3/Bi2S3-xOx heterojunc-
tion (Figure 10e–h). Such a heterojunction could not only maintain good response time
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at sub-ms level at visible range, but also achieve rather high responsivity (2908.9 A/W)
and detectivity (~1011 Jones), as shown in Figure 10i–l. The improvement of the overall
detection performances of such a Bi2S3/Bi2S3-xOx heterojunction might be attributed to
two factors: (1) the Bi2S3 and Bi2S3-xOx are n-type and p-type, respectively, and accordingly,
the intrinsic electrical field of PN junction enables accelerated carrier motion [96]; (2) other
than the junctions such as Bi2S3/BiOX (X = Cl, I) [21,61,71], the proposed Bi2S3/Bi2S3-xOx
system has better lattice matching, which reduces the interface defects.
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Figure 10. (a) Flexible Bi2S3 nanosheet film photodetector and its (b) TEM image; (c) experiment
setup for photodetector characterization; (d) rise and decay time of photodetector based-on Bi2S3

nanosheet film. (Reprinted with permission from [95] © 2022, Wiley-VCH). (e) Bi2S3/Bi2S3-xOx

nanowire and its (f) S-, (g) Bi- and (h) O- element mapping; (i) light-intensity dependent I-V cherecter-
istics, (j) respnsibility, (k) rise- and (l) decay-time of single Bi2S3/Bi2S3-xOx nanowire photodetector.
(Reprinted with permission from [50] © 2022, Elsevier).

4.2. Photovoltaic Cell

As mentioned above, Bi2S3 is a binary chalcogenide semiconductor with single phase
and fixed composition. It inspires the exploration as a promising absorber material for solar
energy (Table 6). This is because on one hand, its direct bandgap of 1.3~1.7 eV lies within the
optimal bandgap value for the single junction solar cell, while on the other hand, Bi2S3 has
a high absorption coefficient (at wavelengths of approximately 600 nm) and relatively high
carrier mobility, enabling full light absorption and photogenerated carrier collection within
a film thickness of, typically, a few micrometers [26]. In addition, the raw materials (Bi
and S) are low-cost and non-toxic. All the above features make Bi2S3 a candidate for solar
absorbers. Moreover, beyond the regular light-absorption function, nano-Bi2S3 in solar cells
could serve as a number of other roles, such as the electron acceptor for organic or inorganic
heterojunction solar cells, the media for dye- or quantum-dot-sensitization, and the electron
transport layer for perovskite solar cells [14,26,37,45,97]. It seems that the regular PN
junction structure using Bi2S3 as the n-layer cannot produce a practical performance for
solar-cell application. Typical conversion efficiency is less than 1% [36,45,70,98–102], while
state-of-art quantum dot-sensitized solar cells (QDSSCs) with Bi2S3 quantum dots could
achieve conversion efficiency higher than 3% (Figure 11a,b) [14,103]. The hybridization
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strategy, e.g., Bi2S3 nanowire networks/P3HT hybrid solar cells, or Bi2S3/TiO2 cross-linked-
structure, could further improve the conversion efficiency [37,103]. Besides its use as a
conversion media, Bi2S3 could also be a promising electron transport layer for perovskite
solar cells (Figure 11c); the NiO/CH3NH3PbI3/Bi2S3 system could achieve conversion
efficiency of 13% (Figure 11d) [26].

Table 5. Selected reports on the nano-Bi2S3-based photodetector.

Samples Wavelength Ion/Ioff

Temporal
Response

(Rise/Decay)
Responsivity

Bi2S3 nano-networks [18] 671 nm / ~3 s /

Hierarchical Bi2S3 nanostructures [91] / / 50/240 ms /

Bi2S3/Bi2S3-xOx nanowire [50] 475–650 nm 44.6 0.47/0.93 ms 2908.9 A/W

Bi2S3 nanocrystalline [47] / / 23 ms /

Bi2S3/BiOCl composites [99] / 330 70 ms /

Bi2S3 nanorod [23,95] 405 to 780 nm / 10/350 µs 4.4 A/W

Bi2S3/SnS heterojunction thin film [93] 400 to 800 nm / ~50 s /

Bi2S3 nanorods and nanoflowers [44] Laser@809 nm
and 980 nm ~100 2/3 s /

Bi2S3 thin film [70] 650 nm / 67.8 ms /

Dandelion-shaped hierarchical Bi2S3
microsphere [92] 650 nm 567 ~10 s /

Bi2S3/BiOI p-n heterojunction [71] visible / ~5 s /

Bi2S3 Nanorods [94] 475 nm/550 nm/650 nm / ~5 s /

Table 6. Selected reports on the nano-Bi2S3-based solar cell.

Sample Voc (V) Jsc (mA/cm2) Filing Factor Conversion Efficiency (%)

Bi2S3/PbS thin film [99] 0.13–0.31 0.5–5 0.25–0.42 0.1–0.4

Bi2S3/PbS thin film [100] 0.28 2.1 0.34 0.19

Bi2S3 thin film [70] 0.23 10 0.33 0.75

Bi2S3 quantum dot-sensitized TiO2 solar cells [98] 0.502 7.9 0.537 2.52

Bi2S3nanowire networks/
P3HT hybrid solar cells [37] 0.7 10.7 0.45 3.3

Bi2S3/P3OT solar cells [104] 0.44 0.022 / /

BiOI/Bi2S3 heterojunction films [101] 0.5 1.82 0.4 0.36

TiO2/Bi2S3 heterostructure [102] 0.33 0.57 0.39 0.148

Bi2S3 nanocrystal film [45] 0.058 0.33 0.283 0.0054

Bi2S3 colloidal nanocrystals [36] 0.36 3.21 0.52 0.60

Polymer/Bi2S3 nanocrystal solar cells [27] 0.32 3 0.49 0.46

Bi2S3/TiO2 cross-linked heterostructure [103] 0.48 14.48 0.47 3.29

Bi2S3/TiO2 nanotube array cell [75] 0.766 1.56 0.602 0.718

NiO/CH3NH3PbI3/Bi2S3 solar cell [26] 0.949 18.6 74.2 13

Bi2S3 quantum dots/TiO2 nanorod QDSSC [14] 0.46 14.51 0.46 3.06
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Figure 11. (a) Bi2S3 quantum dots coated on TiO2nanrod by PLD; (b) photo-voltaic characteristic of
Bi2S3 quantum dot-sensitized TiO2 solar cells; (reprinted with permission from [14] © 2022, Royal
Society of Chemistry). (c) Low-roughness Bi2S3 thin film deposited on CH3NH3PbI3 by thermal evap-
oration as electron transport layer; (d) the photo-voltaic characteristic of the NiO/CH3NH3PbI3/Bi2S3

solar cell. (Reprinted with permission from [26] © 2022, American Chemical Society).

To summarize the studies on nano-Bi2S3 in solar cells, this system so far seems not to
have fully realized its potential. The non-practical conversion efficiency may be limited
by superficial defects in the Bi2S3 [22]. In addition, on the viewpoint of material, as
a semiconductor already possessing an optimal photovoltaic band gap, when Bi2S3 is
processed into nanoscale, it might help to produce photon-conversion sites, but on the
other hand it is also critical to avoid band-misalignment due to the unnecessary increase
in the band gap brought by quantum confinement in the nanostructures [7]. Rational
trade-off among different aspects, including carrier mobility, carrier concentration, photon-
conversion site (area of junction for electron-hole pair generation and separation), and band
alignment would be quite critical for the further progress of the nano-Bi2S3-based solar cell.

4.3. Photocatalysis

Photocatalysis is one of most active research fields focused on the applications of
Bi2S3 nanostructures, with hundreds of reports published within a few years [16,69,105].
The interest in this field is based in particular on the low cost and low toxicity of Bi,
which has been named “green metal” by some authors, as well as its several compounds,
including Bi2S3 [58,61,74]. Table 7 presents a selection of references where the photocatalytic
properties of Bi2S3-based materials were studied, and specifies the chemical reactions that
were considered.
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Table 7. Selected reports on the nano-Bi2S3-based photocatalyst.

Sample Photocatalytic Reaction Spectral Region

TiO2 nanotubes/Bi2S3-BiOI [71] RhB, methyl orange (MO), methylene
blue (MB) and Cr (VI) Visible (Xe lamp)

Bi2S3 nanoparticles [16] MB Visible

Bi2S3 microsphere [65] MO Visible

Bi2S3 nanorod [4] MB, MO, RhB UV

Bi2S3 nanoparticles [59] CO2 Visible (mercury lamp)

Bi2S3/Bi2WO6 hierarchical microstructures [72] Ofloxacin Visible

Bi2S3/ZnS microspheres [73] RhB, oxytetracycline (OTC) Visible

CuS–Bi2S3 hierarchical architectures [77] Rh-B and crystal violet (CV) Visible

Bi2S3@ZIF-8 core-shell heterostructure [52] RhB Visible

Bi2S3 nanoribbons [58] CO2 Visible

Bi2O3/Bi2S3/MoS2 n-p heterojunction [58] Oxidizing water molecules, MB Simulated solar light

Bi2S3 nanorods [69] RhB UV-vis

Bi2S3/Bi2O2CO3 heterojunction [74] RhB Visible (Xe lamp)

The pioneering works on this topic demonstrated that Bi2S3 nanostructures can act
as direct photocatalysts [4,69]. In [69], solution-processed Bi nanowires diluted in water
were used as the catalyst for RhB removal. A solution of RhB was degraded under visi-
ble light within 4 h. Afterward, the degradation of MO and MB was also demonstrated
(Figure 12a) [4]. Besides the exploration on dye-removal, nano-Bi2S3 (nanoparticles, mi-
crospheres, thin urchin-like Bi2S3 spheres, and nanoribbon) was also able to reduce CO2
to methyl and methanol (Figure 12b) [58,59]. As mentioned above, Bi2S3 nanostructures
efficiently adsorb the incident light, which can be converted to photocarriers that migrate to
the nanostructure surface, hence they can ease the formation of intermediates, accelerating
chemical reactions. Thus, the high absorption capability of Bi2S3 certainly plays a key
role in this process, because it enables a significant optical absorption efficiency that is
required for the efficient generation of photocarriers. Moreover, other than the ~1.3 eV
band gap of bulk Bi2S3, the nano-structured Bi2S3 could have varied band structure, and
accordingly achieve tunable photocatalytic response spectral range under visible light and
also UV [4,69]. Furthermore, it is noteworthy that the potential of the photogenerated
electrons (holes) must be low (high) enough so that they can efficiently trigger the chemical
reaction of interest, and this potential is defined by the photon energy of the incident
photons. Hence, the hybrid structure of other materials (TiO2, Bi2WO6, Bi2O2CO3 Bi2O3,
ZIF-8, ZnS, CuS) with nano-Bi2S3 could enhance catalysis performances. Accordingly, the
co-catalysis by such hybrid structures seems more promising for the degradation of RhB,
CV, MO, MB, and ofloxacin [52,58,71–74,77].

The photocatalysis mechanism of nano-Bi2S3 suggested by experimental results varied
from one work to another (together with the nature and structure of the hybrid material),
however, some evidence highlighted in these studies can be extracted. On one hand, Bi2S3
nanostructures allow photocatalytic capabilities in the visible region due to their rational
band gap and strong optical absorption efficiency. On the other hand, depending on
the electronic configuration of the hybrid (including the potential of the photocarriers in
Bi2S3 nanostructure, location of the conduction, and valence band of the semiconductor),
photocarriers, especially electrons, can flow from the Bi2S3 nanostructure to the hybrid
semiconductor or the opposite. In other words, according to these different reports, nano-
Bi2S3 can act as an electron donor (the electrons being made available for reactions at the
surface of the semiconductor, Figure 12c) or as electron acceptor (the electrons provided by
the semiconductor reacting at their surface, Figure 12d) [49,52,73]. Thus, further studies
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would be of significance to understand the mechanism of the photocatalyst based on
nano-Bi2S3, as well as related hybrid structures.
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Figure 12. (a) Dye removal photo-catalyzed by Bi2S3 nanorod (reprinted with permission under CC-
BY-NC 2.0 from [10] © 2022); (b) CO2 reduction photo-catalyzed by Bi2S3 nano-ribbon (reprinted with
permission from [58] © 2022, Elsevier); (c) proposed photo-catalytic mechanism of Bi2O3/Bi2S3/MoS2

n-p heterojunction where Bi2S3 act as an electron acceptor (reprinted with permission from [49] ©
2022, Elsevier); (d) proposed mechanism for the photo-catalytic degradation of RhB where the Bi2S3

nanorod acts as an electron donor (reprinted with permission from [52] © 2022, Royal Society of
Chemistry).

5. Conclusions and Perspectives

Bi2S3 has motivated and attracted the interest of scientists during the past decades
due to its potential in thermoelectric and hydrogen storage and its Li- and Na- ion battery
properties. Furthermore, Bi2S3 has recently become appealing for applications involving
its particular optoelectronic properties. Increasing interest has been paid especially to its
application in photodetection, solar energy conversion, and photocatalysts. In this article,
we present a comprehensive review of the recent advances on this field: electrical and
optical properties of Bi2S3, growth of Bi2S3 nanostructures, and emerging optoelectronic
applications. Bi2S3 nanostructures with a broad variety of sizes and shapes can be prepared
with different existing fabrication methods:

(1) Vapor phase deposition, involving thermal evaporation, LP-MOCVD, and PLD;
mainly used to prepare thin film.

(2) Liquid phase deposition, involving chemical bath or electrochemical deposition, is
also used to fabricate thin film.

(3) Surface sulfurization can produce nano-Bi2S3 with better crystalline quality, but
requires high processing temperature.

(4) Chemical synthesis Bi2S3 nanostructures with a broad variety of shapes from 0D to
3D, as well as the hierarchical and heterogeneous structures of Bi2S3.

Optimal band gap, high light absorption, and good carrier mobility concentration
make nano-Bi2S3 feasible for a series of optoelectronic applications, but better controlled
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crystalline quality, nanostructure size, shape, and environment is desired. The SOC effects
could be critical to further extend the design space of the (linear) optical response, while
rational doping could help to improve the nonlinear optical properties and consequently
produce more promising nonlinear optical materials [13]. However, there are still amount
of works to achieve better nano-Bi2S3 optoelectronics. In most of the works that we
have discussed, the influence of the crystal facets exposed at the surface of the Bi2S3
nanostructures on their optoelectronic functionalities has not been thoroughly evaluated.
In addition, because of the structural and electronic anisotropy of nano-Bi2S3 and its facet-
dependent surface states [29], the nature of the exposed facets might affect either the optical
response of nano-Bi2S3 with a high surface-to-volume ratio (where surface states play a
significant role on the overall response) or their functionalities for applications in which
surfaces are a key player (such as catalysis, surface-enhanced Raman spectroscopy, and
charge transport). However, emerging photodetector, solar cells, and photocatalysts based
on nano-Bi2S3 clearly show great potential in optoelectronics. Besides these applications,
further opportunities for nano-Bi2S3 in this field may lie in the switchable optical device,
the bolometer, and beyond [85].

In sum, the progress on the fabrication of Bi2S3 nanostructures, the control and un-
derstanding of their excellent optoelectronic responses, and the emergence of alternative
applications open new possibilities for nano-Bi2S3 beyond the already-explored paths.
More experimental observations are needed to realize its optical potential. Further devel-
opments are also necessary to overcome the obstacles and highlight the unsolved issues to
achieve more practical nano Bi2S3-based optical materials and devices.
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