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Abstract: We investigate the realization and manipulation of a two-dimension (2D), asymmetric,
electromagnetically induced grating (EIG) in a sample of Rydberg atoms exhibiting the van der Waals
(vdW) interactions. The scheme relies on the application of a strong control field and a weak probe
field, with the former periodically modulated in a 2D plane and the latter incident perpendicular to
the 2D plane. We find that the probe field can be diffracted into an asymmetric intensity distribution
depending on the relevant modulation parameters of the control field, as well as the density and
length of the atomic sample. In particular, higher-order diffraction intensities can be enhanced in
different ways as the vdW interaction, modulation strength, or sample length is increased. It is
also of interest that the asymmetric diffraction distribution can be shifted to different quadrants by
choosing appropriate modulation phases of the control field. These results may be used to develop
new photonic devices with asymmetric diffraction properties required in future all-optical networks.

Keywords: electromagnetically induced grating; Rydberg atoms; asymmetric diffraction

1. Introduction

Studies on atomic coherence induced by coherent interactions between monochromatic
light fields and multi-level atoms have resulted in many fascinating phenomena in the field
of quantum optics, such as electromagnetically induced transparency (EIT) [1], coherent
population trapping [2], and lasing without inversion [3]. As far as EIT is concerned, the
quantum destructive interference between different transition pathways generated by a
strong control field renders an originally opaque atomic medium transparent to a weak
probe field. Owing to the nontrivial merits of low absorption and strong dispersion [4,5],
EIT has been widely explored to manipulate light propagation properties in various atomic
media, including slowing, storing, and switching an optical pulse [6–11]. Thus far, the
EIT technique has become a pivotal method in modern quantum optics [12] and quantum
information processing [13].

As another important effect based on atomic coherence, electromagnetically induced
grating (EIG) was first proposed in 1998 by applying a standing-wave (SW) control field in
an EIT medium [14,15]. In this case, a vertically incident probe field will form a far-field
distribution (Fraunhofer diffraction) when it travels through this EIT medium, whose
susceptibility now changes periodically in space. Compared with conventional gratings,
EIGs are much easier to construct and, more importantly, tunable, e.g., by modulating the
optical response of an atomic medium on demand with the SW control field. In particular,
EIGs do not involve the complications related to manufacturing differences and material
aging; hence, they may pave the way towards advanced manufacturing techniques and
novel optical devices.

EIGs have been implemented in a variety of optical systems, including atomic
gases [16–19], quantum wells [20,21], and quantum dots [22,23], to name only a few.
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Recently, attention has been paid to how to manipulate different EIGs for realizing and
tailoring asymmetric diffraction patterns [18,19,21,24,25]. Such a nontrivial task becomes
viable when the parity-time (PT) symmetry or anti-symmetry is utilized to realize out-
of-phase spatial modulations on the absorption and dispersion properties by adjusting
relevant driving parameters [26–29]. On the other hand, attention has been paid to how
to convert one-dimension (1D) EIGs [16–18] to two-dimension (2D) EIGs [24,30–32]. This
brings new degrees of freedom for modulating Fraunhofer diffraction and indicates a fur-
ther step toward practical applications. It has also been proposed to realize distinctive EIGs
by replacing normal atoms with Rydberg atoms [33,34], exhibiting a few unique features
such as huge electric dipole moments, long radiative lifetimes, and strong dipole–dipole
interactions [35–37]. As Rydberg atoms are driven into the EIT regime, dipole–dipole
interactions will result in the cooperative optical nonlinearity manifesting itself as the
dependence of the optical response on the probe field intensity and atomic density. Con-
sequently, the Rydberg EIGs are very different from that realized in atomic gases without
dipole–dipole interactions, whether in the 1D symmetric, 2D symmetric, or 1D asymmetric
form [19,25,33,34].

To the best of our knowledge, 2D asymmetric Rydberg EIGs have not been examined
yet owing to, e.g., an intractable technical difficulty in obtaining suitable spatial modula-
tions of the SW control fields. This difficulty may be overcome by combining the spatial
modulation method in Ref. [24] and that in Ref. [26] with respect to the amplitude and
frequency of a control field, respectively. Such a spatially correlated modulation is adopted
here to realize a 2D asymmetric EIG in a sample of Rydberg atoms driven by a control
field applied in the xy plane and a probe field incident along the z direction (see Figure 1a).
Our numerical simulations show that the probe field exhibits an asymmetric intensity
distribution in its far-field Fraunhofer diffraction after traveling through the sample of
Rydberg atoms interacting via a van der Waals (vdW) potential, and it is viable to con-
trol the diffraction intensity distribution by modulating a few critical parameters of the
control field and the atomic sample. To be more specific, we can (i) enhance higher-order
diffraction intensities in certain quadrants by increasing the modulation strength or the
sample length, and (ii) shift the asymmetric diffraction distribution to different quadrants
by choosing appropriate modulation phases of the control field; both are promising for
potential applications.
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Figure 1. (a) Schematic of a 2D EIG realized with an ensemble of Rydberg atoms. The SW control field
is applied along both x and y directions while the probe field is incident only along the z direction.
(b) Schematic of a three-level ladder system of Rydberg atoms driven by a probe field Ωp on the
lower transition and a control field Ωc on the upper transition. The three atomic states may refer, e.g.,
to |g〉 ≡ |5S1/2, F = 2, mF = 2〉, |e〉 ≡ |5S1/2, F = 3, mF = 3〉, and |r〉 ≡ |74S1/2〉 of the 87Rb isotope.

2. Model and Equations

We start by considering a three-level ladder configuration of N cold Rydberg atoms
driven by two laser fields, as shown in Figure 1b. One is the weak probe field coupling
the ground state |g〉 to the excited state |e〉 with Rabi frequency Ωp and detuning ∆p;
the other is the strong control field coupling the excited state |e〉 to the Rydberg stare |r〉
with Rabi frequency Ωc and detuning ∆c. Using the rotating-wave and electric-dipole
approximations, we can write the following total Hamiltonian

Htot = Ha f + HvdW , (1)

with two components describing atom-field interactions and interatomic vdW interactions,
respectively, via

Ha f =− h̄
N

∑
j=1

[∆p|e〉〈e|j + (∆p + ∆c)|r〉〈r|j]

− h̄
N

∑
j=1

[Ωp|e〉〈g|j + Ωc|r〉〈e|j + H.c.],

(2a)

HvdW =h̄
N

∑
i<j

C6

|~ri −~rj|6
|r〉〈r|i ⊗ |r〉〈r|j. (2b)

Here, |µ〉〈ν|j denotes the transition (projection) operator for µ 6= ν (µ = ν), C6 is the
vdW coefficient of the Rydberg state |r〉, while~ri −~rj refers to the relative position of two
interacting Rydberg atoms.

In the case of a large N, HvdW will result in intractable or even unsolvable many-body
quantum problems without introducing any approximations. Since we are concerned with
the mean optical response, it is appropriate to simplify the following calculations and
discussions by employing the mean-field theory, as in Refs. [38,39]. To be more specific,
we can first factorize the many-body density matrix ρ = ⊗jρj and then trace out all other
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degrees of freedom except those of the jth atom to attain ρj = Trj{ρ} [40]. In view of this,
interatomic correlations are dealt with as a mean effect and we have

H̄vdW = h̄
N

∑
j=1

δvdW |r〉〈r|j, (3)

where δvdW = ∑i 6=j C6/|ri − rj|6|r〉〈r|i represents the mean shift of the Rydberg state |r〉j
for each jth atom induced by its vdW interactions with all other atoms. This mean shift can
be estimated, by further assuming that the N atoms are confined in a spherical volume V
with the homogeneous density N0, as

δvdW ≈
∫ ∞

R
4πr2dr

C6

r6 ρrrN0 =
2π2N 2

0 C6ρrr

9
, (4)

where R = 2(3/4πN0)
1/3 denotes the mean interatomic distance while ρrr is the mean

Rydberg population.
Replacing HvdW with H̄vdW in Equation (1), it is possible to write the single-body

master equation

∂tρ = − i
h̄
[Htot, ρ] + L[ρ] (5)

for the density operator ρ by introducing the mean (transition or projection) operators σµν =

∑N
j=1 |µ〉〈ν|j/N for {µ, ν} ∈ {g, e, r}. The Lindblad superoperator L(ρ) = ∑ Γµν[σνµρσµν −

1
2 (ρσµνσνµ + σµνσνµρ)] has also been introduced to describe the spontaneous decay pro-
cesses from higher states |µ〉 to lower states |ν〉with rates Γµν. Then, we can further expand
Equation (5) into

∂tρgg =+ Γegρee + iΩpρge − iΩ∗pρeg, (6)

∂tρrr =− Γreρrr − iΩ∗c ρre + iΩcρer,

∂tρge =− γ′geρge + iΩcρgr + iΩ∗p(ρgg − ρee),

∂tρer =− (γ′er + iδvdW)ρer − iΩpρgr + iΩ∗c (ρee − ρrr),

∂tρgr =− (γ′gr + iδvdW)ρgr − iΩ∗pρer + iΩ∗c ρge,

in terms of density matrix elements restricted by ρgg + ρee + ρrr = 1 and ρµν = ρ∗νµ.
Here, we have introduced a few complex dephasing rates defined as γ′ge = Γeg/2− i∆p,
γ′er = (Γre + Γeg)/2− i∆c, and γ′gr = Γre/2− i(∆p + ∆c). Setting ∂tρµν = 0 in Equation (6),
it is not difficult to attain the following steady-state solutions

ρge =
iΩp(γ′gr − γgr + iδvdW)[Ω2

c + (γ′ge − 2γge)(γ′gr − γgr + iδvdW)]

A + B + C
, (7a)

ρrr =
Ω2

p(Ω2
p + Ω2

c )

A + B + C
, (7b)

with A = (Ω2
p + Ω2

c )
2, B = −(γ′gr − γgr + iδvdW)2[γ2

ge − (γ′ge − γge)2 + 2Ω2
p], and C =

2(γ′ge − γge)(γ′gr − γgr + iδvdW)Ω2
c .

The Rydberg-induced shift δvdW becomes also space-dependent, because it is propor-
tional to the mean Rydberg population ρrr, when the control field is periodically modulated
in terms of Rabi frequency Ωc and detuning ∆c along both x and y directions. This is
essential for achieving 2D asymmetric Rydberg EIGs because we always have symmetric
diffraction patterns if only one driving parameter is spatially modulated. Adopting a
design scheme similar to that considered in Ref. [24], we can modulate the control Rabi
frequency into

Ωc(x, y) = Ωc0 + δΩc sin(
πx
Λx

+ αx) sin(
πy
Λy

+ αy), (8)
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where Ωc0 is the constant offset; δΩc is the modulation amplitude; αx and αy are two
different phase shifts. With the design scheme considered in Ref. [26], it is also possible to
modulate the control detuning into

∆c(x, y) = ∆c0 + δ∆c[sin(
πx
Λx

+ βx) + sin(
πy
Λy

+ βy)], (9)

where ∆c0 is the constant offset; δ∆c is the modulation amplitude; βx and βy are two
different phase shifts. At the same time, we have assumed that ∆c and Ωc exhibit identical
modulation periods Λx and Λy in the x and y directions, respectively, for simplicity.

Then, with the relation P = ε0χpEp = N0µgeρge describing the optical polarization on
the probe transition, we can attain the following susceptibility

χp(x, y) =
N0µ2

ge

2h̄ε0Ωp
ρge(x, y), (10)

whose real χR
p (x, y) and imaginary χI

p(x, y) parts denote the dispersion and absorption
properties, respectively, on the probe transition. Under the slowly varying amplitude ap-
proximation, the propagation of a probe field obeys the following steady-state wave equation

∂Ωp

∂z
= [−A(x, y) + iD(x, y)]Ωp, (11)

with A(x, y) = kpχI
p(x, y) and D(x, y) = kpχR

p (x, y) being the absorption and dispersion
coefficients associated with the amplitude and phase modulations, respectively. Here,
kp = 2π/λp is the wavevector of the probe field while λp is the wavelength of the probe
field. With this equation, it is straightforward to attain the transmission function of a probe
field along the z direction

T(x, y) =
Ωp|z=L

Ωp|z=0
= e[−A(x,y)+iD(x,y)]L, (12)

where L is the interaction length and will be given in units of the optical depth z0 =
2kp h̄ε0Ωp/N0µ2

ge.
Via the Fourier transform of T(x, y), we can attain the Fraunhofer diffraction intensity

given by

Ip(θx, θy) = |Fp(θx, θy)|2 ×
sin2(πMxRx sin θx)

M2
x sin2(πRx sin θx)

sin2(πMyRy sin θy)

M2
y sin2(πRy sin θy)

, (13)

where θx and θy represent the diffraction angles with respect to the z axis in the xz and yz
planes, respectively; Mx = ωx/Λx and My = ωy/Λy are the ratios of beam widths ωx and
ωy to modulation periods Λx and Λy, respectively; Rx = Λx/λp and Ry = Λy/λp are the
ratios of modulation periods Λx and Λy to probe wavelength λp, respectively. In addition,
we have defined

Fp(θx, θy) =
∫ Λx

2

−Λx
2

∫ Λy
2

−Λy
2

T(x, y)× e−i2π(Rx x sin θx+Ryy sin θy)dxdy (14)

as the diffraction function of a single square lattice of widths Λx and Λy. It is worth noting
that discrete diffraction peaks will occur in a few directions (see Figure 1a) determined
by sin θx = m/Rx with m ∈ {0, 1, 2, ..., Rx} and sin θy = n/Ry with n ∈ {0, 1, 2, ..., Ry},
which will be referred to as the (m, n)-order diffractions for convenience. Then, the distance
between two adjacent diffraction maxima should be 1/Rx in terms of sin θx in the x direction
and 1/Ry in terms of sin θy in the y direction, depending on only Rx and Ry.
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3. Results and Discussion

Discussions in the last section indicate that the realization of a controlled EIG requires
a tunable probe susceptibility periodically modulated in space. With this consideration, we
have plotted the 2D distributions of the probe susceptibility in the xy plane in Figure 2a,b
and meanwhile shown corresponding values in the diagonal x = y and x = −y directions
in Figure 2c,d. It can be seen that the real and imaginary parts of the probe susceptibility are
slightly asymmetric in the x = y direction but roughly symmetric in the x = −y direction,
indicating a visible out-of-phase interplay between the amplitude and phase modulations
of the transmission function (cf. Equation (12)). This becomes possible only by including
the Rydberg-induced level shift δvdW in the case that Ωc and ∆c have been modulated
with identical phases (αx = βx and αy = βy) and vanishing offsets (Ωc0 = ∆c0 = 0). That
is, Ωc and ∆c will exhibit different offsets if we replace ∆c0 with ∆c0 + δvdW , which then
results in the out-of-phase interplay between the amplitude and phase modulations of the
transmission function. This is why asymmetric intensity distributions have been observed
in Figure 2e,f with respect to the transmission and diffraction of the probe field, respectively.
Keep in mind that δvdW is not a constant in space since it is proportional to ρrr depending
on both Ωc and ∆c.

Figure 2. (a) Imaginary (103χI
p) and (b) real (103χR

p ) parts of the probe susceptibility plotted
against positions x and y together with their projections along the (c) x = y and (d) x = −y
directions. (e) Modulus |T| of the transmission coefficient plotted against positions x and
y. (f) Fraunhofer diffraction intensity 10Ip plotted against sine functions of angles θx and
θy. Relevant parameters are Γeg/2π = 6.1 MHz, Γre/2π = 2.0 kHz, Ωc0 = ∆c0 = ∆p = 0,
δ∆c = 2.0Γeg, Ωp = 0.15Γeg, δΩc = 12.5Γeg, αx = αy = 0, βx = βy = 0, λp = 0.795 µm,
C6/2π = 1.65 THz·µm6, N0 = 5.18× 1010 cm−3, L = 200z0, z0 = 5.35 µm, Mx = My = 5, and
Rx = Ry = 4 [21,24,25,34,41–43].

To further examine the effects of vdW interactions on a 2D Rydberg EIG, we have
plotted in Figure 3 the far-field diffraction patterns in the absence (δ∆c = 0) and presence
(δ∆c 6= 0) of a spatially periodic modulation of detuning ∆c. We find that symmetric
diffraction patterns appear in Figure 3a–c, which is not of surprise because only Ωc is
periodically modulated in the xy plane. We observe, however, asymmetric diffraction
patterns in Figure 3d–f, which is not straightforward to understand because Ωc and ∆c
exhibit in-phase spatial modulations with Ωc0 = ∆c0 = 0, αx = βx, and αy = βy. This
should be attributed to the fact that a notable Rydberg shift δvdW must be added to detuning
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∆c, hence leading to an out-of-phase interplay between the spatial modulations of Ωc and ∆c.
We find in particular that the intensity distribution is shifted from lower to higher diffraction
orders as the atomic density N0 increases in an appropriate range. This embodies also an
important effect of δvdW because it is proportional to N 2

0 , as can be seen from Equation (4).
Alternatively, one can increase ∆c0 in the case of Ωc0 = 0 to strengthen the out-of-phase
interplay of Ωc and ∆c and hence shift the intensity distribution from lower- to higher-order
diffraction patterns.

Next, we examine what will happen to the far-field 2D diffraction pattern as the
modulation amplitude δ∆c or the sample length L varies in an appropriate range. We can
see from Figure 4a–c that increasing δ∆c from 1.5Γeg to 4.5Γeg will result in an evident
shift from lower toward higher diffraction orders and meanwhile a notable reduction in
diffraction peak intensities. The underlying physics may be that a stronger modulation
of ∆c is beneficial to attain a more prominent out-of-phase interplay between it and a
fixed modulation of Ωc, yet inevitably leading to weaker atom–light interactions featured
by a larger mean value of ∆c. Similar asymmetric behaviors with respect to the far-field
diffraction pattern can be found from Figure 4d–f, where higher diffraction orders become
more and more evident as the sample length L changes from 100z0 to 400z0, which was
attainable in recent experiments [44–46] and allows one to observe obvious diffraction
effects. This is due, however, to the fact that a longer atom–light interaction path helps
to transfer diffracted photons from lower orders to higher orders and meanwhile results
in more accumulated losses for diffracted photons. It is worth noting that these newly
appearing higher diffraction orders are always located in the upper right part (i.e., cannot
be shifted to the other three parts) in the xy plane as ∆c0, δ∆c, L, and N0 are varied to
control the 2D diffraction pattern.

Figure 3. Fraunhofer diffraction intensity 10Ip plotted against sine functions of angles θx and θy. The
upper panels are attained for δ∆c = 0 with (a) ∆c0 = 0 and N0 = 2.5× 1010 cm−3; (b) ∆c0 = Γeg

and N0 = 2.5 × 1010 cm−3; (c) ∆c0 = Γeg and N0 = 4.0 × 1010 cm−3. The lower panels are at-
tained for ∆c0 = 0 and δ∆c = 2.0Γeg with (d) N0 = 1.0× 1010 cm−3; (e) N0 = 2.5× 1010 cm−3;
(f) N0 = 4.0× 1010 cm−3. Other parameters are the same as in Figure 2.
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Figure 4. Fraunhofer diffraction intensity 10Ip plotted against sine functions of angles θx and θy. The
upper panels are attained for L = 200z0 with (a) δ∆c = 1.5Γeg; (b) δ∆c = 3.0Γeg; (c) δ∆c = 4.5Γeg. The
lower panels are attained for δ∆c = 2.0Γeg with (d) L = 100z0; (e) L = 200z0; (f) L = 400z0. Other
parameters are the same as in Figure 2.

Finally, we examine what will happen to the far-field 2D diffraction pattern with a
more direct method for controlling the out-of-phase interplay between Ωc and ∆c. This
is shown in Figure 5, where initial phases αx and αy with respect to Ωc are fixed while
βx and βy with respect to ∆c are varied. It is easy to see that only four diffraction orders
can be observed in a single quadrant, leaving the other three quadrants empty in the
xy plane. In addition, it is visible to shift the four diffraction orders to any quadrant on
demand by choosing appropriate values of βx and βy. The underlying physics lies in the
fact that the absorption (χI

p) and dispersion (χR
p ) properties can be tuned to satisfy the PT

anti-symmetry along different directions, as shown by the corresponding insets. Taking
Figure 5a,c as an example, it is roughly true that the probe susceptibility is modulated
in a PT anti-symmetric way along the x = y direction because χI

p(x = y) is an even
function while χR

p (x = y) is an odd function to a good approximation. This is why the four
diffraction orders appear in the first and third quadrants in Figure 5a,c, respectively. Similar
conclusions hold for Figure 5b,d, where the probe susceptibility is modulated in a PT
anti-symmetric way along the x = −y direction instead, so that the four diffraction orders
appear in the second and fourth quadrants, respectively. Note also that the relative strength
of the four diffraction maxima in each panel has no direct relation with the dispersion
distribution in a corresponding inset. That is, the strongest diffraction maximum may
change from one order (e.g., the top left) to another order (e.g., the bottom right), while the
dispersion distribution remains unchanged, as we increase or decrease the sample length L.
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Figure 5. Same as Figure 2f except αx = π/2 and αy = π/2, as well as (a) βx = 0 and βy = 0; (b) βx = 0
and βy = π; (c) βx = π and βy = π; (d) βx = π and βy = 0. The insets show corresponding absorption
(left) and dispersion (right) distributions plotted as χI

p(x, y) and χR
p (x, y), respectively.

4. Conclusions

In summary, we have investigated a practicable scheme for realizing a 2D asymmetric
EIG in a three-level ladder system of Rydberg atoms driven by a probe field and a control
field. With 2D correlated modulations in the amplitude and frequency of the control field,
we show that the probe field exhibits, in principle, an asymmetric diffraction pattern due to
a Rydberg-induced level shift δvdW added to detuning ∆c of the control field. It is found in
particular that one can shift the intensity distribution from lower toward higher diffraction
orders along a certain direction, e.g., by increasing modulation offset ∆c0, modulation
amplitude δ∆c, atomic density N0, and sample length L, thus yielding enhanced higher-
order diffraction efficiencies. It is also possible to observe diffraction intensity distributions
only in one quadrant in the xy plane and shift them to any desired quadrant by choosing
appropriate modulation phases of the control field. Our scheme provides an opportunity for
developing novel photonic devices involving asymmetric light transport, such as all-optical
switches, routers, and optical imaging.
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