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Abstract: We investigate Floquet dynamics of a particle held in a three-well system driven by a
two-frequency field and identify integer and fractional photon resonances due to the dual-frequency
driving. It is found that pairs of photon-assisted tunneling near the resonance originate from avoided
level crossings in the Floquet spectra which, in essence, are quantum features of the hybridization
between different quantum states. In particular, we establish a close connection between fractional-
order resonances and Floquet mode properties under two-frequency driving conditions and illustrate
their dependence on driving parameters. These results provide us a possibility to realize coherent
control of quantum states with the assistance of classical external driving fields.

Keywords: dual-frequency driving; Floquet resonance; photon-assisted tunneling

1. Introduction

Floquet resonance in a periodically driven field is of fundamental importance in quan-
tum control and manipulation in which periodic driving [1–4] has emerged as a technique to
realize different applications, for instance, in population trapping [5], quantum phase transi-
tion [6,7], atomic transportation [8,9] and quantum information processing [10,11]. Among
various models, the paradigmatic two-level and there-level systems, e.g., Rydberg-excited
atoms [12], Bose-Einstein condensate (BEC) [13–15], coupled waveguide arrays [16,17]
and Dirac electrons [18], have been intensively investigated and exhibit interesting effects
including dynamical localization [19], coherent destruction of tunneling (CDT) [20,21]
and photo-assisted tunneling (PAT) [22]. Recently, dynamics of monolayer graphene in
a time-periodic potential are widely studied in the framework of the Floquet approach
and exhibit a number of novel quantum effects [23] such as photon-induced tunneling
of electrons [24], chiral tunneling [25], Floquet scatting [26] and voltage-driven quantum
oscillations [27]. These findings and approaches that are related to Floquet dynamics open
the possibility of controlling quantum states in multiple nanotechnological applications.

In particular, recent numerical algorithms and experimental conditions have devel-
oped driving schemes from monochromatic [28] to bichromatic [29], three-frequency [30]
and even random-frequency driving models [31], and consequently provide more intrigu-
ing results such as multiphoton resonance and fractional photon-assisted tunneling [32].
Esmann and coworkers [33] have revealed that 1/2-photon, 1/3-photon, and 1/4-photon
resonances can have large effects on the particle transfer. Strictly speaking, there is no
true photon absorption in a driven system and the photons are provided by the external
driving field. In this paper, resonances corresponding to integer or fractional multiples of
a driving frequency are still called photon resonances, which in essence are analogous to
those in solids. These extensions of photon resonance in a periodically driven system are of
significance and provide a more flexible way to realize how such effects could be applied.
For instance, an analog of photon-assisted tunneling [34] is achieved in a coupled optical
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waveguide system by only modulating one waveguide and adjusting the distance between
two adjacent ones, which may offer benefits for controlling light propagation and realizing
all-optical switches.

For these periodically driven systems, Floquet theory provides a useful tool to un-
derstand the physical mechanism of some new quantum effects derived from the time-
dependent schrödinger equations (TDSE) [35,36] with a time-periodic Hamiltonian
H(t) = H(t + T) where T = 2π/ω is the period of external driving fields for all time t. Re-
cently, Floquet approaches have developed into many types such as Shirley’s formulation
of Floquet theory (SFT) [37], many-mode Floquet theory (MMFT) [38–40] and instantaneous
Floquet state (IFS) [41]. In special cases of multiple periodic fields with commensurate
frequencies (integer multiples of a common frequency), Poertner and Martin [42] have
proved the equivalence of SFT and MMFT.

These powerful approaches enable us to qualitatively understand Floquet resonances
in multiple frequency driving conditions. In this paper, we focus on the peculiar behaviors
of tunneling probability at and beyond the resonance by investigating a particle in a
three-well lattice subjected to a dc field plus two ac fields. We propose that through
driving-induced resonances, one can engineer the parameter space involving six relevant
driving parameters for both coherent tunneling and complete population trapping. Also,
the ratio between driving amplitude and frequency plays a vital role in exploring features
of tunneling dynamics. Our results further demonstrate that pairs of avoided crossings
of quasienergies account for the photon-assisted tunneling which is closely related to
the symmetrical and anti-symmetrical states. Furthermore, in two-frequency driving
conditions, we find that integer and fractional photon-assisted tunneling show obvious
dependence on driving amplitudes and phase differences, which provides us with a way
to coherently control the tunneling probability between different quantum states.

The rest of this paper is structured as follows. In Section 2, we present the physical
model, Floquet theory and SFT method and then introduce a useful transformation in the
high-frequency approximation. To characterize the particle’s evolution behaviors, we define
a physical quantity, namely the tunneling probability, to directly describe the tunneling rate.
In Section 3, we revisit integer multiple photon resonances and their physical mechanisms
under monochromatic cases. Floquet-based interpretations reveal that pairs of avoided
crossings of quasienergies account for photon-assisted tunneling. In Section 4, we indulge
in the two-frequency driving cases and find that fractional-order resonances being a large
effect on tunneling dynamics can have an excellent explanation by utilizing the Floquet
theory under certain conditions. Then, we further analyze dynamic dependences on driving
amplitude and phase difference and establish a close connection with Floquet properties.
Finally, we summarize our results in Section 5.

2. Model and Method

We study a particle confined in a driven system consisting of a linear arrangement of
three quantum wells, in which the left-most well (well-1) is driven by a dual-frequency field
and the other two wells denoted by j (j = 2, 3) are undriven. Such a three-well (state) model
illustrated in Figure 1a can be realized by subjecting ultracold neutral atoms to spatially peri-
odic light-shift potentials arising in the interference patterns of multiple laser beams [43,44].
In particular, Frederik et al. [45] proposed a two-frequency driving case by modulating
the position of an optical lattice at two frequencies simultaneously. These experimental
results establish the possibility of artificially generating two-frequency driving quantum
potentials in an optical lattice. Alternatively, a three-engineered-waveguide system can
provide an ideal platform to investigate such driving-induced phenomena by mapping
the temporal evolution of quantum dynamics into spatial propagation of light waves.
Experimentally, the technology of fs laser written waveguide arrays (see Ref. [46] for full
details of the fabrication method) permits our specific setting of the two-frequency driving
properties of the waveguides. S. Longhi et al. have provided several methods to realize the
selective harmonic modulations by periodically bending particular waveguides [2,47,48] or
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by harmonically modulating the refractive index of partial waveguides while keeping the
rest fixed [49]. As in the experiments [46], in Figure 1b, we set the top boundary waveguide
to have a different refractive index profile compared to the rest waveguides. The width of
the individual waveguides is set to be 3 µm and the adjacent waveguide spacing amounts
to 32 µm. The input power of light intensity is on the order of MW. Thus, selectively
irradiating the top waveguide with two harmonic frequencies is well within the reach of
the related experimental setup.

Dynamics of the system is governed by the dimensionless Hamiltonian (h̄ = 1) [50–52],

H(t) =ε(t)|1〉〈1|+ g(|1〉〈2|+ |2〉〈1|+ |2〉〈3|+ |3〉〈2|) (1)

where |1〉, |2〉, |3〉 represent the localized state in the three wells correspondingly. Here, the
dual-frequency field ε(t) = ∆ + A1cos(ω1t) + A2cos(ω2t + φ) acts on well-1 with ∆ being
the dc field, and A1, A2, ω1 and ω2 being the driving amplitudes and frequencies of the
external driving ac field-1 and field-2 with a phase difference φ. The six driving parameters
can be tuned to explore the driving-induced photon resonances. g is the coupling intensity
between adjacent wells and couplings between next-nearest-neighbor wells have been
neglected. As in the Ref. [53], all the parameters ∆, A1, ω1, A2 and ω2 are normalized
in units of a reference frequency ω0 on the order of 102 s−1, and time t is normalized in
units of ω−1

0 . Dynamics of this system can be obtained by numerically solving the TDSE
i∂/∂t|Ψ(t)〉 = H(t)|Ψ(t)〉, where the quantum state |Ψ(t)〉 = a1(t)|1〉+ a2(t)|2〉+ a3(t)|3〉
is expanded with the localized state. Here aj(t) represents the probability amplitude at the
jth well and satisfies normalization condition |a1(t)|2 + |a2(t)|2 + |a3(t)|2 = 1. We will use
the population probability Pj(t) = |aj(t)|2 to characterize the dynamics.
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Figure 1. (Color online) (a) Schematic diagram for a driven three-well system in which the left-most
well (well-1) is driven by a dual-frequency field and the other two wells are undriven. (b) Three-
coupled waveguides with selective modulation of the top waveguide (waveguide-1) by two harmonic
frequencies. (c) Tunneling probability Π1 as a function of ∆/ω1 and A1/ω1. Pairs of bright colors are
along the ∆/ω1 axis in the vicinity of a series of resonance points ∆/ω1 = n where n is an integer.
Along the A1/ω1 axis, n-photon-assisted tunneling is almost completely suppressed (Π1 ≈ 0) under
the conditions of J−n(A1/ω1) = 0. Parameters are varied by changing ∆ and A1 and fixing ω1 = 10.
The initial conditions are a1(0) = 1, a2(0) = 0, a3(0) = 0.
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2.1. Floquet Theory and SFT Method

When two driving frequencies are rational, i.e., ω2/ω1 = N2/N1 with N1 and N2 being
integers, Hamiltonian (1) is periodic in time t with a common frequency
ω = ω2/N2 = ω1/N1. According to the Floquet theory [35,36], for a Hamiltonian that is
both periodic and hermitian, one could write three independent solutions for quantum
state |Ψ(t)〉 of the form, ∣∣Ψj(t)

〉
= e−iEjt

∣∣φj(t)
〉

(2)

where we have labeled each solution with index j. Ej and
∣∣φj(t)

〉
are the quasienergies and

corresponding Floquet states with a same periodicity as the Hamiltonian,∣∣φj(t)
〉
=
∣∣φj(t + T)

〉
. Hence we find

∣∣Ψj(t + T)
〉
=
∣∣Ψj(t)

〉
e−iEjT and the unitarity of

|Ψ(t)〉 at all times guarantees that diagonal elements Ej of quasienergies are real.
Since Hamiltonian (1) is also hermitian, we can define a unitary time evolution opera-

tor, U(t, 0), satisfying,

|Ψ(t)〉 = U(t, 0)|Ψ(0)〉 (3)

for all time t. Here, we have assumed that the initial time for evolution is given at

t0 = 0. From the equation of TDSE, one can find that U(T, 0) = T e−i
∫ T

0 H(t)dt where
T denotes the time-ordering operator. Then, for the unitary case [53], the operator U(t, 0)
is obtained formally,

U(t, 0) = ∑
j

∣∣φj(t)
〉
e−iEjt

〈
φj(0)

∣∣ (4)

Therefore, the quasienergies and quasistates of Equation (2) can be obtained by nu-
merically solving the time evolution operator over one period of the driving.

Based on Floquet’s theorem, Shirley [37,42] provides an alternative to direct integra-
tion, namely the SFT method, which relates the semiclassic time-dependent Hamiltonian to
a time-independent Hamiltonian represented by an infinite matrix. In the following, we
present briefly the SFT method in the case of a single frequency field. It can be extended to
multiple frequencies [37,42]. However, we find the method is more convenient in dealing
with single frequency fields as insights revealed by the method. Due to the periodicity of∣∣φj(t)

〉
, one can apply the SFT method through Fourier decomposition of the Floquet states,

|φj(t)〉 = ∑
n

einωt|φ̃j(n)〉 (5)

where ω = 2π/T and n to be an integer. Here we have defined SFT Floquet state
|φ̃j(n)〉 = |φ̃j〉 ⊗ |n〉, where {|n〉} denotes the modes of the driving fields and forms an or-

thonormal basis. Note that Equation (2) can also be written as
∣∣Ψj(t)

〉
= ∑n e−i(Ej−nω)t|φ̃j(n)〉.

Therefore, the SFT method is considered as the famous replicas of Floquet states, and their
quasienergies are given by,

Ej,n = Ej − nω (6)

Because the periodic Hamiltonian (1) can also be expanded as H(t) = ∑m H̃(m)eimωt

where m is also an integer, the TDSE can be expressed in terms of the |φ̃j(n)〉 and H̃(m)
and expansion coefficients are determined from a time-independent matrix (the Floquet
Hamiltonian). In our system, each H̃(m) is a 3× 3 matrix. The coupled time-independent
equation is,

∑
j,n

HF|φ̃j(n)〉 = ∑
j,n

Ej|φ̃j(n)〉 (7)
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where j runs over all the atomic states before each change in n. This result is a linear
eigenvalue problem and the Floquet Hamiltonian HF can be conveniently defined by Dirac
notation [37],

〈im|HF|jn〉 = H̃ij(m− n) + mωδijδmn (8)

where the index i(j) represents an atomic state, but the index m(n) represents a Fourier
component. We can see that the Floquet Hamiltonian has a periodic structure with multiple
ω in the diagonal elements. Based on this SFT method, Floquet quasienergies and Floquet
states are determined by an infinity time-independent matrix HF which is solvable by
appropriately truncating the standard basis for the Fourier space. Instead of summation
over all integer m, here we only consider a finite set {mmin ≤ m ≤ mmax} and for the
validity and simplicity, we select mmax = −mmin. Then as Poertner and Martin have
pointed out in Ref. [42], the truncated Fourier series mmax ≥ 10 is necessary to compute
Equation (7).

2.2. High-Frequency Approximation

As an effective analytical method, a high-frequency approximation is required to
obtain approximate analytical solutions to the governing equation as analytical results
can provide a better intuitive understanding of the physics. High-frequency approxima-
tion arises when the driving frequency exceeds other characteristic frequencies of the
system [54–58]. In that case, one can construct a high-frequency expansion of an effective
time-independent Hamiltonian of the system by averaging out the high-frequency terms.
In this paper, it is found that the high-frequency limit works well under the condition of
ω ≥ 10g. We first apply the high-frequency approximation to gain some insight into the tun-
neling dynamics. By introducing the transformation a1(t) = b1(t)e−i

∫
ε(t)dt, a2(t) = b2(t),

a3(t) = b3(t), we use the slowly varying function of time bj(t) to describe the evolution of
tunneling dynamics and then obtain a coupled equation,

i
db1(t)

dt
= gei

∫
ε(t)dtb2(t)

i
db2(t)

dt
= ge−i

∫
ε(t)dtb1(t) + gb3(t)

i
db3(t)

dt
= gb2(t) (9)

where the terms ge±i
∫

ε(t)dt describe the coupling between the driven well-1 and undriven
well-2, which is effectively modified by six driving parameters. After further using the
Jacobi-Anger expansion e±ixsinθ = ∑∞

n′=−∞ Jn′(x)e±in′θ with Jn′(x) being the n′th-order ordi-

nary Bessel function of x, we can get the expansion e±i
∫

ε(t)dt = e±i[∆t+ A1
ω1

sin(ω1t)+ A2
ω2

sin(ω2t+φ)]

= ∑n1 ∑n2
Jn1(

A1
ω1

)Jn2(
A2
ω2

)e±i[(∆+n1ω1+n2ω2)t+n2φ] where n′, n1 and n2 are integers. In the
high-frequency approximation, the higher-order terms which are proportional to ∝ e±in1ω1t

and ∝ e±in2ω2t where n1, n2 ≥ 1 vary rapidly and their average over a time scale larger
than ω−1

l (l = 1, 2) is zero. These terms can therefore be neglected. Hence we could obtain
some analytical solutions which display fascinating physical phenomena such as dynam-
ical stabilization and multiple photon resonances. For instance, when ∆ = A2 = 0, our
model is identical to that of the periodically driven three-level system by a monochromatic
field [59,60]. In the high-frequency regime, e±i

∫
ε(t)dt ≈ J0(

A1
ω1

), the effective coupling

between well-1 and well-2 is ge f f = gJ0(
A1
ω1

). The CDT effect occurs at a series of isolated

driving parameter points which satisfy J0(
A1
ω1

) = 0 [20,21].
To characterize dynamic behaviors, we define the tunneling probability Πj as,

Πj = 1−min[Pj(t)] (10)
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where Pj(t) = |aj(t)|2 = |bj(t)|2 denotes the population probability of the particle at the jth
well and min[Pj(t)] is the minimum value of Pj(t) within a finite time interval (t ∈ [0, 100]).
Under this definition, Πj = 1 means the probability of the particle initially trapped at the
jth well can completely tunnel into other wells, while Πj = 0 indicates the occurrence of
population trapping or dynamical localization of the state |j〉 in the simulation. Therefore,
the value of Πj allows to directly measure the tunneling rate from state |j〉 to other states.

3. Integer Photon Resonance with a Single-Frequency Driving Field

In this section, we investigate integer photon resonances with one ac field (i.e., A2 = 0).
In particular, we reveal a close relation between resonance dynamics and Floquet mode
properties. To illustrate this relation, we first show dynamical evolution of Π1 versus ∆/ω1
and A1/ω1 in Figure 1c, where we change parameters ∆ and A1 and fix ω1 = 10. The initial
conditions are a1(0) = 1, a2(0) = 0, a3(0) = 0 and we choose g = 1. When ∆/ω1 varies
from 0 to 2.5, one finds that, in the horizontal direction, three pairs of resonance features
are illustrated, and bright colors indicate higher tunneling rates. It is seen that quantum
tunneling from well 1 to the other two wells is greatly restored when ∆/ω1 is about an
integer. If assuming ∆ = nω1 + δ where |δ| ≤ ω1

2 and n being an integer, parameters
corresponding to n = 0, 1, 2 where δ = 0 are usually called resonance points. One can
define the tunneling near these points as n-photon-assisted tunneling, i.e., zeroth-order,
1st-order and 2nd-order PAT as marked in Figure 1c. In the vertical direction, it is seen
that the zeroth-order photon-assisted tunneling is almost completely suppressed when
A1/ω1 equals to 2.4, and 5.5, satisfying J0(A1/ω1) = 0. According to the high-frequency
approximation in Equation (9), one can see that the right-hand side of the equation vanishes,
which suppresses the tunneling. Similarly, one can find the suppression of other orders.
For example, the 1st-order photon-assisted tunneling is inhibited when A1/ω1 equals
3.8 satisfying J±1(A1/ω1) = 0. Finally, we rewrite Equation (9) in the high-frequency
approximation using the Bessel functions,

i
db1(t)

dt
= gJ−n(

A1

ω1
)eiδtb2(t),

i
db2(t)

dt
= gJ−n(

A1

ω1
)e−iδtb1(t) + gb3(t),

i
db3(t)

dt
= gb2(t). (11)

Clearly, tunneling probabilities between wells are completely inhibited under the
conditions of J−n(

A1
ω1

) = 0, indicating the occurrence of population trapping and the
particle will be localized at the initial well.

3.1. Physical Explanation of Photon-Assisted Tunneling

To understand the physical mechanism of integer photon-assisted tunneling, we first
investigate the properties of Floquet quasienergies based on the SFT method. Driven by
the single-frequency field, the relevant Floquet Hamiltonian has a simple form,

H̃(0) =

 ∆ g 0
g 0 g
0 g 0

, H̃(±1) =

 A1/2 0 0
0 0 0
0 0 0

. (12)

We can diagonalize HF (truncated at mmax = 20) to obtain the quasienergies for
A1 = 22. Three replicas are presented in Figure 2a corresponding to m = −1, 0, 1. The ratio
∆/ω1 is varied by changing ∆ and fixing ω1. Other parameters are ω1 = 10 and g = 1.
Avoided level crossings of the quasienergy are clearly displayed near ∆/ω1 = 0, 1, 2, 3. The
partially enlarged illustration (the insert in Figure 2a) shows that there are no degeneracy
points in this quasienergy spectrum. The hybridization between different quantum states
around the avoided level crossing leads to photon-assisted tunneling. To confirm this, we
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numerically solve the TDSE and plot Π1 as a function of ∆/ω1 for A1 = 22 in Figure 2b. It
is seen that at these avoided crossings, photon-assisted tunneling is identified as pairs of
sharp peaks in Π1.
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Figure 2. (Color online) (a) Floquet quasienergies and (b) Π1 as a function of ∆/ω1 show
pairs of avoided crossings and photon-assisted tunneling. (c) Evolution of occupations at well
1 P1(t) = |a1(t)|2 for two cases of ∆ = 9 and ∆ = 11. (d,e) Evolution of occupations at the sym-
metrical state P+(t) and anti-symmetrical state P−(t) for (d) ∆ = 9 and (e) ∆ = 11. (f) Population
probabilities P+ and P− corresponds to the avoided crossings. The values are derived when P1

reaches zero for the first time. The parameters are chosen as A1 = 22, ω1 = 10 and g = 1.

As an important aspect within this analysis, we further identify which states are
actually excited at the avoided crossings by looking at the occupation in the basis of
|1〉, |+〉 = 1√

2
(|2〉 + |3〉) and |−〉 = 1√

2
(|2〉 − |3〉). Evolutions of occupations at well 1

P1(t) = |a1(t)|2 for two cases of ∆ = 9 and ∆ = 11 are plotted in Figure 2c. It is seen that
evolutions for the 1st-order resonance tunneling under these two conditions keep the same
properties. Then occupations at the symmetrical state |+〉, i.e., P+(t) = |〈Ψ(t)|+〉|2 and
the anti-symmetrical state |−〉, i.e., P−(t) = |〈Ψ(t)|−〉|2 are displayed in Figure 2d,e. For
∆ = 9, P−(t) oscillates with a higher amplitude, while P+(t) keeps a lower value. However,
for ∆ = 11, we see the opposite. Moreover, occupations at the symmetrical state |+〉 and the
antisymmetrical state |−〉 at four pairs of avoided crossings are carefully checked, as shown
in Figure 2f, which demonstrates that when P1(t) = 0, the particle tunnels into a hybrid
state between well 2 and well 3. These values are numerically derived when P1(t) reaches
zero for the first time. Therefore, the left tunneling peak at the nth-order resonance is closely
related to the anti-symmetrical state and the right one is associated with the symmetrical
state. In a brief, we attribute pairs of photon-assisted tunneling in Figures 1c and 2b to
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avoid crossings in the quasienergies which, in essence, are the quantum feature of the
hybridization between different quantum states.

3.2. Manipulation of Nth-Order Photon-Assisted Tunneling

In this subsection, we focus on the control of tunneling dynamics. From Figure 1c,
we learn that n-photon-assisted tunneling will be greatly suppressed once the conditions
J−n(

A1
ω1

) = 0 are satisfied. Inspired by this, we provide a scheme to manipulate the
nth-order resonance dynamics. In Figure 3, we show the Floquet spectra and tunneling
probabilities Π1 in terms of ∆/ω1 with A1

ω1
= 2.4 and A1

ω1
= 3.8. The left column is for

A1 = 24, ω1 = 10 satisfying J0(
A1
ω1

) = 0, while the right column is for A1 = 38,

ω1 = 10 which is a zero solution of J1(
A1
ω1

) = 0. We find that for J0(
A1
ω1

) = 0, as shown in
Figure 3a,b, when quasienergy levels tend to be degenerate near ∆/ω1 = 0, the zeroth-order
tunneling peaks in Π1 are suppressed. Then, for J1(

A1
ω1

) = 0, as shown in Figure 3c,d, the
Floquet spectrum becomes almost a crossing point near ∆/ω1 = 1 where 1st-order photon-
assisted tunneling is inhibited. Such conclusions can be extended to suppress nth-order
photon-assisted tunneling by changing ratio A1

ω1
to satisfy J−n(

A1
ω1

) = 0. Analytically, when
A1 = 38, ω1 = 10, the 1st-order photon-assisted tunneling is inhibited where P1 ∼ 1. For
∆/ω1 = 0, 2, 3, profiles of Π1 is nearly identical (in Figure 3d) due to J0(3.8) ≈ J−2(3.8) ≈
J−3(3.8). These results provide an opportunity to control nth-order photon-assisted tunnel-
ing by choosing the driving amplitude and frequency.
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4. Fractional Floquet Resonance under Two-Frequency Driving

In this section, we investigate fractional photon resonance when the system is driven
by a two-frequency field. For concreteness, we set ∆ = 0 such that the driving field becomes
a superposition of two simple harmonic driving fields ε(t) = A1cos(ω1t) + A2cos(ω2t + φ).
To illustrate the dynamics, we first present numerical results by considering A1 = A2 = 22
and φ = 0, as shown in Figure 4a, in which pairs of straight lines with bright colors denoting
high tunneling rates (or large Π1) are observed at different ratios of ν = ω2/ω1, such as
ν = 1, 2, 1/2.... These ν-photon-assisted tunneling effects come from the applied ac field-2
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without which the particle has a very low probability of tunneling into other wells because
A1/ω1 = 2.2 belonging to a particular tunneling suppression phenomenon [59]. It is seen
that in regions where tunneling should be suppressed, tunneling can be restored when the
other drive frequency ω2 is an integer multiple or fraction of the drive frequency ω1. In
the low-frequency region, tunneling dynamics display a complex resonance pattern, while
in the high-frequency region, it tends to have a stable constant value. Compared to the
single frequency driving case, the two-frequency driving scheme offers richer dynamics,
i.e., leading to both integer and fractional Floquet resonances. Considering the physics
of the side with fractional ν is just the same as the one with integer ν in Figure 4a, we
incorporate the fractional transitions like ν = 1/2 into integer ones like ν = 2. In the
following, we just investigate in detail the fractional transitions, such as ν = 2/3.

Figure 4. (Color online) (a) Numerical results of Π1 and (b) analytical results of coupling intensity
|ge f f | as a function of ω1 and ω2 in the two-frequency driven scheme. Pairs of bright straight lines
in (a) denote ν-photon-assisted tunneling effects. Analytical results of coupling intensity agrees
well with the numerical ones in the high-frequency approximation. Other parameters are chosen as
A1 = A2 = 22, φ = 0 and g = 1.

4.1. Fractional Photon-Assisted Tunneling

To explore the physical mechanism of these resonances, we show Π1 versus ω2 in
Figure 5a,b for A1 = A2 = 22. Other parameters are ω1 = 10, g = 1 and φ = 0. When ω2
varies in the low-frequency region (ω2 < 10), Π1 increases to 1 and followed by multiple
transitions between coherent tunneling and its suppression. As shown in Figure 5b, the
dip positions, from left to right, exactly correspond to the ratios ν = 1/6, 1/5 and 1/4 etc.
What’s more, values of Π1 are less than 0.5 when ν = 2/3 and even ν = 3/4, suggesting
that tunneling suppression at νth-order fractional photon resonances are not trivial effects.
In the moderate-frequency region, when 10 < ω2 < 50, we note that when ω2 = 15, i.e.,
ω2/ω1 = 3/2, there exists a pair of fractional photon-assisted tunneling peaks, together
with a series of integer-multiphoton-like resonances. As expected, when ω2 is in the high-
frequency region (ω2 > 50 ), the curve ends up with a plateau representing a very low
tunneling rate. More simulation results reveal that such resonance effects still exist even
if A1 6= A2, as shown in Figure 5c which is plotted under the condition of A1 = 22 and
A2 = 10. Other parameters are the same as in Figure 5a. Then one may wonder whether the
integer and fractional resonances appear particularly in driven three-wells. For this reason,
we particularly plot the evolution of Π1 versus ω2 for the driven two-well system (i.e., by
disconnecting the 3rd well) in Figure 5d with the same parameters as in Figure 5a. A series
of dips without tunneling peaks (photon-assisted tunneling) is observed and clearly, in
such a two-well model, resonance effects manifest as a series of tunneling suppression,
as discussed in Ref. [12]. Therefore, this suggests that the driven three-well system is the
simplest model to investigate integer and fractional Floquet resonances.
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To find out where the particle is when fractional photon-assisted tunneling occurs, we
calculate the population probabilities at well 2 and well 3 when P1 = 0. Taking 3/2nd-order
PAT as an example, as shown in Figure 5e, when P1 reaches zero within a short time interval
(between 35-time units and 42-time units), we find that the particle oscillates between well
2 and well 3. Thus, pairs of fractional PAT still correspond to the two hybrid states between
wells 2 and 3.

As discussed in Section 2, if ω2/ω1 can be expressed as the ratio of two integers
ν = N2/N1, the Hamiltonian (1) has a common frequency ω = ω1/N1 = ω2/N2. How-
ever, it is challenging for us to obtain accurate quasienergies for such a condition with
two varying frequencies because the common frequency always changes for different ν.
Considering inconveniences of the SFT method in solving the variable dual-frequency
problem, we turn to the basic Floquet theory and choose a finite narrow parameter range
around the resonance to obtain some Floquet-based quasienergy spectra by solving the
time evolution operator U(T, 0) over one period of T = 2π/ω. For example, in the case of
ν = 3/2, as shown in Figure 5f, we set the common frequency ω = ω1/2 = ω2/3 = 5 to
calculate the quasienergies when ω2 varies between 14 and 16. When ν = 2/3, as shown
in Figure 5g, the common frequency is ω = ω1/3 = ω2/2 = 10/3 and ω2 varies from
6.3 to 7. Other parameters are chosen as A1 = A2 = 22, φ = 0 and g = 1. We find
that at the resonance, three quasienergy levels are separated and the tunneling dynamics
are inhibited. While near the resonance, pairs of avoided crossings are attributed to the
fractional photon-assisted tunneling. Similarly, utilizing this method, we carefully check
all the dips and their corresponding quasienergy spectra, as shown in Figure 5h, in which
we list another typical case of ν = 1/2. Comparing these results, we can have a deeper
understanding of the complicated ν-photon resonance. For very low values of ω2, the
common frequency ω must be much lower than ω1 and the three quasienergies oscillating
in the range (−ω/2, ω/2) tend to be degenerated, leading to high tunneling rates. When
two quasienergy levels form the structure of avoided crossing, the particle can transfer
from one state to another. Due to the common frequencies, the spectrum has a complicated
energy level structure, resulting in complex resonance patterns in the low-frequency region.
These numerical results reveal that Floquet theory still works well near the resonance
even if the common frequency changes slightly and we can conclude that it is the avoided
crossing of the Floquet quasienergy that brings the occurrence of integer or fractional
photon-assisted tunneling.
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4.2. Analytical Analysis in the High-Frequency Approximation

To obtain more intuitive explanations, we focus on the analytical analysis in this
part. It is observed that when both ω1 > 20 and ω2 > 20, as shown in Figure 4a, these
parameters fall in the high-frequency region, and the result can be explained analytically
with the high-frequency approximation. The coupling intensity between well-1 and well-2
ge f f = gei

∫
ε(t)dt (see Equation (9)) can be rewritten by assuming ω2 = nω1 + σ where

σ ≤ ω1/2 as,

ge f f = g[... + J−1(A2/ω2)Jn(A1/ω1)e−iσt

+ J0(A2/ω2)J0(A1/ω1)

+ J1(A2/ω2)J−n(A1/ω1)eiσt + ...] (13)

For small values of A1/ω1 and A2/ω2, the effective coupling is mainly governed by
gJ0(

A1
ω1

)J0(
A2
ω2

). This analytical result of |ge f f | = g|J0(
A1
ω1

)J0(
A2
ω2

)|, as shown in Figure 4b,
has a good agreement with the numerical ones in Figure 4a in the high frequency ranges.
For instance, ge f f tends to g = 1 if both ω1 and ω2 hold high values, resulting in a higher
tunneling rate. However, we haven’t found any evidence of fractional photon-assisted
tunneling in Figure 4b, which proves that fractional resonance could be a combination of
higher-order transitions. The further analytical result of the population amplitude at well-1
is yielded by solving the coupled Equation (9),

b1(t) =
J0(

A1
ω1

)J0(
A2
ω2

)cos(χt) + 1

1 + J0(
A1
ω1

)2 J0(
A2
ω2

)2
(14)

where χ = gsqrt(1 + J0(
A1
ω1

)2 J0(
A2
ω2

)2). If the two driving frequencies are very high,

|J0(
A1
ω1

)J0(
A2
ω2

)| tends to be 1, determining the values of population amplitude at well-1
varying between 0 and 1. These analytical predictions agree well with the numerical results.

In addition, we also note that when one driving frequency is fixed, Π1 tends to be a
constant value with the increase of another frequency. For instance, when ω1 = 10 and ω2
is larger than 50, as shown in Figure 5a, Π1 is almost zero, exhibiting the occurrence of
coherent population trapping. The higher ω2 is, the weaker the influence of J0(A2/ω2) on
the coupling intensity. Therefore, in the parameter range ω2 > 50, ge f f ≈ gJ0(

A1
ω1

)J0(
A2
ω2

) ≈
gJ0(

A1
ω1

) ≈ 0.11g, we see almost decoupling between well 1 and well 2 in Figure 5a. The
analysis shows that the effective coupling intensity plays a critically important role in
controlling tunneling.

4.3. Dependence on Driving Amplitudes

Using the 2/3rd-order resonance as an example, we investigate the dependence on
the driving amplitude. The evolution of Π1 versus A1 and A2 is plotted in Figure 6a with
ω1 = 10 and ω2 = 20/3. For ω2/ω1 = 2/3, the 2/3rd-order photon-assisted tunneling
effect becomes significant in the weak-driving parameter region, i.e., A1 and A2 being
very small, in which the value of Π1 can reach 1, manifesting that the particle can almost
completely tunnel into other wells. This result can be understood because the weak-driving
conditions are similar to those in the high-frequency approximation. when A1 and A2 are
very small, the effective coupling ge f f in Equation (13) may also tend to be g. Interestingly,
we note that the complete tunneling suppression can be observed in a wide parameter
range except for some special cases such as 45 < A1 < 55 and 55 < A2 < 65, in which Π1
oscillates around 0.5, indicating the particle has half the probability to tunnel into other
states. More simulations show that when the condition of ω2/ω1 changes, the dependence
of tunneling dynamics on driving amplitudes will be different and these results provide us
a scheme to enter or exist ν-photon resonance.
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Figure 6. (Color online) (a) Evolution of Π1 as a function of A1 and A2 and such a 2/3rd −photon
resonance effect shows a clear dependence on driving amplitudes. (b) Evolution of Π1 versus A2/ω2

for A1 = 10. The minimum values of Π1 are coincide with zeros of J0(A2/ω2). (c) Quasienergies Ej

versus A2/ω2 and (d) Time-averaged population 〈Pj〉 corresponding to the medium quasienergies
E2. Other parameters are chosen as ω1 = 10, ω2 = 20/3 and φ = 0.

We further reveal the dependence of resonance dynamics on driving amplitudes
by a peculiar condition for A1 = 10 in Figure 6b. With the increase of A2/ω2, Π1 first
experiences a transition from tunneling to almost complete suppression at J0(A2/ω2) = 0
and then oscillates with a lower amplitude, implying partial tunneling suppression. The
minimum values of Π1 are well consistent with zeros of J0(A2/ω2) due to the decoupling
effect. So, particle’s transfer between three states can be adjusted with appropriate driving
amplitudes even if at fractional-νth-order resonances.

Here, due to ω1 = 10, ω2 = 20/3, Floquet theory works well for a common frequency
ω = ω1/3 = ω2/2. Quasienergy spectrum as a function of A2/ω2 is plotted in Figure 6c in
which E1 and E3 are weakly influenced by varying amplitude A2 in the absence of avoided
crossings or degeneracy. Based on the significant dependence of Π1 on driving amplitudes,
we further check their eigenstates and find that the property of Floquet state corresponding
to quasi-zero energy level E2 is consistent with Π1, as shown in Figure 6d (The other two
Floquet states with no localized states are not listed here). Therefore, we can see that
driving amplitudes dependence is attributed to the modulated localized Floquet state.

4.4. Dependence on Phase Differences

In the above discussion, we have not considered the roles played by the phase differ-
ence. In fact, φ is useful in realizing quantum control if applied appropriately. Focusing on
the 2/3rd-order resonance (ω1 = 10, ω2 = 20/3) again, Figure 7a shows tunneling proba-
bility Π1 with varying φ and A2 for a driving amplitudes A1 = 24. Significant influence of
φ is observed in the parameter region 20 < A2 < 40. So, tunneling probability can be en-
hanced by more than 0.5 by choosing appropriate values of φ and A2. Therefore, the phase
difference can have a large contribution to improving or suppressing tunneling probability.
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Figure 7. (Color online) (a) Evolution of Π1 as a function of φ and A2 for A1 = 24. (b–d) Tunneling
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from −π to π. Other parameters are the same as in Figure 6.

To establish a connection between phase dependence and Floquet properties, we
plot Π1 as a function of φ in Figure 7b under the condition of A1 = 24 which satisfies
J0(A1/ω1) = 0. It is found that as φ varies from −π to π, tunneling probability Π1 can be
enhanced ∼ 0.5. Also, the quasienergy spectra, as shown in Figure 7c, display that E1, E2
and E3 are all changed by the phase and the medium one E2 slightly oscillates around zero.
Further study on the Floquet states, plotted in Figure 7d reveals that the phase dependence
on Π1 is originated from the localized Floquet state corresponding to E2 with a negligible
population at 〈P2〉. The other two Floquet states with no localized states are not shown
here. Therefore, it is also the modulated dark Floquet state that leads to the change of
tunneling probabilities.

5. Conclusions

In conclusion, we have presented a comprehensive analysis of resonance dynamics in
a three-well system under two-frequency driving. We have explored two quantum effects
including integer and fractional photon resonance utilizing standard Floquet theory and
SFT method [37,42]. It is found that photon-assisted tunneling originates from the avoided
crossing of Floquet spectra and has an intrinsic connection with the hybridization between
different states at those resonance points. Moreover, our study on the two-frequency driving
scheme further reveals that fractional resonances like the 2/3rd order can be triggered by
tunneling dynamics. The numerical results agree well with analytical ones derived from
the high-frequency approximation and demonstrate the effectiveness of Floquet theory for
studying multiple frequency driving cases. Further studies on the driving amplitude and
phase dependence provide a way to coherently enhance or suppress interwell tunneling.
Our study can be extended to other odd-N-state (N > 3) systems with multi-frequency
driving fields to probe even exotic resonance dynamics.
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