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Abstract: The optical trapping of micro-nano particles in a high vacuum has become a popular
research platform in various frontier fields of physics because of its excellent isolation from the
environment. The precise measurement of particle motion information is required to analyze and
control particle motion modes in traps. However, the detection accuracy is limited by measurement
noise and coupling signals from other axes in microparticle optical traps. In this study, we use the
Kalman filter to extract the real motion information of each axis under simulation conditions, and the
results show that the Kalman filter performs well in noise suppression, improving the RMSE from
12.64 to 5.18 nm and enhancing the feedback cooling performance by approximately 27% through
reducing the axes’ signal coupling ratio. We believe that as a solution to these challenges, the Kalman
filter will bring a significant achievement to micrometer particle optical traps in vacuums.

Keywords: optical trap; Kalman filter; feedback cooling; axial signal decoupling

1. Introduction

Since Ashkin et al., used a single-beam optical trap to levitate a 20 µm silica sphere
in 1971 [1], optical trapping has inspired various researches and applications in quantum
physics, life science, and engineering. Trapping is developing rapidly towards smaller
scales, including nanostructured trapping [2–4], on-chip optical levitation with a metalens
in a vacuum [5], multiplexed near-field optical trapping [6], light polarization measure-
ments [7], single-cell manipulation [8], on-chip protein sensing [9], and many other areas.
Tongcang Li et al. used an optical trap in a vacuum to measure the instantaneous velocity
of a Brownian particle [10] and to cool an optically trapped microsphere from room tem-
perature to millikelvins [11], demonstrating the great potential of optical traps in frontier
physics. Optical trapping in vacuums has also been applied to precise force and acceleration
measurements and reached sub-100 ng/

√
Hz and sub-aN/

√
Hz spectral sensitivity while

providing a much larger dynamic range than clamped resonators because of its outstanding
decoupling from environment noise vibrations and gas molecule collisions [12–17]. Optical
trapping, which is enabled by the ability to detect ultra-weak forces and acceleration, is
expected to make a significant contribution to fields, such as searching for non-Newtonian
interactions at the micrometer scale [18,19], high-frequency gravitational waves [20], and
dark matter [21].

To achieve high acceleration sensitivity, the micrometer particle is more suitable
than the nanometer particle because of the inverse relationship between the minimum
measurable acceleration and the square of the particle radius [13]. Before the measurement
process, the particle must maintain stable suspension in an ultra-high vacuum with the help
of a feedback control system to suppress the Brownian motions of the trapped particle. The
rapid and accurate displacement detection via photodiodes is the key part of the feedback
control system. However, due to the close resonance peaks and detection coupling in
microparticle optical traps [11,22], extracting the real signal requires not only considering
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the measurement noise that appears in nanoparticle optical traps but also the coupling
signal from other axes. This coupling situation appears more frequently in horizontal
counter-propagating dual-beam optical traps, which provide a larger response bandwidth
compared to the common single vertically upward optical traps. Zhu et al. added three
variable irises into the detection optics and achieved a coupling detection ratio reduction of
49.1 dB and 22.9 dB in the radial and axial directions, respectively [23].

The Kalman filter [24,25] is a common tool to suppress noise in various fields, such as
velocity and acceleration estimation [26], prediction [27] and motion control [28], which
has a relatively simple form and small requirement of computational power and resources.
Recently, the Kalman filter has been used in the field of optical trapping. Wieczorek et al.
demonstrated minimal least-squares estimation for cavity-optic-mechanical systems using
the Kalman filter [29]. Setter et al. operated a real-time Kalman filter to perform closed-loop
parametric feedback cooling of the center-of-mass (COM) motion of a levitated nanoparticle
to sub-Kelvin temperatures, which outperformed a band-pass filter [30]. M. Jost and Jiawei
Liao et al. additionally used the Kalman filter between the photodetectors and the phase-
locked loop (PLL), and the simulation achieved an improvement on the order of 20% [31,32].
In 2021, with optimal state estimation via Kalman filtering, Magrini et al. successfully
stabilized a levitated nanoparticle to a mean occupation of 0.56± 0.02 quanta, realizing
quantum ground-state cooling from room temperature [33]. The Kalman filter has been
widely used in nanoparticle optical traps, but the research on microparticle detection
is limited.

In this study, we introduce the Kalman filter into microparticle optical traps, build a
microscale optical trap model with actual parameters in MATLAB Simulink, and observe
the effect on the detection signal and the particle cooling effect with the Kalman filter to
verify its performance.

2. Preliminaries
2.1. Counter-Propagating Dual-Beams Optical Trap

In a vacuum chamber, a silica spherical particle with a diameter of 10 µm is restricted
in a small area by two highly aligned and focused laser beams, which is known as an optical
trap. The photodetectors collect the displacement information of the trapped particle from
the center of the optical trap in the x, y, and z directions, which inevitably contains noise.
This noisy measurement signal is processed using the Kalman filter and used as the input
of a proportional-integral-derivative (PID) controller to generate a feedback signal, which
drives the acoustic optical modulator (AOM) to modulate the light intensity of the cooling
laser. The COM motion feedback cooling is realized via the damping effect of the modulated
cooling light on the particle.

In our actual trapping system, the wavelength of trapping laser is 1064 nm, and
the wavelength of the cooling laser is 532 nm. Both are continuous laser, and the power is
always lower than 500 mW. The schematic of a single axis optical trap is shown in Figure 1.

Considering the structure of the optical trap, a spherical particle centroid should be on
the axis of the beam in an ideal situation. However, it is difficult to achieve a well-aligned
status in a dual-beam optical trap, which denotes the perfect coincidence of the focuses
and optical axes of the dual-beams. The misalignment of the beams increases the trap
stiffness nonlinearity and causes the particle to move in a larger area, affecting the detection
accuracy and even increasing the risk of escaping.

Backward scattering detection is the most common method to detect displacement in
an optical trap. This method uses photo-diodes to convert scattering light to voltage and
then multiplies the differential voltage by the coefficient calibrated before the measurement
to obtain the particle displacement. However, this detection method would inevitably
bring the signal coupling effect to the optical trap with a microparticle, which is shown in
Figure 2. The displacement power spectrum (PSD) of the particle, S, is a convenient tool to
describe the particle motion amplitude of a certain frequency, as it is unnecessary to add
devices of applying known forces into the trapping system and choosing the magnitude of
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the force carefully. In Figure 2, the radial detection signal is mixed with the radial signal at a
frequency of about 800 Hz. As the range of motion in one direction increases, the coefficient
in the opposite direction changes unexpectedly, resulting in single-axis signal distortion.
Moreover, the total scattered light power collected by the radial detectors is strongly related
to the axial position of the particle, intensifying the coupling effect. The coupling signal
that occurs more often between the axial and radial signals causes an incorrect estimation
of the particle motion mode and thus worsens the cooling performance, even heating the
particle reversely. Therefore, to further stabilize and cool the particle’s motion, suppressing
the noise and the coupling signal is critical.

Figure 1. Schematic of trapping and feedback cooling in a vacuum optical trap. Only a single-axis
detection and cooling system diagram is shown here.

Figure 2. Coupling phenomena while trapping a 10 µm-diameter sphere at 9.4 mBar in the experiment.
The ordinate represents the root of three-dimension displacement power spectrum density of the
particle. The red, green and blue lines represent the signals obtained from the detectors in the x, y and
z directions, respectively. The dashed lines indicate that the fitted resonance peaks in three directions
and the two radial resonant frequencies are close. The radial spectrum is only coupled seriously by
axial signals and vice versa.

2.2. System Model

In the microparticle optical trap, the particle’s motion mode can be simplified to
a resonator for each axis independently when the particle is stably trapped near the
equilibrium position of the optical trap. We assume that the levitated particle is only
subjected to laser radiation pressure, random collision force of gas molecules, and the
damping force of gas molecules and gravity and is unaffected by any other external forces.
Additionally, all the forces have the same effect on the trapped particel in three directions
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except gravity. Hence, the Newtonian equation of motion of the COM of the particle on a
certain axis can be expressed as follows:

M
d2x
dt2 = kdirG + Fopt(t) + Ftherm(t) + Fdrag(t) , (1)

where M is the mass of the particle, x is the COM displacement of the particle, G = Mg is
the gravity on the particle and kdir is the coefficient of G. The coefficient kdir is 0 when we
focus on the particle motion on the x-axis or z-axis, while it changes to 1 when we focus on
the motion on y-axis.

Fopt is the force of laser radiation corresponding to the optical potential, which can be
seen as proportional to the displacement in the submicrometer range for a microscale particle:

Fopt(t) = −k · x(t) , (2)

where k is the trap stiffness of each axis. In counter-propagating dual-beam optical traps,
the stiffness in x and y is similar and slightly higher than z.

Ftherm is the random collision force of gas molecules on the particle, also known as the
random fluctuation force. It is given as follows:

Ftherm(t) = ζ(t)
√

2kBT0γ , (3)

where ζ(t) is the normalized random noise with a mean value of zero in the time of t, kB is
the Boltzmann constant, T0 is the gas temperature around the particle and γ is the Stokes
friction coefficient.

Fdrag is the drag resistance of the surrounding gas molecules on the particle and can
be simplified as follows:

Fdrag(t) = −γv , (4)

where v is the velocity of the particle.
Combining the formulas above, we can describe the motion of the particle in a certain

direction in the form of the Langevin equation:

ẍ(t) + Γ0 ẋ(t) + Ω2x(t)− kdirg = Λζ(t) , (5)

where
Γ0 = γ/M is the gas damping coefficient,
Ω =

√
k/M denotes the eigenfrequency of the particle and

Λ =
√

2kBT0Γ0/M follows the fluctuation dissipation theorem.
When we take the stiffness of common counter-propagating dual-beam optical traps

and the mass of a micrometer particle into the formulas above, we can get that the eigen-
frequency is at a kHz level. This is a big difference between micrometer particle traps and
nanometer particle traps.

2.3. Kalman Filter

The Kalman filter, proposed by Rudolph E. Kalman in 1960, is an optimal recursive
data processing algorithm. The basic principle of the Kalman filter is to weigh noisy
observations and predictions obtained from the previous actual data and the state equation
to estimate the actual state at the new moment. This algorithm is a recursive state space
method in the time domain, and its discrete form can be conveniently implemented on a
field-programmable gate array (FPGA), which is then used in a real-time detection system
to extract the real motion information of the particle.

To change the form of the Kalman filter, we can rewrite Equation (5) as follows:

Ẋ(t) = AX(t) + w(t) , (6)

x̃(t) = HX(t) + v(t) , (7)



Photonics 2022, 9, 700 5 of 11

where X(t) = (x(t), ẋ(t))T , x(t) is the particle displacement deviated from the center

of the trap at time t, A =

[
0 1
−Ω2 −Γ0

]
is the state transition matrix and w(t) =[

0 Ftherm(t)/M + kdirg
]T is the process noise, where g is the gravitational acceleration

constant. The measured position of the particle is described by x̃(t) in Equation (7),
H =

[
1 0

]
is the measurement matrix because the detectors could not get the velocity

information of the particle, and v(t) is the noise induced during the measurement process,
modeled as a Gaussian white noise process with the same noise power as the photodetector.
To be more in line with the practical application situations, we obtain the discrete time
system equations as follows:

Xk+1 = ΦXk + wk , (8)

x̃k = HXk + vk , (9)

where Xk is the state vector (displacement, vector) at time tk, Xk+1 is that vector in the next
moment tk+1, x̃k is the value obtained from the detectors at time tk, and wk and vk are the
process and measurement noise signals following Gaussian distribution with covariance
Qk and R, respectively. The state transform matrix Φ is given as follows:

Φ = exp(
−Γ0Ts

2
) ·
[

Γ0 sin(ωTs)
2ω + cos(ωTs)

sin(ωTs)
ω

−( Γ2
0

4ω + ω) sin(ωTs)
Γ0 sin(ωTs)

2ω + cos(ωTs)

]
, (10)

where Ts = 1/ fs is the sampling period and ω =
√

Ω2 − Γ2
0/4 is the cyclic frequency of

the underdamped oscillator [34]. Considering that the value of ω is always at a kHz level
for microscale particles and the sampling rate is at a MHz level, then sin(ωTS) can be

approximated as ωTs and cos(ωTs) can be approximated as 1− ω2T2
s

2 . In low-pressure
conditions, Γ0Ts is also small, so that the term exp(−Γ0Ts

2 ) can be approximated as 1. We
obtain the simplfied matrix as follows:

Φ =

[
1 Ts

−Ω2
0Ts 1− Ω2T2

s
2

]
. (11)

Using the state vector X̂k−1|k−1 at time tk−1, the Kalman filter algorithm estimates the
next state X̂k|k−1 and prediction of a prior error covariance Pk|k−1 at time tk as follows:

X̂k|k−1 = Φk−1X̂k−1|k−1 , (12)

and a priory error covariance matrix as follows:

Pk|k−1 = Φk−1Pk−1|k−1ΦT
k−1 + Qk , (13)

where Qk =

[
T2

s
√

2kBT0Γ0/M/2 0
0 Ts

√
2kBT0Γ0/M

]
is the predicted noise covariance

matrix of the white noise process wk, and Φk−1 is the state transform matrix at time tk−1.
The optimal Kalman gain Kk at time tk is then calculated as follows:

Kk = Pk|k−1HT(HPk|k−1HT + R)−1, (14)

where x̃k is the particle displacement information obtained from the detectors, and R is
the variance of detection noise. Then, we can obtain the state estimate X̂k|k at time tk
according to:

X̂k|k = X̂k|k−1 + Kk(x̃k −HX̂k|k−1). (15)
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The final error covariance matrix is then given as follows:

Pk|k = (I− KkH)Pk|k−1(I− KkH)T + KkRKk, (16)

where I is the identity matrix. After completing this formula, the next loop begins.
Equations (12)–(16) is a complete recursive process of the Kalman filter, and obtaining
the real signal only requires a step of calculation (Equation (15)) after obtaining the
measured signal.

3. Simulation and Results
3.1. Simulink Setup

Based on the system model, Kalman filter theory and the actual active feedback cooling
structure in Section 2, we build an optical trap simulation model of the particle motion as
shown in Figure 3.

Figure 3. The optical trap simulation model includes motion, detection and feedback cooling modules.

The model includes three main modules, namely, a particle motion module, detection
module and feedback cooling module. We use three sub systems to independently describe
the particle motion in three directions and synthesize the coupling signal to simulate the
actual situation. After adding measurement noise to the detection module, we used the
Kalman filter to process the signal and the processed signal was used as the input of the
PID controller to generate feedback acceleration on the particle. The parameters of the
simulation model are obtained from the experimental systems and are shown in Table 1.
One significant feature of the microsphere is that the resonance frequency is as low as near 1
kHz compared with the nanoparticle, and we set the oscillation frequency of Ωz = 810 Hz,
Ωx = 1200 Hz and Ωy = 1320 Hz as encountered in practice.

Table 1. Parameters of the optical trap simulation model.

System Parameter Value

Resonance frequency of z-axis (Ωz) 2π × 810 Hz
Resonance frequency of x-axis (Ωx) 2π × 1200 Hz
Resonance frequency of y-axis (Ωy) 2π × 1320 Hz

Diameter (D) 10 µm
Density (ρ) 2.2× 103 kg/m3

Particle mass (M) 1.15× 10−12 kg
Pressure (P) 1 mBar

Damping (Γ0) 517.29 Hz
Sampling frequency ( fs) 1× 106 Hz

3.2. Results

First, we evaluate the noise suppression performance of the Kalman filter in a mi-
croscale optical trap. The time domain signal of the particle displacement in the direction of
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z in the optical trap is shown in Figure 4, where the blue line represents the real signal, the
black line represents the signal after the detection module, and the red line represents the
signal after Kalman filtering. The detection module adds some colored noise dominated
by low frequencies in order to be close to the actual experimental environment. The root-
mean-square error (RMSE) is the square root of the squared sum of the difference between
the observed value from the true value and the ratio of the amount of data, which is used
to measure the deviation between the observed and true values. It is given as follows:

RMSE =

√
∑N

i=1(θ̂i − θi)
2

N
, (17)

where θ̂i is an estimator with respect to an estimated parameter θi, and N is the amount
of the data. Through the filtering process, the RMSE drops from 12.64 to 5.18 nm after
filtering, indicating that the filtered data is more pure and trustworthy.

Figure 4. The time domain signal of the particle displacement in the direction of z in the optical trap.
The blue line represents the real motion of the particle, the black line represents the noisy signal after
the detection module and the red line represents the signal processed by the Kalman filter.

Considering the coupling situation, we added three axes signals with different weights
to simulate the complex actual signal, as in Figure 2.

The coupled signal from the radial appears almost as high as the z-axis signal intensity
in the z-axis detection signal. When we use this signal as the input of the PID controller
to realize z-axis feedback cooling, as in the actual experiment, the motion amplitude in
the axial resonance peak is suppressed. However, the particle’s motion is heated at the
frequency of radial resonance peaks simultaneously because of the mixed coupling signals.
To obtain the decoupled signal, we activate the Kalman filter, and the result is shown in
Figure 5a, showing that the coupling peaks are effectively suppressed by 19.85 dB.

To confirm the behavior of the Kalman filter during the final step of the feedback
cooling, we compared two simulation runs (with/without the Kalman filter), using the
same feedback gain and PID controller coefficients, and outcomes are shown in Figure 5b.
As expected, the z-axis motion of the particle at eigenfrequency is suppressed, but the
particle is heated at the radial resonance frequency. The coupling signal severely obstructs
the lowest temperature to which particles can be cooled, and if we only apply a single-axis
feedback cooling to the particle, the phenomenon will be more obvious and troublesome
because the other axes’ motions will not be restricted.
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(a)

(b)

Figure 5. (a) The comparison of real signal, coupled signal and Kalman filtered signal. The ordinate
represents the root of z-axis displacement power spectrum density of the particle. The blue line
represents the real motion of the particle along the z-axis, the green line represents the z-axis detected
signal mixed with the radial signal, and the red line represents the signal processed using the Kalman
filter. The abscissa represents the frequency, and the ordinate represents the displacement power
spectrum density. (b) The comparison of cooling performance using real signal, coupled signal and
Kalman-filtered signal. The ordinate represents the root of z-axis displacement power spectrum
density of the particle. The blue line represents the motion of the particle along the z-axis, the green
line represents the particle motion in axial cooled using the coupled signal, and the red line represents
the particle motion in axial cooled using the filtered signal.

Considering that the conditions of each axis are different, we usually calculate the
single-axis COM temperature Tc.m. to evaluate the cooling performance and the status of
the trapped particle as follows:

Tc.m. =
MΩ2〈x2〉

kB
, (18)

where 〈x2〉 is the variance of the particle position.
We simulated a process of cooling the particle motion in axial from room temperature

(293 K), and the cooling result is 166.48 K without the Kalman filter and 121.45 K with
the Kalman filter, with an improvement of approximately 27% at a pressure of 1 mBar.
The results show that the Kalman filter system does work in the entire feedback cooling
procedure, and the function of suppressing noise and signal coupling is satisfactory, solving
the abovementioned problems and making a significant difference in the actual microscale
particle cooling projects.
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4. Discussion

Apart from the advantages described in the previous sections, using the filtered
smooth signal to drive the derivative control may reduce the probability of the feedback
value exceeding the set range. To implement the Kalman filter in a real experimental
environment, the filter’s hyperparameters Q and R, the covariance of the process and
measurement noise must be adjusted manually to adapt to different conditions. The time
delay between the measured signal and Kalman filtered signal must also be calcined before
practical application, which is proved to be interrelated to the resonance frequency [35],
or else it will result in phase shifting and deteriorate the cooling performance. Another
issue is that it is critical to precisely set the frequency parameter of the Kalman filter to the
oscillation frequency of the particle [32], or even cause reverse heating, as seen in Figure 5b.
We believe that this can be solved by providing an accurate real-time resonance peak
measurement on FPGA chips to update the parameters of the filtering model in real-time
while maintaining the operating frequency.

In this study, we verify the Kalman filter’s promising performance in vacuum opti-
cal traps, which could extract the real motion information from the noisy signals. This
advantage could help cool the particle to a lower COM temperature and achieve a higher
sensitivity in velocity and acceleration measurement. Cooling bigger particles to lower
temperatures will also serve to facilitate the transition between macroscopic and micro-
scopic substances. As for other motion modes, it also contributes to the understanding
of the microscale particle spinning motion, which has reached a rotation speed of 5 GHz
using a silica nanodumbbell with a diameter of 150 nm [36].

We think this could be successfully applied in other media, such as water solutions,
because of its lower resonance frequencies. The more accurate signal after filtering will sig-
nificantly help researchers learn the real state of the trapped particles or other biomolecules,
which allows them to operate and analyze more correctly and rapidly.

5. Conclusions

Overall, the counter-propagating beam optical trapping method used for microscale
particles in a vacuum is a promising technology. In this study, we use the Kalman filter
in microparticle optical traps to suppress noise and decouple the axes’ mixed signal. The
performance of the Kalman filter is verified using the Simulink model with parameters
encountered in practice. At 1 mBar pressure, the RMSE reduces from 12.64 to 5.18 nm,
the coupling signal peak is suppressed by 19.85 dB, and the ultimate cooling performance
is improved by 27%. Compared to other decoupling methods, the Kalman filter has the
advantage of easy adjustment as a digital filter algorithm and does not require changing
the structure of the optical trap system. Therefore, we believe that this study will bring a
new solution to the microparticle optical trap and contribute to achieving synchronous and
accurate three-dimensional mechanical quantity measurements , in addition to cooling the
particle to a lower temperature in the basic physics research field.
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