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Abstract: Optical logic gates have been proposed and demonstrated on a function programmable 

waveguide engine constructed using buried silicon nitride waveguides in polymer and a set of ther-

mal electrodes. The device can perform logic AND or OR operations for the input signals A and B, 

each containing two bits of information, in parallel. The input signals, in the form of binary current 

values in the electronic domain, are applied to a subset of thermal electrodes, while the computed 

logic states are converted to optical intensity variations at the single-mode waveguide outputs. The 

rest of the electrodes work as weights to define the device function, either AND or OR, by adjusting 

the light interference in the multimode waveguide through thermo-optic effect. Simulations were 

first performed to reveal the nonlinear response of the received light intensity with respect to the 

applied current, thus allowing complex and effective manipulation of the light field on the wave-

guide engine. After chip fabrication and system integration, 65,536 experiments were performed 

automatically. The data are fed into a sorting program to find the valid settings that satisfy the re-

spective truth table out of the 283,852,800 possible input/weight/output combinations. Four cases of 

operations for the AND and OR gates are presented in the end, with different bar and contrast val-

ues. This simple, low-cost yet powerful engine may be further developed for applications in on-chip 

photonic computing and signal switching. 

Keywords: optical logic gate; silicon nitride; programmable photonics; multimode waveguide; 

thermo-optic effect 

 

1. Introduction 

Over the last few decades, the exponentially increasing demand for transmission ca-

pacity in optical fiber communication networks has led to the fast development of pho-

tonic integrated circuits (PICs) as an attractive and practical solution to expand capacity 

while keeping the cost low, compared to conventional solutions using the bulky assembly 

of discrete, free-space components [1,2]. Extra and often expensive procedures are needed 

to improve the stability and robustness of the free-space optical assembly to secure their 

applications in the daedal environment. The integration of optical components and func-

tions into a large-scale PIC has shown clear advantages, as this technology keeps bringing 

new functionalities under reasonable power consumption and small footprint. 

Beyond optical communication, PICs are expected to open up new ways to quench 

the ever-increasing thirst for computation power, raised by today’s big data and artificial 

intelligence technology [3,4]. The key advantage is that photonic computation is carried 

out by light propagation that needs essentially no processing power and allows parallel 

treatment of massive data. It would enable applications that are unreachable by conven-

tional electronic computing technology, those requiring low latency, high bandwidth, and 

low power-consumption, at the same time [5,6]. 
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Under PIC-based photonic computation technology, it is believed by many that the 

property of photons makes it difficult to realize optical digital gates, whereas in the elec-

tronic domain the logic gates can be readily made by a series of transistors. Nevertheless, 

optical logic gates have been reported with different waveguide structures, such as active 

Mach-Zehnder interferometers (MZIs) [7,8], microring resonators (MRRs) [9], directional 

couplers (DCs) [10], multimode interference devices (MMIs) [11,12], QR code-like 

nanostructures [13], etc. Several material platforms, including silicon-on-insulator (SOI) 

[9], plasmas [14], lithium niobate [15], photonic crystals [16], nonlinear materials [17], etc., 

are dedicated to implementing the on-chip logic operation for signal process and photonic 

computing. Two methods are widely used in PIC-based logic devices [18]. The first 

method is based on the linear interference, where the input stays in the optical domain 

and the phases/amplitudes are taken to be the input logic states. This method is simple, 

convenient, and easy to implement with clear mechanics. However, it is still challenging 

to precisely control the phase difference between the various signals, though phase-

shifted-keying [11] has matured over the years and been implemented in practical trans-

mission networks. As the devices often require high structure/phase accuracy in the fab-

rication process, many designs have not been verified experimentally [10–15,17]. Further-

more, Ref. [19] adopts the input logic as the electrical pulse train (EPS), instead of the 

optical phase. The continuous wave (CW) light signal is used as the carrier only. Although 

this method avoids the accurate control of optical phases, the input EPS needs modulate 

the microring resonators precisely and the output information is read out at specific reso-

nant wavelengths, thus requiring a complex and expensive system with broadband tuna-

ble laser and spectrum analyzing equipment. 

The cascaded methods can effectively extend the number of operation logic bits for a 

large-scale computing network. However, they suffer from the often inefficient optical-

electrical-optical (O/E/O) conversions [8]. The nonlinear optical effects can also be adopted 

to develop various kinds of complex logic devices. However, the nonlinear optical mate-

rials with large nonlinear susceptibility and ultrafast response are often expensive and 

require delicate processing. 

In our previous works [20,21], we have demonstrated that the thermo-optic multi-

mode waveguide is a powerful platform for programmable multi-functional PICs. The 

multimode interference (MMI) devices have shown desirable features, such as simple and 

compact structure, large bandwidth, low-loss, and good fabrication tolerance. The logic 

input can take the binary current values through the electrodes, while the input light can 

be continuous and works only as a carrier. Through a combination of thermo-optic and 

multimode interference effect, the output is converted into light intensity variations as 

defined in the truth table. However, the nonmonotonic response of the received light in-

tensity with respect to the applied current makes it difficult to accurately predict the de-

sirable logic functions. A current sweeping method can be introduced to search for the 

right configurations on the input and weight electrodes. 

Recently, we have developed an optical computing/switching engine based on a mul-

timode waveguide and a series of thermal electrodes to alter the light interference in the 

multimode region experimentally, actively, and automatically, until the desired pattern is 

reached at the output plane, so as to define the target function [21]. We name it function 

programmable waveguide engine (FPWE). With this technology, an optical NOT logic 

gate is demonstrated, capable of processing 4 bits of electronic logic signals in parallel. In 

this work, we explore further into the FPWE technology and present a function versatile 

logic gate capable of parallel two-bit operation for the logic AND or OR function, defined 

by refreshing/updating the electrode (input and weight) settings. Going further on from 

the previous work [21], the mechanism is investigated in detail, the data sorting algorithm 

is explained, and different levels of operations are explored for the target functions. We 

show that the proposed waveguide engine can even multiplex the logic AND and OR 

operations in parallel on the same chip with identical input, weight, and output. Only the 



Photonics 2022, 9, 736 3 of 14 
 

 

bar values are set to be different for distinguishing the state of “0” and “1” for various 

logic operations. 

In particular, we stress that the index tuning in the multimode region is a powerful 

method, as it can alter the total number of the guided eigenmodes, their individual modal 

profiles, as well as their propagation constants; while, in a single mode waveguide, the 

index tuning usually only varies the propagation constant, i.e., the phase of light passing 

through. We reveal that the thermal tuning process, similar to other E/O or O/E conver-

sions, is essentially nonlinear, by drawing the curve relating the change of light intensity 

at a given output port to the electronic input in the form of current. This is fundamentally 

different to a conventional Mach-Zehnder interferometer (MZI) network, where the rela-

tion between the all-optical signals through the layers is considered as a linear transfor-

mation. This feature forms the foundation for the further development of the FPWE tech-

nology as an all-optical neutral network with built-in nonlinear activation function, but 

using only linear optical materials. This engine can be easily expanded, without cascades, 

to form a large-scale general hardware platform for the multi-bit logic operations and 

other versatile functions. We believe this work can inspire the development of program-

mable PICs for advanced communication and computing applications. 

2. Engine Architecture and Working Mechanism 

Figure 1a shows the architecture of the FPWE to be used as a logic gate. The input 

signal A and B, each containing two electrodes, i.e., two bits of logic information, are a 

subset of the electrode matrix E. The input logic signals stay in the electronic domain and 

take the form of current through the electrode, i.e., low current for logic “0” and high 

current for logic “1”. The carrier light itself contains no information and the logic output 

C is evaluated from the optical intensities measured on a subset of the waveguide outputs 

O, as the result of the multimode interference. 

 

Figure 1. (a) Architecture of the function programmable waveguide engine (FPWE) to be used as a 

two-bit logic gate. The optical path contains an input waveguide, a multimode waveguide, and a 

series of output waveguides. Both the electronic inputs A, B, and the weights, can be chosen from 

the electrode network E. The logic outputs C are converted to optical intensity variations to be col-

lected from two waveguide ports in O. (b) Actual chip design showing the layout of the electrode 

network. The redundant waveguide ports are reserved for further development. The insets are the 

detailed designs of the input tapers, electrodes, and the output waveguides. 
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The choice of electrodes forming A [Ea1, a2, Ea3, a4] and B [Eb1, b2, Eb3, b4] can be arbitrary 

based on the target functions. Figure 1a shows only one possible option for A and B, but 

the input electrodes are not necessarily chosen next to each other. A and B must be inde-

pendent, i.e., “A∩B = ∅.” The rest of the electrodes in E are left as the weight matrix W. 

The current flowing through the weight electrodes can be adjusted in multiple levels, or 

in an analog manner, in order to search for the ideal settings that satisfy the target truth 

table for the logic AND or OR operation. 

The actual chip design is displayed in Figure 1b. The size of the MMI is designed as 

7 mm × 110 μm. The input and output waveguides are placed symmetrically to the MMI 

waveguide. It contains 11 input waveguides on the left side and any waveguide can be 

chosen as the carrier light injection port. All the input waveguides go through a taper 

structure to improve the coupling with multimode waveguide. The gaps between the in-

put tapers are set to 4 μm. Two out of 11 output waveguides can be chosen as the optical 

output C. Output tapers are also added with a gap of 28 μm. A network of 4 × 7 thermal 

electrodes are placed on the multimode waveguide, each containing two pads (150 μm × 

150 μm) for contact/bonding. The electrodes are labeled according to the row and column 

number. The gaps between each electrode column are set to be 1.0 mm along the propa-

gation direction x. In each column, the 4 electrodes are designed with the size of 150 μm 

× 8 μm. The redundancy in the waveguide ports as well as in the electrode number leaves 

room for the development of different logic and switching devices using the same chip, 

but under different input/weight/output choices. 

The cross-section of the multimode waveguide is shown in Figure 2a. We choose to 

work on silicon nitride (SiNx) waveguide in polymer for its relatively compact size, simple 

fabrication steps, high thermo-optic effect, and low thermal conductivity, as well as the 

intrinsic high waveguide birefringence that is essential for the development of polariza-

tion diversity devices, such as polarization-sensitive Bragg grating filters [22], polariza-

tion beam splitter [23], polarization rotator [24], etc. The thickness of SiNx layer is 150 nm 

and the refractive index is 1.949 at 1550 nm, measured by an ellipsometer. The single-

mode input/output waveguides have a width of 2 μm, while the width of the multimode 

waveguide is 110 μm. The polymer cladding (ZPU12 series from ChemOptics, Daejeon, 

Korea) has an index of 1.45. The top and bottom cladding thickness is 6 μm and 15 μm, 

respectively. The design concept can well be applied to other material platforms (e.g., sil-

icon photonics, InP, silica PLC, polymer waveguide, etc.) and the refractive index tuning 

methods can also vary (thermo-optic effect, electro-optic effect, charge carrier injection, 

etc.). 

Thermal electrodes of 150 μm in length, 8 μm in width, and 100-nm in thickness (10 

nm Ti and 90 nm Au) are placed symmetrically on the surface of the top cladding with 

respect to the SiNx core. A 2D thermal solver (LUMERICAL HEAT) is used to calculate 

the temperature gradient numerically, assuming the silicon substrate as a heatsink (25 °C). 

The local cross-sectional temperature distribution when 20 mA current goes through one 

of the electrodes (E4, 4) is shown in Figure 2b. The temperature distribution is translated to 

the change of the refractive index by the thermo-optic coefficient of the polymer cladding 

(−1.14 × 10−4/°C) and the silicon nitride core (2.45 × 10−5/°C). When a small heater power is 

applied, the index change is small, the gradient is smooth, and the extra scattering loss 

introduced by the electrodes can be neglected. However, the changed multimode inter-

ference under weakly applied heater power can still result in large power variations at the 

output waveguides, which constitute the logic-switching mechanism. In this work, we 

consider the TM modes only. As most of the light field for the guided modes resides in 

the cladding, the negative thermo-optic effect of the polymer material dominates [25]. The 

eigenmode profiles are calculated using the mode solver from LUMERICAL MODE. 
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Figure 2. (a) Cross-section of the waveguide. (b) Temperature gradient by thermal simulation when 

20 mA current is applied to the heater electrode E4,4. (c,d) Comparison of the eigenmodes and (e) the 

corresponding multimode interference patterns with the heater (E4,4) off and on. (f) Nonmonotonic 

and nonlinear relation between the current applied to E4,4 and the intensity change at O3 as a result 

of the complex electro-thermo-optic changes. 

For the unheated waveguide shown in Figure 2a, the structure supports 41 modes 

for the TM polarization, whereas for the heated condition shown in Figure 2b, the struc-

ture supports only 38 modes with much altered profiles. The results are compared in Fig-

ure 2c,d for the fundamental modes and the highest-order guided modes. Figure 2e fur-

ther compares the total light field in the XY plane for the unheated and heated cases, re-

spectively, calculated using the bi-directional eigenmode expansion method. When an 

electrode is switched on, the change in the interference pattern is clearly visible. To quan-

tify this change, a monitor is placed at the output waveguide O3 to record the optical 

power passing through when a different current is applied to the electrode E4, 4, as an 

example. The curve is plotted in Figure 2f, demonstrating a nonmonotonic and nonlinear 

change of the optical power change in response to the electronic current applied. 

As it is difficult to conclude the response of the MMI waveguide by an analytical 

formula for any local refractive index change, the following empirical design rules are 

suggested when constructing a MMI-based logic gate. Firstly, the chosen multimode 

waveguide should support sufficient eigenmodes. The rule of thumb is to include at least 

2N modes, with N being the required output number. Once the waveguide thickness is 

set by the technology, the width can be varied to set the limit for higher order modes. 

Next, the multimode waveguide should be sufficiently long, so that the untuned MMI can 

at least reach the first 1×N imaging point. However, the waveguide should not be much 

longer after the first 1×1 self-imaging point, as the MMI is intrinsically periodic. Extra 

length may facilitate interference tuning but would also result in an inefficient device. 

Finally, at least two columns of electrodes should be included, one column as the input 

and the other as weights. More weight electrodes would indeed allow for more compli-

cated tuning of the MMI effect, but would also complicate the search process. One can 

leave some of the electrodes redundant, and only activate them if the search process fails. 

The curve in Figure 2f comes as no surprise. From Ohm’s law, the steady thermal 

power Q is related to the current by Q = I2R, where R is the resistance of the electrode, and 
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I is the applied current. At steady state, the thermal power is related to the temperature 

change by the heat transport equation: 

−∇⋅(k∇T) = Q∕V, (1) 

∇⋅J = 0, (2) 

where k is the thermal conductivity, ∇T is the temperature gradient, V is the volume, and 

J is the current density. 

The heat transport equation can be solved numerically. The induced refractive index 

change Δn is related to the temperature change ΔT (before heating and upon heating at a 

steady state) by: 

Δn = ctΔT, (3) 

where ct is the thermo-optic coefficient (−1.14 × 10−4/°C) of the material and can be regarded 

as a constant within a reasonable temperature range. Under a given refractive index dis-

tribution, the eigenmodes can then be solved by Maxwell’s equations. The total optical 

field at the output Etot of a MMI waveguide can be given by: 

Etot(x,y,z) = ∑ cvϕv

m

v = 1

(y,z)e−jβ
v
x (4) 

where x is the propagation direction and y,z is the profile which is perpendicular to the x 

direction. ϕv(y,z) is the eigenmode field, and βv is their respective propagation constant. cv 

is the coupling coefficient of the individual eigenmode numbered by v to the input light 

field, and m is the total number of the guided modes supported by the multimode wave-

guide [26]. The detected power Po at one of the output ports xo is proportional to the inte-

gral of the total intensity over the waveguide region: 

Po(xo)∝∬|Etot(xo,y,z)|
2
dydz (5) 

Through this chain of electrical–thermal–optical changes, one can expect a compli-

cated, nonmonotonic function of Po with respect to the applied current signal I. This func-

tion can be calculated numerically once the structure and material parameters are deter-

mined. The obtained curve in Figure 2f can also be fitted using a combination of analytical 

functions for a given current range. The significance is that it enables a nonlinear response 

of the output to the input when the input signals stay in the electronic domain and the 

output signals are taken as the corresponding light amplitude/intensity changes in the 

optical domain. We therefore expect that complex functions can be realized without re-

sorting to nonlinear optical materials or other O/E/O conversions, e.g., in constructing 

deep neural networks for data sorting and image classification. In this work, however, we 

confine it to the function of logic gates only and leave AI-based applications for future 

development. 

3. Chip Fabrication and System Integration 

The fabrication follows the same process as described in [22]. Only standard contact 

lithography is used, and the chips are ready for measurement once the wafer is diced with 

a standard sawing machine without facet polishing. 

Figure 3a shows the diagram of the FPWE system, and Figure 3b is a photo of the 

running system. For the O/E subassembly, an interconnected adapter is used to conduct 

the electronic signal from the main circuit board to the optical chip, but also as a sub-

mount to hold the chip in place. The interconnected adapter allows secure fiber attach-

ment and facilitates wire bonding to the pins. Considering that the electrode pads are only 

100 nm thick without an extra plating step, a process is developed with the help of solder 

balls to ensure reliable bonding of the gold wires to the pads on the polymer cladding. A 
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microscope photo is shown as the inset in Figure 3b. More details on the integration be-

tween the interconnected adapter and chip can be found in [21]. 

 

Figure 3. (a) Diagram and (b) actual photo of the FPWE system. 

The main circuits board is based on the microcontroller unit (MCU), which has been 

custom-made from the advanced ARM-based 32-bit STM32F730XX series, capable of 

providing 16 current source channels. Each channel can adjust the current from 0 to 20 

mA in the minimum adjusting step of 1 μA. All the 16 current channels are calibrated 

before use and the inaccuracy stays at the level of ±0.1%. The sub-mount/interposer is 

plug-connected to the MCU current source via two bus cables. 

A continuous-wave laser at 1550-nm is adopted as the carrier light. Without high-

speed PDs at hand, we have built an imaging system to capture the light from the open 

chip facet by an infrared (IR) camera. A polarizer is inserted into the imaging system to 

select only the TM light for analysis. After that, a central computer is used to update the 

current values in the MCU-based circuit board (via USB cable by Modbus protocol) and 

get the captured output from the IR camera (via ethernet cable by GigE vision protocol). 

The intensity variation of each output waveguide is then identified, saved, and processed 

in the central computer. The LabVIEW program provides the graphical user interface and 

synchronizes the MCU-based circuits board and camera. While the response time for the 

thermo-optic effect in polymer is on the millisecond scale, sufficient time should also be 

given for the image to stabilize (camera refresh rate is 100 Hz, and the image integration 

time is 100 ms). The thermo-optic response of the polymer material is on the millisecond 
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scale [25]. In the experiment, each sweep process takes around 0.5 s considering the 

thermo-optic response, the photo capture of the CCD camera, and the data transmission 

and storage. All these processes can be improved to sub-nanosecond scales with ultrafast 

electro-optic polymers [27], high-speed PDs and customized electronics. 

As mentioned in our previous work [21], the experiment cycle of the FPWE system 

is reduced to 0.5 s, which is at least three orders of magnitude faster than the forward 

design using thermal and optical transmission simulations. This feature allows us to ob-

tain a large amount of experimental data, sort them out using an automated program, and 

find the electrode settings that satisfy the target function, all experimentally. These set-

tings may not be unique, and they are compared until the optimal values are found. 

4. Data Acquisition, Analysis, and Discussion 

To collect the data, we have developed a program to scan the electrode current values 

and store the camera shots automatically. We do not distinguish the input and weight 

electrodes at the data acquisition stage. At first, 8 electrodes [E2,1 (22.0 Ω), E1,2 (21.1 Ω), E2,3 

(22.6 Ω), E1,4 (20.4 Ω), E2,5 (21.3 Ω), E1,6 (19.8 Ω), E2,7 (21.1 Ω), E4,7 (21.3 Ω)] are chosen, and 

the current can take 4 values [5 mA, 10 mA, 15 mA, 20 mA]. The total thermal power 

consumption ranges from 4.2 mW (5 mA is applied to all the 8 electrodes) to 67.8 mW (20 

mA is applied to all the 8 electrodes). The rest of the electrodes remain off. In total, these 

combinations constitute 48 = 65,536 experiments, each resulting in an image of 523 kilo-

bytes (PNG format, 640 × 512 pixels, 16-bit resolution). The scan process is complete within 

9.1 h (0.5 s for each sweeping), storing around 32.6 gigabytes of data on the hard drive. 

After data collection, a program is developed to search for the target logic operations. 

Among these data, 4 out of 8 electrodes need to be chosen as input A and B, as each 

input contains two bits, totaling A84 = 1680 variations. It is noted that the sorting uses 

“permutation” rather than “combination”, because the order between A (the first opera-

tion bits) and B (the second operation bits) and their respective high and low bits should 

all be distinguished as different configurations. For example, A = [E2,1, E1,2]/B = [E2,3, E1,4] 

and A = [E2,3, E1,4]/B = [E2,1, E1,2] are different configurations, though they use the same 4 

electrodes. Two of the 4 applied current values need to denote the logic “0” (relatively low 

current) and “1” (relatively high current) state for all the logic bits in A and B (C42 = 6). The 

other 4 electrodes remain as weights, which are fixed during the defined logic operations. 

Each of the weights can have one of the 4 current values, and the total number of the 

weight setting is calculated to be 44 = 256 for each specific input electrodes configuration. 

Two out of 11 waveguides should be chosen as the output C, adding up to A112 = 110 

options. Here, it also uses “permutation”, not “combination”, because the output values 

must be distinguished with high and low bits. 

The sorting program must therefore process 1680 × 6 × 256 × 110 = 283,852,800 possi-

ble configurations. We name each combination as one setting. For each setting, the pro-

gram must try 24 = 16 variations of the input states to compare with the target truth table 

for either logic AND or OR operation. A MATLAB program is developed to test the set-

tings in parallel. Although the parallel computing toolbox of MATLAB is powerful, it is 

still time-consuming and may run out of memory if all 283,852,800 configurations are 

searched together. Therefore, we divided the data into 2 parts in the following search pro-

cess. The first part is based on the input electrodes and their binary current values (1680 × 

6). After that, the remaining configurations of the weights and their output ports (256 × 

110) are individually implemented for each preprocessed configuration. If all the 16 input 

variations and their outputs satisfy the truth table, this setting, i.e., the specific combina-

tion of electrode selection, current choice, and waveguide outport selection, is recorded 

as a valid setting to define the device function. 

The algorithm for data sorting is illustrated in Figure 4a, and the target truth tables 

are listed in Figure 4b. The criterion to judge the logic state of the optical output signal 

goes as follows. First, the optical power of a specific output channel is evaluated by adding 

up the relative pixel counts in the area where the output waveguide is imaged (20 × 20 
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pixels). For each of the 283,852,800 settings, an experimental truth table is generated using 

the optical power of the chosen waveguide ports and in the sequence as listed in Figure 

4b. In the experimental truth table, the high input current is taken as the logic “1” and the 

low input current is the logic “0”. It is important to find a “bar” value that can judge the 

output lights as logical states to satisfy the target truth table. If the bar does not exist, this 

setting is invalid. 

 

Figure 4. (a) Data sorting algorithm to find the valid settings that match the truth table. (b) The 

target truth table for the two-bit AND and OR logic operation. 

A simple method to find the valid bar value is shown in the following. We first find 

the largest value of all the 16 cases for the locations where “0” output states (from the 

target truth table) should be and name it C0-max. Then, we find the lowest value for the 

locations where “1” output states (from the target truth table) should be and name it C1-

min. We define Contrast = C1-min − C0-max. If Contrast > 0, we consider the experimental truth 

table agrees with the target truth table, and the setting is valid because all the states which 

should be “1” have larger optical power than the states which should be “0”. Hence, a 

valid bar can be set to distinguish the “0” and “1” output states. We define the valid bar 

as bar = (C0-max + C1-min)/2. Note that the bar can be different among the valid settings and 

also for the AND and OR gates. Nevertheless, we stick to this criterion, because once the 

setting is determined, the device function is defined with a fixed bar to judge the output 

states. 

The evaluation of the optical power by camera counts is only an intermediate solu-

tion, and the chip can be integrated with high-speed PDs and subsequent electronics for 

a compact FPWE system in the future. The MATLAB program runs on a computer (Intel 

Core Xeon E-2286G CPU, 64G RAM, Windows 10 system) for 4 h until all the valid settings 

are found. As further work, fixed electronic inputs and fewer input/output waveguides 

can make the device more compact and improve the search efficiency. More efficient data 

sorting techniques will also be developed. 

During the search for the valid settings, we follow a few steps, based on the choices 

of input electrodes, weight electrodes, and output waveguide ports. First, we allow the 

selection of input electrodes, weight electrodes, and output ports to be independent for 

the logic AND and OR gates, as a general case S-I. In this case, the AND and OR logic 
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operations can both be realized on the same chip, but the input, weight, and output need 

to be changed to switch the logic functions. 

Next, for all the valid settings that satisfy S-I, we set the extra rule that the input 

electrodes must be the same for both the AND and OR gates, as case S-II. In this case, the 

input is fixed, the functions can be switched with different settings of weight and output. 

Under S-II, we further confine that the output waveguide ports must also be the 

same, as case S-III. This is convenient in practice as both the input and the output ports 

are fixed. The weight electrodes and output bar need to be changed when the chip 

switches its function between AND and OR gates. 

Finally, we also find that under S-III, even the weight settings can be the same; i.e., 

there exist some solutions in which the selection of input electrodes and output ports, plus 

the current values on the weight electrodes, can all stay the same, as case S-IV. The device 

is either AND or OR gate, depending only on the choices of bar. 

Table 1 summarizes the total number of valid settings under these 4 cases along with 

their conditions with arbitrary (∀) or same (=) parameters. It is noted that some combina-

tions are not discussed in Table 1. That is because the input electrodes are commonly fixed 

for practical use. The weights can be changed for the function switching and the output 

ports can be different to guide the results into various receivers. 

Table 1. The number of valid settings under S-I to S-IV case. 

Case A, B (Input) W (Weight) C (Output) 
Valid Settings 

AND OR 

S-I Arbitrary (∀) Arbitrary (∀) Arbitrary (∀) 17,184 15,168 

S-II Same (=) Arbitrary (∀) Arbitrary (∀) 12,912 12,552 

S-III Same (=) Arbitrary (∀) Same (=) 5592 5496 

S-IV Same (=) Same (=) Same (=) 2320 

S-IV ⊆ S−III ⊆ S−II ⊆ S−I, the symbols of arbitrary and same settings are in the brackets. 

For S-I, the device can provide the highest contrast between C0-max and C1-min. Table 2 

summarizes one of these settings with the screenshot of the light spots for each item in the 

truth table. The values are normalized with the maximal single pixel count given by the 

chosen camera in the image area. For S-III, the contrast is low compared to S-I, and one of 

the settings is summarized in Table 3. For the extreme case S-IV, the bar is changed both for 

logic operations and output ports. One of these settings is summarized in Table 4. 
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Table 2. AND and OR gate settings of S-I. [Input-∀, Weight-∀, Output-∀]. 

S-I: AND S-I: OR 

Weight: E1,2 = 10 mA, E2,3 = 10 mA, E1,6 = 15 mA, E2,7 = 20 mA Weight: E2,1 = 20 mA, E2,5 = 20 mA, E1,6 = 20 mA, E4,7 = 5 mA 

Input Output Screenshot Input Output Screenshot 

A B 
O3 O9 O3 O9 

A B 
O5 O8 O5 O8 

E1, 4 E2,5 E4,7 E2,1 E1,4 E1,2 E2,3 E2,7 

0 0 0 0 0(5.6) 0(5.0)   0 0 0 0 0(10.1) 0(5.0)   
0 0 0 1 0(14.2) 0(1.9)   0 0 0 1 0(13.4) 1(15.2)   
0 0 1 0 0(11.5) 0(2.8)   0 0 1 0 1(31.6) 0(7.3)   
0 0 1 1 0(22.6) 0(3.5)   0 0 1 1 1(35.6) 1(18.0)   
0 1 0 0 0(11.9) 0(2.8)   0 1 0 0 0(8.6) 1(45.9)   
0 1 0 1 0(10.6) 1(26.8)   0 1 0 1 0(9.8) 1(43.3)   
0 1 1 0 0(11.1) 0(3.6)   0 1 1 0 1(41.5) 1(30.0)   
0 1 1 1 0(20.8) 1(22.3)   0 1 1 1 1(29.0) 1(30.7)   
1 0 0 0 0(24.4) 0(5.8)   1 0 0 0 1(24.4) 0(6.4)   
1 0 0 1 0(26.2) 0(2.4)   1 0 0 1 1(25.7) 1(19.3)   
1 0 1 0 1(40.8) 0(4.1)   1 0 1 0 1(31.9) 0(5.9)   
1 0 1 1 1(44.2) 0(2.9)   1 0 1 1 1(31.9) 1(21.0)   
1 1 0 0 0(16.5) 0(5.1)   1 1 0 0 1(35.5) 1(53.0)   
1 1 0 1 0(26.7) 1(17.8)   1 1 0 1 1(26.0) 1(51.6)   
1 1 1 0 1(37.8) 0(3.8)   1 1 1 0 1(49.6) 1(25.8)   
1 1 1 1 1(38.9) 1(16.2)   1 1 1 1 1(31.5) 1(21.1)   

Input State: 

“0” = 15 mA; “1” = 20 

mA 

Output bar 1 = 32.2; Contrast 1 = 11.1 

Output bar 2 = 11.1; Contrast 2 = 10.4 

Input State: 

“0” = 5 mA; “1” = 15 mA 

Output bar 1 = 18.9; Contrast 1 = 11.0 

Output bar 2 = 11.2; Contrast 2 = 7.9 

Table 3. AND and OR gate settings of S-III. [Input- = , Weight-∀, Output- = ]. 

S-III: AND S-III: OR 

Weight: E2,3 = 15 mA, E1,4 = 10 mA, E2,5 = 5 mA, E4,7 = 15 mA Weight:E2,3 = 15 mA, E1,4 = 15 mA, E2,5 = 5 mA, E4,7 = 15 mA 

Input Output Screenshot Input Output Screenshot 

A B 
O6 O9 O6 O9 

A B 
O6 O9 O6 O9 

E1,2 E2,1 E1,6 E2,7 E1,2 E2,1 E1,6 E2,7 

0 0 0 0 0(46.6)  0(24.3)    0 0 0 0 0(44.2)  0(18.8)    

0 0 0 1 0(41.3)  0(35.4)    0 0 0 1 0(41.4)  1(26.0)    

0 0 1 0 0(57.0)  0(23.3)    0 0 1 0 1(53.2)  0(15.6)    

0 0 1 1 0(55.5)  0(32.4)    0 0 1 1 1(51.8)  1(22.9)    

0 1 0 0 0(45.2)  0(30.6)    0 1 0 0 0(44.9)  1(26.9)    

0 1 0 1 0(45.2)  1(40.7)    0 1 0 1 0(43.7)  1(34.9)    
0 1 1 0 0(55.9)  0(30.0)    0 1 1 0 1(51.4)  1(26.3)    

0 1 1 1 0(55.7)  1(39.3)    0 1 1 1 1(49.8)  1(33.6)    

1 0 0 0 0(53.5)  0(20.0)    1 0 0 0 1(53.7)  0(13.7)    

1 0 0 1 0(49.7)  0(31.3)    1 0 0 1 1(49.6)  1(22.4)    

1 0 1 0 1(62.5)  0(19.7)    1 0 1 0 1(56.9)  0(13.2)    

1 0 1 1 1(59.9)  0(29.4)    1 0 1 1 1(54.3)  1(23.2)    

1 1 0 0 0(55.7)  0(30.7)    1 1 0 0 1(53.4)  1(26.8)    

1 1 0 1 0(52.0)  1(42.1)    1 1 0 1 1(50.2)  1(36.2)    

1 1 1 0 1(61.9)  0(32.0)    1 1 1 0 1(55.6)  1(28.3)    

1 1 1 1 1(59.9)  1(41.1)    1 1 1 1 1(55.4)  1(36.3)    
Input State:  

“0” = 5 mA; “1” = 10 mA 

Output bar 1 = 58.4; Contrast 1 = 2.9 

Output bar 2 = 37.4 Contrast 2 = 3.9 

Input State:  

“0” = 5 mA; “1” = 10 mA 

Output bar 1 = 45.6; Contrast 1 = 4.7 

Output bar 2 = 22.3; Contrast 2 = 3.6 
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Table 4. AND and OR gate settings of S-IV. [Input- = , Weight- = , Output- = ]. 

S-IV: AND/OR 

Weight: E2,3 = 15 mA, E1,4 = 10 mA, E2,5 = 5 mA, E4,7 = 15 mA 

Input Output Screenshot 

A B O6 O9 
O6 O9 

E1,2 E2,7 E1,6 E2,1 AND/OR ANR/OR 

0 0 0 0 0/0(46.6) 0/0(24.3)    
0 0 0 1 0/0(45.2)  0/1(30.6)    
0 0 1 0 0/1(57.0)  0/0(23.3)    
0 0 1 1 0/1(55.9)  0/1(30.0)    
0 1 0 0 0/0(41.3)  0/1(35.4)    
0 1 0 1 0/0(45.2)  1/1(40.7)    
0 1 1 0 0/1(55.5)  0/1(32.4)    
0 1 1 1 0/1(55.7)  1/1(39.3)    
1 0 0 0 0/1(53.5)  0/0(20.0)    
1 0 0 1 0/1(55.7)  0/1(30.7)    
1 0 1 0 1/1(62.5)  0/0(19.7)    
1 0 1 1 1/1(61.9)  0/1(32.0)    
1 1 0 0 0/1(49.7)  0/1(31.3)    
1 1 0 1 0/1(52.0)  1/1(42.1)    
1 1 1 0 1/1(59.9)  0/1(29.4)    
1 1 1 1 1/1(59.9)  1/1(41.1)    

Input State:  

“0” = 5 mA;  

“1” = 10 mA 

AND:  

Output bar 1 = 58.4; Contrast 1 = 2.9 

Output bar 2 = 37.4; Contrast 2 = 3.9 

OR:  

Output bar 1 = 48.2; Contrast 1 = 3.1 

Output bar 2 = 26.8; Contrast 2 = 5.1 

A comparison between this work and previous works is worth discussing. Different 

from phase-controlled methods, the input logic is replaced by the electric signal based on 

the applied current of the electrode. Our design eliminates the need for precise phase tun-

ing. Instead, the local refractive index change in the multimode waveguide effectively 

renders largely different interference patterns at the output. We believe this method pro-

vides a general system and can be widely compatible with various material platforms and 

refractive index tuning mechanics. Nonlinear materials are indeed attractive as they can 

be used to construct various logic gates with ultrafast response, but the demand on high 

input power and often expensive fabrication technology may limit their implementation 

in practice. 

The current FPWE system still faces several challenges. For system integration, fast 

photodiodes should be attached to the output waveguides instead of the camera shot. The 

processing electronics and circuit boards should all be high-speed compatible. On the fun-

damental level, the prediction of the multimode interference is complex and difficult. Alt-

hough the time-consuming electromagnetic simulations are avoided by direct experi-

mental sweeping, the search process afterwards is still tedious and may take several 

hours. To solve this problem, the MMI can be modeled by an equivalent AI-based neural 

network, with which the realizable functions can be predicted and pre-programed. This 

would greatly improve the efficiency of specific functional programming. In this work, a 

large MMI chip with redundant waveguide ports and electrode numbers is adopted for 

simple logic operations. The underlying guidelines to map the device size, e.g., the MMI 

dimensions and number of supported modes, to the specific functions, need to be further 

explored. More compact, efficient, and scalable devices with precise thermal configura-

tions can then be designed systematically. 
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5. Conclusions 

To summarize, a parallel two-bit logic gate is proposed using the FPWE technology. 

The mechanism is explained in theory and the nonlinear response of the light intensity 

variation (output) to the electronic input (in terms of current) is revealed. One experiment 

takes about 0.5 s, and in total 9.1 h are sufficient to complete the parameter sweep of 65,536 

experiments and store the data. The process is about three orders of magnitude faster than 

the traditional, forward-design approach using thermal and optical simulations. This 

method also avoids the deviation between simulation and experiment altogether. 

After data collection, a program and search criteria are defined to find the valid set-

tings on the electrode network for the logic function out of the total 283,852,800 possible 

combinations. By the preliminary search for the valid settings of 8 electrodes with 4 ap-

plied current values (5 mA, 10 mA, 15 mA, 20 mA), a large number of logic AND or OR 

gates can be realized independently (case S-I). Extra sort conditions are added to find the 

subset of valid settings for the same inputs (S-II), further for the same outputs (S-III), and 

finally also for the same weights but with different output bars (S-IV). The final settings 

under Case S-IV allow the selection of input electrodes and output ports, plus the current 

values on the weight electrodes, all to be the same. The device works either as an AND 

gate or an OR gate, depending solely on the choice of the bar. 

With this work, we have further explored the power of the FPWE technology. For 

further development, a real-time search algorithm with a feedback mechanism or a 

trained neural network model can be induced to reach the target function more efficiently. 

Furthermore, an equivalent trained neural network model can be established to represent 

the response of the MMI waveguide. The input and the target output of a specific logic 

operation can be calculated, instead of searching all the experimental results. The neural 

network is then used to predict the remaining weight configuration to satisfy the target 

truth table. Development of the FPWE technology for advanced AI applications will be 

carried out in the next step. We believe the reported technology can inspire some new 

ideas in developing large-scale parallel optical logic gates and switching networks for ad-

vanced photonic applications.  
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