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Abstract: Proper features matter for salient object detection. Existing methods mainly focus on
designing a sophisticated structure to incorporate multi-level features and filter out cluttered features.
We present the dual-branch feature fusion network (DBFFNet), a simple effective framework mainly
composed of three modules: global information perception module, local information concatenation
module and refinement fusion module. The local information of a salient object is extracted from
the local information concatenation module. The global information perception module exploits the
U-Net structure to transmit the global information layer by layer. By employing the refinement fusion
module, our approach is able to refine features from two branches and detect salient objects with
final details without any post-processing. Experiments on standard benchmarks demonstrate that
our method outperforms almost all of the state-of-the-art methods in terms of accuracy, and achieves
the best performance in terms of speed under fair settings. Moreover, we design a wide-field optical
system and combine with DBFFNet to achieve salient object detection with large field of view.

Keywords: salient object detection; dual-branch feature fusion network; wide-field optical system

1. Introduction

Salient object detection, which aims to locate the most obvious object in an image,
is widely used for object detection, visual tracking, image retrieval and semantic segmenta-
tion [1,2]. Traditional salient object detection is mainly divided into salient object detection
based on the spatial domain and salient object detection based on the frequency domain.
The former [3–8] is used to extract the salient objects of the image through the design and
fusion of low-level features such as multi-scale contrast and color. The latter [9,10] is mainly
utilized through frequency domain conversion and modification to extract the correspond-
ing salient target. Because traditional salient object detection methods still rely on the
shallow handcraft features and cannot obtain the deep semantic information of the image;
therefore, they cannot accurately label salient objects in more complex scenes. Benefitting
from the hierarchical structure of CNN, deep models can extract multi-level features that
contain both low-level local details and high-level global semantics. Early deep saliency
models include the use of convolutional neural networks to establish a multi-background
convolutional neural network combining global and local background [11] and the use of
multi-scale texture features in network to predict saliency map [12,13]. Although these deep
models achieve significant improvements over traditional methods, the generated saliency
map drops the spatial information and results in low prediction resolution. To solve this
problem, many researchers use a fully convolutional network [14] to generate a saliency
map of the same size as the input image resolution. Cheng et al. [15] used the different fea-
tures of the shallow and deep layers and combined short-cut links to obtain a better saliency
map. Liu et al. [16] combined a recurrent convolutional neural network to further refine the
global structured saliency cues. Zhang et al. [17] introduced a reformulated dropout after
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specific convolutional layers to construct an uncertain ensemble of internal feature units,
which encouraged the robustness and accuracy of saliency detection. Li et al. [18] proposed
a two-stream-deep model to solve boundary blur in saliency detection. They added a
segmentation stream to extract segment-wise features and fuse with the original salient
features to obtain a final saliency map. Zhang et al. [19] presented a generic aggregating
multi-level convolutional feature framework for salient object detection. They integrated
multi-level feature maps into multiple resolutions, but they ignored the interaction between
features with different information at multi-levels. Li et al. [20] combined the segmenta-
tion method to obtain a saliency mask. However, this framework obtains a saliency map
based on segmentation, which makes them unable to efficiently obtain the final result.
Liu et al. [21] proposed a novel pixel-wise contextual attention network. Their goal was to
learn to selectively attend to informative context locations for each pixel. Feng et al. [22] also
focused on attention mechanism. They designed the attentive feedback modules to better
explore the structure of objects. These attention-based methods improve the prediction
results of the network by stacking attention modules layer by layer, but at the same time,
they inevitably make the network more complicated.

Wide-field optical systems are also widely used in surveillance, remote sensing and
other fields for object detection, visual tracking, image retrieval and semantic segmenta-
tion [23–25]. A large imaging angle of view means a large range of imaging searches, but it
also brings greater aberrations.

On the basis of the above systems, we introduce an efficient and lightweight salient ob-
ject detection network named the dual-branch feature fusion network (DBFFNet). Moreover,
we designed a wide-field optical system with high imaging quality, which can effectively
reduce aberrations. By combining DBFFNet with a wide-field optical system, we can
easily obtain salient objects from a large field of view, which provides excellent clues for
subsequent tasks.

2. Dual-Branch Feature Fusion Network

The overall architecture is shown in Figure 1. In this section, we begin by describing
the whole structure of DBFFNet in Section 2.1, then introduce the adopted three main
modules in Sections 2.2–2.4. Finally, we introduce the loss function in Section 2.5.

Figure 1. The pipeline of the proposed approach. LICM: local information concatenation module.
GIPM: global information perception module. RFM: refinement fusion module. x2, x4: upsampling.
VGG-1, VGG-2, VGG-3, VGG-4 and VGG-5 correspond to the second, fourth, seventh, tenth and
thirteenth layer of VGG-16, respectively.
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2.1. Overall Structure

The overall architecture based on dual-branch feature fusion and VGG-16 backbone.
Because of the strong ability to combine multi-level features from classification networks,
this type of architecture has been widely adopted in many vision tasks, including salient
object detection. As shown in Figure 1, low-level features are concatenated from VGG-1 and
VGG-2 (Branch 1). By extracting the global and local information from LICM and GIPM
(Branch 2), we aim at completely distinguishing the salient objects from the background.
After that, we further introduce a refinement fusion module (RFM) to ensure that high-level
and low-level features from different layers can be adaptively merged together. In what
follows, we describe the structures of the above mentioned three modules and explain their
functions in detail.

2.2. Local Information Concatenation Module

Local information is crucial for salient object detection. Benefiting from the pyramid
feature extraction method, we stack convolutional layers with different receptive fields at
different scales to fully obtain local information of salient objects.

Specifically, the local information concatenation module is shown in Figure 2. High-
level features separately extracted from VGG-3, VGG-4 and VGG-5 layers. These features
at different scales then fed into LPM. In LPM, we adopt dilated convolution with different
dilation rates, which are set to 3, 5 and 7 to capture multi-receptive-field local information.
Moreover, we combine the feature maps from different dilated convolutional layers and
a 1 × 1 convolutional feature by channel concatenation. After batch normalization and
activation, we obtain features with multi-receptive-field local information in single scale.
Finally, we up-sample the LPM outputs corresponding to VGG-4 and VGG-5 and combine
them with the VGG-3 branch by channel concatenation.

Figure 2. Detailed illustration of our local information concatenation module (LICM). It comprises
three sub-branches, each of which contains a local perception module (LPM). LPM: local perception
module comprises three sub-branches, each of which works with different receptive fields. After
dilated convolution, all sub-branches (d1, d2, d3, d4) with the same number of channels (16) are
combined to output activated features.

2.3. Global Information Perception Module

Global information can provide clearer clues for salient object detection. Combining
global information can better deal with the extraction of salient objects in complex situations.
For the challenging scenarios in salient object detection, such as cluttered background,
foreground disturbance, and multiple salient objects, only using the local information may
fail to completely detect the salient regions due to lacking the global semantic relationship
among different parts of salient object or multiple salient objects.
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To overcome these issues, we designed the GIPM module to capture the global in-
formation from deep features and transmit global information layer by layer. As shown
in Figure 3, we firstly employ global average pooling to obtain the global information
and then reassign different weights to different channels of the VGG-5 feature maps (G5)
by 1 × 1 convolution and sigmoid function. Finally, we fed G5 into a three-layer U-Net
structure. The feature maps (F3) fed into a two-layer convolutional skip link became the
final GIPM outputs (F1).

Figure 3. Detailed illustration of our global information perception module (GIPM). It contains a
structure similar to U-Net to pass global information step by step and uses a short-cut at the tail to
refine the outputs.

2.4. Refinement Fusion Module

Through the two branches, we obtained the high-level and low-level features. High-
level features contain more concentrated object information and less background noise.
Although low-level features contain more background noise, they can also supplement
object information.

Thus, we introduced a refinement fusion module (RFM) in Figure 4 to better fuse
the high-level and low-level features from two branches. We did not design a complex
fusion structure, but adopted a classic method of concatenation to fuse the high-level
and low-level features. Moreover, we introduced spatial attention to guide the low-level
features for suppressing the background noise.

Figure 4. Detailed illustration of the refinement fusion module (RFM). In order to better integrate
the high-level (H1) and low-level (L1) features, we introduced a spatial attention (SA) mechanism.
By focusing on the spatial attention of the high-level features, we reduced the cluttered background
influence in the low-level features.
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2.5. Loss Function

In salient object detection, binary cross-entropy loss is often used as the loss function
to measure the difference between the generated saliency map and the ground truth, which
can be formulated as below:

Lbce = −
1

W × H

H

∑
i=1

W

∑
j=1

(Gij log(Pij) + (1− Gij) log(1− Pij)) (1)

where W, H denote the width and height of the input image, respectively, Gij is the ground
truth label of the pixel (i, j) and Pij represents the corresponding predicted results in
position (i, j).

In order to accelerate the network convergence, we also added auxiliary loss for F1,
F3, F4 and F5 in Figure 3. The total loss calculated by Equation (2) contains the main loss
and the auxiliary loss

Ltotal = Lmain + θi ∑
i=1,3,4,5

Laux (2)

where θi means the weights of the auxiliary loss. F1, F3, F4 and F5 are upsampled to the
same size as the ground truth via bilinear interpolation. The main loss and the auxiliary
loss are calculated using Equation (1).

3. Experiment Settings
3.1. Datasets

We carried out experiments on two public salient object detection datasets, which
are ECSSD [26] and DUTS [27]. Our model is trained on the training set (10,553 images)
from DUTS and tested on its test set (5019 images) along with ECSSD. We evaluated
the performance using the mean absolute error (MAE) and F-measure score. F-measure,
denoted as Fβ, is an overall performance measurement and is computed by the weighted
harmonic mean of the precision and recall:

Fβ =
(1 + β2)× Precision× Recall

β2 × Precision + Recall
(3)

where β2 is set to 0.3 as performed in previous work to weight precision more than
recall. The MAE score indicates how similar a saliency map S is compared with the
ground truth G:

MAE =
1

W × H

H

∑
i=1

W

∑
j=1
|S(i, j)− G(i, j)| (4)

where W and H denote the width and height of S, respectively.

3.2. Training and Testing

We carried out data augmentation by horizontal and vertical flipping, image rotating
and random cropping. When fed into the DBFFNet, each image is warped to size 256 × 256
and subtracted using a mean pixel provided by VGG net at each position. The coefficients
of auxiliary loss equal 0.2. The initial learning rate is set to 2× 10−4 and the overall training
procedure takes about 90 epochs. For testing, the images were scaled to 256 × 256 to feed
into the network and then the predicted saliency maps were bilinearly interpolated to the
size of the original image.

4. Results and Discussion
4.1. Comparison with the State-of-the-Art

The saliency maps for visual comparisons are provided below. We compared DBFFNet
with UCF [17], DHS [16], DCL [18], DSS [15], Amulet [19], MSR [20], PiCANet [21] and
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AFNet [22]. Figure 5 shows some example results of our model, along with another eight
state-of-the-art methods for visual comparisons.

Our method gives superior results in low contrast (rows 1–2) and complex background
scenes (rows 3–4). Additionally, it recovers more complete details (row 5). From the
comparison, we can see that our method performs robustly when facing these challenges
and produces better saliency maps.

Figure 5. Visual comparison with different methods in various scenarios.

We also compare DBFFNet with eight state-of-the-art methods using quantitative
evaluation. The quantitative performances of all methods are shown in Tables 1 and 2.

Table 1 shows the comparisons of MAE for two datasets. For DUTS-TE, DBFFNet ranks
second. Additionally, for ECSSD, our model ranks first together with AFNet. Table 2 shows
the comparisons of the F-measure score. Among the best three models, ours ranks second.

Moreover, we test the running speed of DBFFNet with another eight state-of-the-art
methods. Average speed (FPS) comparisons among different methods (tested in the same
environment) are reported in Table 3.

Table 1. Quantitative comparisons with different methods on 2 datasets with MAE. The best three
results are shown in red, green and blue.

Method ECSSD DUTS-TE

UCF [17] 0.080 0.111
DHS [16] 0.062 0.067
DCL [18] 0.082 0.081
DSS [15] 0.064 0.065
Amulet [19] 0.062 0.075
MSR [20] 0.059 0.062
PiCANet [21] 0.049 0.055
AFNet [22] 0.044 0.046
Ours 0.044 0.048

Table 2. Quantitative comparisons with different methods on 2 datasets with F-measure score.
The best three results are shown in red, green and blue.

Method ECSSD DUTS-TE

UCF [17] 0.904 0.771
DHS [16] 0.905 0.815
DCL [18] 0.896 0.786
DSS [15] 0.906 0.813
Amulet [19] 0.911 0.773
MSR [20] 0.903 0.824
PiCANet [21] 0.930 0.855
AFNet [22] 0.935 0.862
Ours 0.933 0.860
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Table 3. Average speed (FPS) comparisons between our approach and the previous state-of-the-art
methods. The best three results are shown in red, green and blue.

Model FPS

UCF [17] 21
DHS [16] 20
DCL [18] 7
DSS [15] 12
Amulet [19] 16
MSR [20] 4
PiCANet [21] 10
AFNet [22] 18
Ours 43

We can clearly find from Table 3 that the average speed of our model is twice that of
the model in second place. The average speed of AFNet, whose quantitative evaluation
results are close to our model, is only 18 frames.

4.2. Ablation Studies

To investigate the importance of different modules in our method, we conducted
ablation studies on a DUTS-test dataset. From Table 1, it can be seen that the proposed
model contains all components necessary to achieve the best performance, which demon-
strates that all components are necessary for the proposed method in order to obtain the
best salient object detection result. Moreover, in Table 4 we adopted the model using only
high-level features (VGG-3, VGG-4, VGG-5 concatenation) as a basic model without other
modules; the base MAE is 0.112. First, we added LICM to the basic model and obtained a
decline of 27% in MAE compared with the basic model. Then, we added GIPM to high-level
features and proved the effectiveness of the global information. On this basis, we added
low-level features and obtained a decline of 55% in MAE compared with the basic model.
Finally, we added RFM in the model and obtained the best result, which obtained a decline
of 58% in MAE compared with the basic model.

Table 4. Ablation evaluations using different components combinations. LL and HL represent
low-level features and high-level features, respectively.

Method MAE

HL 0.112
HL + LICM 0.082
HL + GIPM 0.078
HL + LICM + GIPM 0.060
HL + LL + LICM + GIPM 0.052
HL + LL + LICM + GIPM + RFM 0.048

In addition, we visualized the combined effects of different modules. As shown in
Figure 6, the network can output an optimal saliency map by adding global information
and low-level supplement information.

Figure 6. Saliency maps predicted by our proposed DBFFNet with different modules.
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4.3. Discussion with Wide-Field Optical System

We further combined DBFFNet with a wide-field optical system. The wide-field optical
system has a large field of view and excellent imaging quality. Through the detection of
salient objects, it can provide good prior information for subsequent object tracking, image
segmentation, etc., so as to achieve multi-task collaboration ability.

The wide-field optical system has a 28-degree field of view, and the focal length of
the system is 15 mm. The image size and pixel size of the wide-field optical system are
2000 × 2000 and 5.5 µm × 5.5 µm, respectively. The optical structure is shown in Figure 7a.

Since the wide-field optical system outputs color images and the pixel arrangement is
RGGB, the pixel size after the combined arrangement is 11 µm. Figure 7b shows the MTF
curve. For the wide field of view image surface (spatial frequency 45.4 lp/mm), the MTF is
all greater than 0.5.

Figure 7. Wide-field optical system design and MTF curve. (a) Optical design; (b) MTF curve.

Figure 8 shows the wide-field optical system spot diagram together with field curva-
ture and distortion. The point diagram in Figure 8a indicates that wide-field optical system
has excellent imaging effects in the visible light band. The RMS radius corresponding to
the maximum angle of view is only 4.877 µm. As shown in Figure 8b, the maximum field
curvature and distortion produced by the wide-field optical system are only 0.14 mm and
2%, respectively.
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Figure 9. Wide-field optical system. (a) Top view; (b) left view.

We performed salient object detection on the images collected by the wide-field optical
system. All images were taken in indoor (first two lines) and outdoor (last two lines)
conditions according to the types of dolls, sculptures, landscapes and people. Figure 10
shows the results of our model along with another eight state-of-the-art methods [13–20]
for visual comparisons. It can be seen from Figure 10 that for indoor scenes, the ability
to separate salient targets and retain complete targets of our model is optimal. Moreover,
in outdoor scenes with cluttered backgrounds, our model has shown a superior ability to
extract salient objects.

Figure 10. Results of salient object detection.

Overall, it can be seen from Figure 10 that our model is well equipped with a wide-field
optical system and provides good prior information for subsequent tracking, segmentation
and other tasks.

5. Conclusions

In this paper, we have presented a dual-branch feature fusion network for salient object
detection. Our network uses a dual-branch structure to process low-level features and high-
level features separately. The low-level features can effectively retain the supplementary
information of the target through simple convolution and aggregation. By employing
the global information perception module and local information concatenation module,
the network can fully extract the local and global information of the target from the high-
level features. Finally, the refinement fusion module merges the features of the two branches.
The whole network can learn to capture the overall shape of objects, and experimental
results demonstrate that the proposed architecture achieves state-of-the-art performance
on two public saliency benchmarks. Moreover, we have developed a wide-field optical
system with high imaging quality. Our model equipped with the wide-field optical system
can achieve salient object detection with a large field of view and provide excellent prior
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information for subsequent object tracking and image segmentation. We will try to combine
salient object detection with subsequent computer vision tasks carried out by the wide-field
optical system in the future.
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