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Abstract: Molecular assembly in a complex cellular environment is vital for understanding un-
derlying biological mechanisms. Biophysical parameters (such as single-molecule cluster density,
cluster-area, pairwise distance, and number of molecules per cluster) related to molecular clusters
directly associate with the physiological state (healthy/diseased) of a cell. Using super-resolution
imaging along with powerful clustering methods (K-means, Gaussian mixture, and point cluster-
ing), we estimated these critical biophysical parameters associated with dense and sparse molecular
clusters. We investigated Hemaglutinin (HA) molecules in an Influenza type A disease model. Sub-
sequently, clustering parameters were estimated for transfected NIH3T3 cells. Investigations on
test sample (randomly generated clusters) and NIH3T3 cells (expressing Dendra2-Hemaglutinin
(Dendra2-HA) photoactivable molecules) show a significant disparity among the existing clustering
techniques. It is observed that a single method is inadequate for estimating all relevant biophysical
parameters accurately. Thus, a multimodel approach is necessary in order to characterize molecular
clusters and determine critical parameters. The proposed study involving optical system develop-
ment, photoactivable sample synthesis, and advanced clustering methods may facilitate a better
understanding of single molecular clusters. Potential applications are in the emerging field of cell
biology, biophysics, and fluorescence imaging.

Keywords: fluorescence; microscopy; imaging; cell biology

1. Introduction

Single-molecule-based live-cell imaging is becoming an essential technique in applied
physics, biophysics, and fluorescence microscopy [1–12]. Since its first inception, the field
has grown by leaps and found new applications in diverse research disciplines ranging
from single-molecule physics to cell biophysics [13–19]. The following years have ob-
served a surge in several important variants of super-resolution imaging such as individual
molecule localization–selective plane illumination microscopy (IML-SPIM) [20], ground
state depletion microscopy (GSDIM) [21], super-resolution optical fluctuation imaging
(SOFI) [22], points accumulation for imaging in nanoscale topography (PAINT) [23,24], si-
multaneous multiplane imaging-based localization encoded (SMILE) [9,25], MINFLUX [26],
Probabilistic Optically Selective Single-molecule Imaging Based Localization Encoded
(POSSIBLE) [6], and other techniques [27–34]. Thus, the resultant high-resolution images
form the basis for understanding biophysical mechanisms and estimating critical statistical
parameters related to single-molecule dynamics. This calls for reliable clustering methods
and for accurate parameter estimation. Thus, employing an appropriate clustering method
is central for understanding molecule clusters in the complex cellular environment.

In general, super-resolution imaging involves recording single-molecule data and
subsequent estimation of key features such as location and number of photons detected per
molecule. Physical models are developed to determine the parameter of interest (such as
number of molecules/cluster, cluster-density, cluster-area, and pairwise-distance). These
parameters form the basis for understanding the underlying biological mechanism at a
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single molecule in a cellular system. Molecular clustering is a process that represents an
accumulation of proteins/single-molecules (here, Hemaglutinin) as determined by local
cell physiology. Specifically, single-molecule clusters are known to form during the onset
of diseases and viral infection (Influenza A) [4,35]. Hence, it becomes vital to understand
clustering and to devise methods to disrupt the process. Hemagglutinin proteins is an
antigenic glycoprotein found on the surface of influenza viruses. It is responsible for
binding the virus to the cell that is being infected. The protein has the ability to cause cells
to clump together in vitro. In our study, we have studied NIH 3T3 cells transfected with
Dendra2HA plasmid. Post-transfection (24 h), it was found that hemagglutinin proteins
begin to form small clusters, which in turn integrate together to form large clusters [36].
HA clustering has a direct bearing on the infectivity rate.

The basic fact that different physical models employ different assumptions and specific
statistical distribution rules out the possibility of a single model to accurately estimate
all the relevant parameters. Moreover, a lot depends on the natural biological processes
that result in a specific distribution of single-molecules based on local cell physiology. The
complex nature of biological processes necessitates multi-model analysis [4,35]. The K-
means clustering method is often used for single-molecule analysis [37–39]. While K-means
is an efficient technique, it has its limitations. Recently, a non-parametric descriptor has
been used for quantifying the density of cluster [40]. Traditionally, Ripley’s K-test, his-
togram analysis, and point clustering methods are used for understanding single-molecule
clustering in cellular systems [2,4]. Most of these clustering techniques perform well for
determining specific parameters and particularly when data are complete. Investigation
shows that none of these techniques are found to be accurate for multi-parameter estima-
tion. Since single-molecule data are known to be incomplete (containing only a subset
of observed single-molecules) and have complex distribution, a single model may not
adequately estimate all relevant parameters. Moreover, existing clustering methods are
not equipped to handle multi-parameter estimation; thus, they are not readily extendable
to single-molecule imaging. This is a bottleneck and remains a challenge. Thus, there
is a constant need for a reliable clustering method that can be used for characterizing
molecular clusters [4,35].

Existing methods used for analysing clustering process in SMLM include Ripley’s
K function [41,42] and density-based spatial clustering of applications with noise (DB-
SCAN) [43]. While Ripley’s function is basically a second moment property that describes
the relationship between two or more patters, mathematically, Ripley’s K-function is given
by [41], K(r) = 1

n ∑N
i=1 Npi(r)/λ, where pi is the i-th point, N is the total number of points,

and λ is the number of points per area. On the other hand, DBSCAN is a density-based
method that primary uses two parameters, neighbourhood radius (say rmin), and minimum
number of points (nmin) for identifying a cluster. The technique looks for the minimum
density of molecules within rmin. Although effective, the technique is not robust and are
prone to imaging artifacts. Moreover, the subjectivity and ambiguity in selecting algorithm
parameters makes it more complex, and this affects its performance. Both techniques are
supervised techniques and, thus, can be used in combination with other analysis methods.

In this report, we report the co-development of a single-molecule imaging system and
advanced clustering methods to estimate critical biophysical parameters in a cellular system.
A multi-modal clustering approach is employed for estimating multiple parameters. This
is predominantly due to single-molecule dynamics in a complex cellular system driven
by interlinked biophysical processes. Here, we investigate the Influenza A disease model
that involves clustering of Hemagglutinin (HA) protein in NIH3T3 cells. Clustering is
an important step in the entire cycle of HA entry to its maturation during infection. In
short, the viral glycoproteins of hemagglutinin (HA) are used by virus for fusion, viral
budding, and infection [44]. Once inside the cell, HA dynamics and its clustering in the
plasma membrane are critical for budding and fusion. The biophysical parameters (number
of molecules per cluster, density, and cluster size) are critical indicators of HA dynamics
and overall infectivity (release of bud-particles from infected cells) [45,46]. Hence, there is
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an urgent need for cluster analysis techniques and tracking HA dynamics overtime in a
cellular system.

2. Results

Figure 1A shows the schematic diagram of the single-molecule imaging system de-
veloped for cluster analysis. Two lasers are employed: one for activation and the second
for excitation of conjugate photoactivable molecule (Dendra2-HA). The beams are com-
bined using a dichroic mirror (DM 505) and directed towards the high NA objective lens
(Olympus UPlanFL N 100X, 1.30 NA, Oil immersion) that focus the combined beam to
transfected cells cultured on a coverslip. To understand the dynamics of HA molecules
during viral infection, a photoactivable probe (Dendra2) is conjugated with the protein-of-
interest Hemaglutinin (HA) to study its dynamics in a cellular environment. This enables
both photoactivation and photoexcitation of single-molecules. Upon activation and sub-
sequent excitation, the target molecules (Dendra2-HA) blinks with a duration of ∼30 ms
(triplet state lifetime). The fluorescence, thus, emitted during this time window is collected
by the same objective and directed towards the EMCCD camera (iXon 897 Ultra). The
description of actual optical setup is detailed in Supplementary S1. Images containing
single-molecule signatures are recorded at a rate of 33 Hz and a total of 5000 frames were
collected with an average of 17.1 molecules per frame. The images are processed and
rendered using developed MATLAB scripts [9,14,25]. Subsequently, super-resolved image
is constructed from single-molecule data. The high intensity spots (on the recorded images)
representing single-molecule were extracted and approximated by a Gaussian function,

G(ρ, σ) = A0 + I0 exp [− (ρ−ρ0)
2

2 r2
0

], where (ρ− ρ0) =
√
(x− x0)2 + (y− y0)2 is the radial

distance from the centroid (ρ0 = (x0, y0)), A0 is the background pixel value, and I0 is the
peak pixel value. Subsequently, the centroid and standard-deviation of single-molecule are
extracted to, respectively, determine its location (centroid, ρ0) and localization precision
(r0 ∝ rd√

N
) in the reconstructed super-resolved image. Here, rd is the diffraction-limited

PSF with N as the number of photons detected per molecule. We have neglected back-
ground and insignificant pixel-size effect to arrive at the above relation from Thompson’s
well-known relation [47].

NIH3T3 cells were chosen for the present study following similar studies in the
literature [2,4]. NIH3T3 cells are a standard fibroblast cells extracted from swiss albino
mouse embryo tissue. The cells are well suited for transfection studies using plasmid DNA
(Dendra2-HA). As they are receptive to transformations, 3T3 is capable of undergoing
spontaneous transformations in culture. The lipid-based transfection reagents used in the
present study are specifically optimized for transfection of DNA and RNA into NIH3T3
cells. Altogether, the efficiency of transfection makes 3T3 cell lines suitable for single-
molecule studies. For the present study, the cells were thawed and cultured using the
standard protocol [9,29]. To ensure healthy growth before carrying out transfection, cells
were passaged a few times. Subsequently, the cells were PBS washed and transfected
with Dendra2-HA plasmid using standard Lipofectamine 3000 (Thermo Fisher Scientific,
L3000001) based protocol. A confluence of 75% was ensured before transfection was carried
out. The cells were incubated overnight and fixed using 3.7% paraformaldehyde after
24 h [6]. Post fixation, widefield-inverted fluorescence microscopy studies were carried out
to look for transfected cells and their efficiency. Figure 1B shows a transfection efficiency of
about 20% as observed in an inverted fluorescence microscope equipped with 20X objective
lens (Meiji 20X, 0.4 NA). Subsequently, single-molecule studies were carried out on the
transfected cells, as shown in Figure 1B.
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Figure 1. (A) Schematic diagram of the developed optical super-resolution imaging system for
studying molecular clusters, (B) Dendra2-HA transfected cells where strong transfected cells appear
bright and are indicated by a red arrow.

It may be noted that HA is known to exist as a trimer, but here we are dealing with
HA monomer. This has been verified, and the details can be found in Refs. [48,49]. The
monomers are known to form compact and elongated clusters. Specifically, HA has basic
residues and palmitoylation sites in the cytoplasmic tail (CT). It contains at least two highly
conserved, positively charged amino acids and three acylation sites per monomer [48]. A
detailed description of HA glycoprotein can be found in Ref. [49].

The transmission images of the cells chosen for the study is shown in Figure 2A. We
have carefully chosen strongly and weakly transfected cell. These selections helps in
determining the tolerance limit of clustering methods and related parameter estimation.
The corresponding super-resolution images are shown in Figure 2B for both the cases
along with a few enlarged clusters (see green and red boxes). The centroid and localiza-
tion precision for the detected molecules are determined as shown in Figure 2C. These
parameters are estimated by using developed MATLAB scripts [4,9] and subjected to
further analysis.

To determine the performance of single-molecule clustering method, we computa-
tionally generated random clusters with known parameters such as number of clusters,
number of molecules per cluster, and inter-cluster distance. The generation of test data
(random clusters) is discussed in Supplementary S3. Subsequently, three different clus-
tering methods (point-clustering, Gaussian mixture, and K-means) were employed for
analysing clusters. The first method is point-clustering that uses Euclidean distance

(J = ∑i,j

√
(xi − xj)2 + (yi − yj)2) to identify the next point in the cluster and, depending

on the distance cut-off, determines if the point belongs to the cluster [50,51]. We chose
j = 30 nm as the cut-off and minimum number of points to be greater than 200 for it to
be considered as a valid cluster. This technique has the distinct advantage of leaving
out un-clustered points. This is consistent with the observation that not all molecules
in real biological sample form clusters. The second method is based on Gaussian mix-
ture that requires the identification of each cluster (i) by fitting a Gaussian function,
G(µi, σi) =

1√
2πσi

exp[−(x− µi)
2/2σ2

i ], where, µi and σi are, respectively, the mean and
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standard deviation of the Gaussian function [52]. Often, expectation maximization based
iterations are carried out for convergence to a stable solution [53–56]. Due to iterative
nature of the Gaussian mixture method, the technique benefits from the feedback mecha-
nism and converges to the most likely solution. The third promising method is K-means
in which cluster centroids/means are randomly placed and each point is assigned to the
nearest mean based on the least-squared Euclidean distance, J = ∑k

j=1 ∑n
1=1 ||pi − νj||2,

where ||pi − νj|| is the Euclidean distance between pi and the centroid, νj (calculated
using k-means++ algorithm in Matlab) [57,58]. Iteratively, the centroid for each cluster
(νi =

1
Ni

∑Ni
j=1 xj) is recalculated until convergence. Finally, the simulated data are sub-

jected to cluster-analysis algorithms. The details of algorithms and data processing are
detailed in Supplementary S2.
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Figure 2. (A) Transmission image of the transfected cells chosen for study. (B) Reconstructed super-
resolved images of a single NIH3T3 cell along with transmission images and enlarged clusters (red
and green regions). (C) The localization plot of resolved single molecules for strong and weak
transfected cell that show an average localization precision of 45 nm and 55 nm, respectively.

Figure 3A shows the performance of clustering methods on the generated test clusters.
We adopted the approach that is often used in microscopy, optical tomography, astron-
omy, and data science that employs phantoms to evaluate different methods [59–62]. For
quantification of a specific parameter, we have computationally generated random clusters
(phantom) that serve as a ground truth (see, Figure 3) and used this as a guide to calculate
biophysical parameters: first in the simulated clusters and then in real data. A comparison
of estimated value with the known value gives an accurate picture of the efficiency of the
clustering method. Biophysical parameters (such as cluster area, cluster density, number
of molecules per cluster, and pairwise-distance) relevant to single-molecule clustering are
considered. It is observed that k-means clustering and point clustering performs superior
compared to that of GMM for determining the cluster area. This is quantified based on the
coefficient-of-variation measure for each parameter, CoV = σ/µ where µ = ∑i µi, and µ
and σ corresponds to mean and standard deviation, respectively. All techniques performed
equally well in determining the number of molecules per cluster (0.05 < CoV < 0.1).
Point-clustering (CoV = 0.061) and K-means (CoV = 0.016) techniques are found to be
better suited for estimating cluster density when compared to GMM (CoV = 0.1492) (see,
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Figure 3B). This is broadly due to the fact that K-means use centriod-to-molecule distance
based search while GMM is a probabilistic model. However, GMM (CoV = 0.0468) and
K-means (CoV = 0.015) performed better than point-clustering for accessing pairwise
distance (CoV = 0.0558). Once the characteristics of clustering methods are determined,
they are used to investigate real data (Dendta2-HA transfected cells).

The analysis was carried out on a large number of cells, and the data were segregated
based on weakly (sparse clusters) and strongly (dense clusters) transfected cells. This
is due to the fact that weak transfection are known to occur in a variety of biological
specimens. A typical cell with dense and sparse HA clustering is shown in Figure 4. For
both the cases, three different methods were employed to determine HA clusters and its
characteristics. It is evident that, sparse clusters are well-recognized by all the clustering
methods (5.3 µm2 < Area < 6.9 µm2), whereas compact clusters are better categorized
by point clustering (with a minimum average cluster area, A = 1.4848 µm2). This is in
line with the known test data. Point clustering has the added advantage of excluding
unclustered HA molecules. This is due to the fact that point clustering does not require
the initialization of a number of clusters and the necessity to cluster every molecule, which
is predominantly due to its point-to-point based search. On the other hand, Gaussian
and K-means clustering needs prior knowledge about the number of clusters. In addition,
point clustering is found to be the fastest among the clustering methods (Figure 4A,B).
K-means assume symmetric clusters whereas point and Gaussian clustering methods are
capable of handling random clusters. This is beneficial for identifying clusters that are of
arbitrary shape and for calculating biophysical parameters of unknown random clusters.
Visualization of clusters shows few large area clusters (5–15 µm2) and the majority of them
are in the moderate range (2–4 µm2). This observation is consistent with point clustering
whereas GMM and K-means suggests a large proportion of larger area clusters (>3 µm2 for
dense clustering and >6 µm2 for sparse clustering cases, respectively) (Figure 4C–F). This is
in line with the observation on test sample (Figure 3). Moreover, density analysis indicates
the existence of a few high density clusters (>2000 µm−2). This observation is consistent
with point-clustering and K-means whereas GMM does not fare well. The number of
molecules per cluster is consistent with all clustering methods showing the existence of a
few clusters with a large number of HA molecules. These observations indicate that none of
the methods are well equipped for determining all the relevant parameters and a suitable
combination of them is necessary. Thus, a multimodal approach seems essential.
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Figure 4. (A–F) Top row shows merged images (fluorescent and transmission images) of strong and
weak transfected cells. Cluster analysis for two chosen single cells from an ensemble of Dendra-
2HA transfected NIH3T3 cell. Both strongly and weakly transfected cells are considered, which
show dense and weak molecular clusters, respectively. Three different clustering methods (point
clustering, Guassian mixture model, and k-means clustering) were employed to determine biophysical
parameters (cluster area, cluster density, number of molecules per cluster, and pairwise-distance ).
The colors are used to discern clusters.

3. Discussion

A single-molecule localization microscope was developed and integrated with ad-
vanced clustering methods for assessment of molecular clusters. In the influenza type A
disease model, HA molecules are known to assemble and form HA-assembly post 24 h of
transfection (see Figure 2B). A conjugate photoactivable probe (Dendra2-HA) was used
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to study clustering in transfected NIH3T3 cells. The dynamics of these clusters (virion
assembly), including their shape and size, are known to play critical roles that ultimately
result in the maturation of the virus [4,63].

The clustering methods identify single-molecule clusters, and critical biophysical
parameters are estimated. It is apparent that parameter estimation needs a multimodel
approach and a single model is incapable of evaluating all parameters consistent with
observation. In order to access the performance of clustering methods, test clusters with
known biophysical parameters of interest (such as the number of clusters, number of
molecule per cluster, cluster density, and pairwise distance between two nearby molecules)
are computationally generated (see Figure 3). All clustering methods (point-clustering,
Gaussian mixture model, and k-means) are then used to classify clusters and estimate the
parameters. Comparison show point-clustering and k-means as the preferred method for
estimating cluster size (area), whereas GMM and k-means are found to be suitable for
determining pairwise distance. Both k-means and point-clustering show better estimation
of cluster density, and all methods perform equally well for estimating the number of
molecules per cluster (see Figure 3). Encouraged by the performance of clustering methods
on simulated test data, we anticipate a similar trend for actual data.

The clustering methods are applied to real data (Dendra2HA transfected NIH3T3 cells)
and analyzed. Results show that cluster density is better estimated by point-clustering and
K-means, whereas cluster area is better estimated by point-clustering (see Figure 4). All
clustering techniques perform equally well as far as the number of molecules per cluster
is concerned. None of the methods are found to be suitable for determining pairwise
distance accurately (see Figure 4). We found a disparity between dense and sparse clusters.
Particularly for sparse clusters, cluster density and the number of molecules are better
represented by K-means. This shows that accurate estimation of biophysical parameters is
dependent on the strength of transfection. Parameter estimation on dense clusters is found
to be in line with computational test data.

Overall, the proposed study provides a deeper understanding of single-molecule
clustering process in the complex cellular system. It contributes to a better estimation of key
biophysical parameters critical for understanding single-molecule complexes, resulting in a
better determination of underlying biophysical mechanisms with single-molecule precision.

4. Methods and Protocols
4.1. Cell Culture

NIH3T3 fibroblast cells were thawed and resuspended in complete media (10%FBS +
89%DMEM + 1% penicillin streptomycin). The resuspended cells were centrifuged to form
a pallete, which is resuspended again in PBS (1X) to remove toxicity caused by the freezing
medium (90% complete cell medium +20% DMSO ). Then, the solution was centrifuged
to obtain a DMSO free pallete, which is resuspended in complete media and 105 cells
were plated in 35 mm dish with 2 mL media (the counting of cells was performed using
hemocytometer). The cells were kept undisturbed for 2 days in CO2 incubator (at 37 °C) so
that the confluence of cells becomes 70–80% in the plate before the split. We have split the
cells into three passages followed by transfection with Dendra-2HA plasmid-DNA.

4.2. Cell Transfection and Fixing

NIH 3T3 was used for the study. The cells were seeded in 35 mm dish supplemented
with coverslip. The coverslip used was washed with ethanol prior to cell seeding to remove
contamination, and then it was washed with PBS to remove leftover ethanol. Then, the
cells were transfected with Dendra2-HA after 12–14 h of seeding. It should be noted that
the cell count should be not more than 1–1.5 ×105 cells per 35 mm dish while seeding so
that confluency after 12–14 h is around 60–70%. Lipofectamine 3000 (Life Technologies,
Invitrogen) was used for transfecting NIH 3T3 cells with Dendra2–HA as per the Lipo
3000 protocol. The cells were kept in incubation (37 °C + 5% CO2) for 24 h in antibiotic free
complete media (only DMEM and FBS). Subsequently, the cells were washed with PBS and
then fixed with 4%PFA. After fixing, the cells were sealed in glass slide using Fluorosave
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solvent (Invitrogen, Carlsbad, CA, USA) to preserve it for a long duration. The cells were
observed through white light to confirm that cells are in shape and subsequently visualized
using blue light to observe green fluorescence from transfected cells. Then, the brightest
cells (transfected cell) were chosen for single-molecule imaging.

4.3. Optical Setup

The optical system designed for visualizing molecular clusters technically consists
of 3 optical arms: (1) blue laser (470–490 nm) for visualizing transfected cells, (2) violet
laser (405 nm) for single-molecule activation, and (3) green laser (561 nm) for excitation
of activated molecules (see, Figure 1). Dichroic mirror (DM 505) was used to combine
the 405 nm and 561 nm laser and directed to the dichroic mirror of inverted fluorescence
microscope. On its way, a flip mirror is used to choose either the combined beam (405 nm
+ 561 nm) or blue light. Blue light is used for identifying transfected cells. Subsequently,
the combined beam is used for selectively exciting Dendra2HA single-molecules. A high
NA objective (Olympus, 100X, 1.3 NA) is used to tightly focus the light onto the sample
in an inverted microscope system (Olympus, IX81 Inverted, Tokoy, Japan). The emitted
fluorescence light (570–600 nm) is collected by the same objective, transmits through
the dichroic mirror DM 570, and filtered by a set of filters before focusing it on to the
EMCCD camera (Andor, iXon 897 Ultra, Belfast, UK). The details of the actual setup and
the components are discussed in Supplementary S1.

4.4. Superresolution Imaging and Image Reconstruction

The process begins by recording a large number of images followed by image pro-
cessing to reconstruct a super-resolved image. For the present study, we have recorded
5000 images for a set of cells that express Dendra2HA. We have considered both weakly
and strongly transfected cells. Images are recorded at 33 Hz with an EM-gain of 257. A
total of 29,463 and 14,499 single-molecules corresponding to strong and weak transfected
cells were recorded. A series of processes were carried out to isolate the single-molecule
blinks from the background. This include particle-size filtering to remove false counting
and photon-count filtering to remove random backgrounds. Subsequently, the bright spots
are identified and fitted with a Gaussian filter. Further analysis is carried out to determine
the centroid and variance of the fitted Gaussian. This provides the location and localization
precision of the detected single molecules. The single molecules from all 5000 frames are
superimposed to reconstruct a super-resolved image.
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