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Abstract: To increase the spectral efficiency of coherent communication systems, lasers with ever-
narrower linewidths are required as they enable higher-order modulation formats with lower bit-error
rates. In particular, semiconductor lasers are a key component due to their compactness, low power
consumption, and potential for mass production. In field-testing scenarios their output is coupled
to a fiber, making them susceptible to external optical feedback (EOF). This has a detrimental effect
on its stability, thus it is traditionally countered by employing, for example, optical isolators and
angled output waveguides. In this work, EOF is explored in a novel way with the aim to reduce and
stabilize the laser linewidth. EOF has been traditionally studied in the case where it is applied to only
one side of the laser cavity. In contrast, this work gives a generalization to the case of feedback on
both sides. It is implemented using photonic components available via generic foundry platforms,
thus creating a path towards devices with high technology-readiness level. Numerical results shows
an improvement in performance of the double-feedback case with respect to the single-feedback
case. In particularly, by appropriately selecting the phase of the feedback from both sides, a broad
stability regime is discovered. This work paves the way towards low-cost, integrated and stable
narrow-linewidth integrated lasers.

Keywords: laser dynamics; optical feedback; narrow-linewidth lasers; semiconductor lasers; laser stability

1. Introduction

The effect of external optical feedback (EOF) on diode laser dynamics has been ex-
tensively studied for the past half century [1,2]. EOF has been proven to affect laser
performance, showing regimes that can aid in linewidth reduction [3–6], as well as others
responsible for highly unstable behavior, from mode hopping to the case of coherence
collapse [7–12]. Methods to improve laser stability thus need to take EOF into account,
as even weak feedback can be detrimental. A traditional approach to mitigate its effects is to
include an off-chip isolator at the laser output. Yet, this component negatively impacts the
dimensions of packaged devices as well as fabrication times and costs. As such, research is
ongoing to develop an integrated solution that can minimize the negative effects of EOF.
Efforts include adjusting the feedback phase to tune into line-narrowing regimes [13,14],
using unidirectional phase modulators [15,16], reducing the linewidth enhancement factor,
e.g., using quantum dots [17–19], employing electromagnetic effects [20,21], harnessing the
mode propagation properties of ring lasers [22,23], or the extended cavity approach [24–27].

Double external feedback on the same side of the laser cavity has been previously
explored for chaos stabilization in Reference [28]. Its results numerically show that, by in-
troducing an additional feedback term, a chaotic regime can be stabilized in terms of output
power, where a robust stable region for a wide parameter range can be seen. Furthermore,
linewidth is numerically shown to be reduced with respect to the single feedback case.
However, it lacks an analytical expression for the linewidth, and it does not explore the
effect of the added term on other optical feedback regimes, which limits the scope of the
analysis [7]. Dual external cavities have also been explored to maximize the sensitivity
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of self-mixing interferometers for sensing applications [29–31]. These studies focus on
improving the interferometric signal in terms of output power characteristics, yet they do
not study the effect EOF has on linewidth, which is crucial for other applications such
as coherent communications [32] or frequency metrology [33]. Furthermore, in all works
exploring dual external cavities, both external reflections return to the same side of the laser
cavity and thus have the same propagation direction. Moreover, phase shifts in the external
phase cavity are not accounted for, thus ignoring, e.g., possible phase shifts at the mirrors.

The established line of thought relies on the key assumption that feedback is intro-
duced from only one side of the laser cavity. Current integration technologies make this
assumption obsolete, as they allow for arbitrarily complex design geometries with a variety
of functionalities, such as tunability and modulation, while maintaining narrow-linewidth
performance [34–38]. Consequently, this work aims to extend the theoretical foundations
of EOF to the case of feedback coupling into the laser cavity from both sides. This system is
studied to obtain and analyze its dynamic rate equations. Furthermore, the frequency noise
power spectral density and subsequently the intrinsic linewidth’s dependence on feedback
is computed. The Lang–Kobayashi approach is used [39], where an additional term to
account for the extra feedback term is included. In a similar fashion, to obtain analytical
solutions both small-signal and weak feedback conditions are assumed. The obtained
equations are then numerically solved. Results show that feedback-insensitivity can be
achieved by tuning the feedback parameters. In contrast with previous works, this can be
accomplished in a monolithic platform by including a single active component in a straight-
forward geometric configuration. As such, design complexity is reduced which enables
devices with a compact form factor. Furthermore, existing methods for laser fabrication
are suitable for realizing the proposed device. In particular, the proposed laser system
can be made with mature photonic integrated components available in generic foundry
platforms [40,41], thus creating a path towards devices with high technology-readiness
level while maintaining low cost and size.

2. Rate Equations Model

This section includes a derivation of the dynamic equations of a laser cavity with EOF
coupled into the laser cavity from both sides. Starting from the Lang–Kobayashi model [39],
the lasing frequency and threshold gain shifts due to feedback are obtained, as well as an
analytical expression for the frequency noise power spectral density from which the change
of intrinsic linewidth can be computed.

This work proposes a revised laser system, as shown in Figure 1. The laser cavity of
length L is delimited by two mirrors with complex reflection coefficients ρ1 and ρ2 , re-
spectively. Assuming two interfaces at each side of the main cavity, two additional back-
reflections (ρ1,ext and ρ2,ext ) are considered and accounted for by computing effective reflec-
tion coefficients. The case of weak feedback is discussed here, for which:

|ρj,ext | � 1. (1)

The following parameters are introduced:

κj ≡
1− ρ2

j

ρj

∣∣∣ρj,ext

∣∣∣
tcav

(2a)

φj ≡ ωFB tj + φmj (2b)

δω ≡ ωFB −ωref (2c)

tcav = 2L/vg, (2d)

with j = 1, 2, where κj is the coupling coefficient; tcav is the cavity round-trip time, with the
group velocity vg; φj is the phase delay due to the external cavities determined by the
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external round-trip time tj, the lasing frequency in the presence of feedback ωFB , and a
phase shift at the external mirrors φmj ; and ωref is the free running laser frequency.

The first step is extracting the lasing conditions of the proposed laser system.

L
Figure 1. Schematic of a laser cavity affected by external optical feedback from both sides.

2.1. Lasing Conditions

By analyzing the slowly-varying amplitude of the complex electric field, effective
reflection coefficients

(
ρeff

j

)
can be obtained:

ρeff
j

ρj

≈ 1 + κjtcave±iφj , (3)

where the plus and minus signs corresponds to j = 1 (left mirror) and j = 2 (right
mirror), respectively. The additional reflection influences the lasing condition, as shown
in Appendix A, and thus the threshold gain and lasing frequency. To calculate them, the
following definitions are convenient:

GFB ≡ ΓgFB vg (4a)

Gref ≡ Γgrefvg (4b)

∆φm ≡ φm1 − φm2 , (4c)

γH ≡
√

1 + α2
H

(4d)

θH ≡ arctan(αH) (4e)

where Γ is the confinement factor; gFB and gref are the threshold gain coefficient with
and without feedback, respectively; and αH is the linewidth enhancement factor [42].
From Appendix B, it is possible to obtain:

GFB − Gref ≡ δG
(A16)
≈ −2κ2 cos(φ2)− 2κ1 cos(φ1) (5a)

δω
(A23)
≈−γH [κ2 sin(φ2 + θH) + κ1 sin(θH − φ1)]. (5b)

The relation between the right-hand terms determines the shift in threshold gain and
lasing frequency with feedback. When comparing with previous literature regarding dual
external cavity lasers, a sign difference is observed with respect to the lasing frequency
shift equations found in References [28,29], arising from the different propagation direction
of the additional feedback term. A clearer contrast is present with the lasing frequency shift
shown in ref. [30], where a single term accounts for both external reflections. Furthermore,
a phase shift at the external mirrors (φmj ) is not considered in the mentioned sources, thus
the feedback terms included in both the excess gain and lasing frequency variations are
distinct with respect to those in Equation (5).
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Given the transcendental form of Equation (5b), a numerical analysis under different
feedback conditions is studied in Section 3. Nevertheless, an analytical solution for lasing
frequency stability can be found for the condition:

δω = 0. (6)

Under this condition, Equation (5b) becomes:

κ2 sin(φ2 + θH)
(6)
= −κ1 sin(θH − φ1), (7)

which is determined by the feedback parameters κj and φj, the latter being dependent
on the time delay tj as well as the lasing frequency. Finding a stable solution that does
not depend on the lasing frequency is of particular interest, as it can be advantageous for
tunable lasers and their numerous applications. With the following assumption:

κ2 = κ1 ≡ κ, (8)

Equation (7) can be rewritten as:

sin(φ2 + θH) = − sin(θH − φ1) = sin(φ1 − θH)

⇒ φ2 + θH = φ1 − θH + 2mπ. (9)

Without loss of generality, the parameter m is set to m = 0, thus:

2θH = φ1 − φ2
(2b)
=

(4c)
= ωFB(t1 − t2) + ∆φm

⇒ 2θH − ∆φm = ωFB(t1 − t2). (10)

Choosing an equal time delay in both external cavities:

t2 = t1 ≡ text, (11)

sets the right hand term of Equation (10) to zero, so that:

2θH = ∆φm. (12)

This result suggests that by tuning the phase in the external cavities, so that condition (12)
is met, it is possible to obtain a feedback-insensitive lasing frequency. An active method
to tune the phase is however required as αH is dependent on laser parameters, such as
carrier density and wavelength [43]. This can be managed by, for example, phase shifters,
which are mature and widely used components that can be included on-chip in a laser.
The shown stable solution thus requires meeting the conditions (8), (11) and (12), which
constrain the feedback parameters of one side of the cavity with respect to those of the
other side, but do not restrict their absolute value. Nevertheless, if conditions (8) and (11)
are not met, solutions for stable performance become frequency dependent. Such a case
would thus only be satisfied for certain lasing frequency values for a given set of feedback
parameters, which can potentially yield unstable solutions for other frequencies.

Regarding the variations in threshold gain, under conditions (8) and (11)
Equation (5a) becomes:

δG = −2κ[cos(ωreftext + φm1) + cos(ωreftext + φm2))], (13)
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which vanishes if:

cos(ωreftext + φm1) = − cos(ωreftext + φm2)

cos(ωreftext + φm1) = cos(ωreftext + φm2 − π) (14)

⇒ ωreftext + φm1 = ωreftext + φm2 − π + 2mπ m ∈ Z

m=0⇒ ∆φm = π.

This condition, while different than condition (12), also yields stability regardless of lasing
frequency in this case for the threshold gain. Both cases are studied numerically in Section 3.

2.2. Rate Equations

In order to obtain the frequency noise (FN) power spectral density (PSD), and from it
the laser intrinsic linewidth, the laser rate equations for the intensity and phase, as well as
one for the carrier number, need to be studied. The former two can be extracted from the
dynamic equations for the field inside the laser cavity, following the Lang-Kobayashi [39]
approach. Its full derivation is shown in Appendix C. Furthermore, Langevin noise terms
are included to account for shot noise fluctuations. The following definitions are useful to
simplify notation:

A(t) =
√

S(t)e−iφ(t) (15a)

S±j ≡ κj

√
S(t± tj) (15b)

φ±tj
≡ φ(t± tj) (15c)

∆Φ+
1

(15c)
= φ(t)− φ+

t1
− φ1 (15d)

∆Φ−2
(15c)
= φ(t)− φ−t2

+ φ2 (15e)

∆G ≡ GFB − τ−1
ph , (15f)

with j = 1, 2 relating to the EOF components from the left and right, respectively, and τph is
the photon decay time, which accounts for cavity and mirror losses. The field amplitude A
is assumed to be slowly varying, where S is the photon number inside the laser cavity and
φ is the phase of the field. With these definitions, the rate equations of the system can be
written as:

Ṡ
(A27)
= S∆G + 2S−2

√
S cos(∆Φ−2 ) + 2S+1

√
S cos(∆Φ+

1 ) + Rsp + FS (16a)

φ̇
(A28)
=

αH ∆G
2
− δω−

S−2√
S

sin
(
∆Φ−2

)
−
S+1√

S
sin
(
∆Φ+

1
)
+ Fφ (16b)

Ṅ [3]
= I − GS(t)− Nτ−1

sp + FN , (16c)

where I is the effective rate of injected current (in electrons), τsp is the carrier lifetime,
and Rsp is the spontaneous recombination rate. This system is compatible with those
presented in refs. [28,31], by accounting for the sign change in the delayed feedback term
corresponding to the left external mirror, due to it having the opposite propagation direction.
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The steady state solution of Equation (16) can be seen in Equation (A33). The Langevin
noise sources FS(t), Fφ(t) and FN(t) satisfy [44]:

〈Fi(t)〉 = 0 (17a)

〈Fi(t1)Fj(t2)〉 = 2Dijδ(t1 − t2) with i, j = S, φ or N, (17b)

where:

DSS = RspS ; Dφφ =
Rsp

4S
; DNN = RspS + Nτ−1

sp ; DSN = −RspS, (18)

are standard diffusion coefficients. A usual approach for solving the system from Equation (16)
involves a small-signal analysis. Small deviations from a steady-state value are assumed:

S ' S0+ S∆ = S0+
∫ ∞

−∞
eiΩ′tS0p(Ω′)dΩ′ with S0 � S∆ (19a)

φ ' φ∆ =
∫ ∞

−∞
eiΩ′tφ0p(Ω′)dΩ′ (19b)

N ' N0+N∆ = N0+
∫ ∞

−∞
eiΩ′tN0p(Ω′)dΩ′ with N0 � N∆, (19c)

where the steady state value of the phase is assumed to be zero. The full linearization of
the rate equations is shown in Appendix D, which uses the following definitions:

κc
j ≡ κjtj cos

(
φj
)

(20a)

κs
j ≡ κjtj sin

(
φj
)

(20b)

Ks ≡ κs
2 + κs

1 (20c)

Kc ≡ 1 + κc
2 − κc

1 (20d)

ζS ≡ Rsp/S0 (20e)

ag = Γvga (20f)

Gi ≈ ag(Ni − Ntr) (20g)

τ−1
e ≡ agS0 + τ−1

sp , (20h)

where a linear approximation for the gain has been introduced, with a the differential
gain coefficient and Ntr the number of electrons at transparency. Applying the Fourier
transform to Equation (A36a–c), the following system of equations is obtained in the
frequency domain:

iΩKcS0p
(A36a)
= agS0N0p − ζS S0p − 2iΩS0Ksφ0p + F̂S (21a)

2iΩKcφ0p
(A36b)
= αH agN0p + iΩ

Ks

S0
S0p + 2F̂φ (21b)

iΩN0p
(A36c)
= − τ−1

e N0p − G0S0p + F̂N , (21c)

where the unknowns S0p, φ0p, N0p, and F̂S, F̂φ and F̂N depend on the Fourier angular
frequency Ω. These equations are the first step to obtain the FN PSD.
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2.3. Power Spectral Density and Laser Intrinsic Linewidth

The next step is to calculate the FN PSD, and from it the laser intrinsic linewidth. By
solving the system in Equation (21) it is possible to find an expression for the PSD [45]:

S(1)
f (Ω) =

Ω2

2π2 〈|φ0p(Ω)|2〉, (22)

which, using the following definitions:

F0 ≡ ζ2
S
+K2

c τ−2
e − 2KcagG0S0 (23a)

F1 ≡ K2
s +K2

c (23b)

Λ4 ≡ 4F1Dφφ (23c)

F2 ≡ KcαH +Ks (23d)

F3 ≡ Kc − αHKs (23e)

∆4 ≡ F2
1, (23f)

and:

Λ2 ≡ a2
gF

2
2DNN + 4Dφφ

(
K2

s τ−2
e + F0

)
− 2

Ks

S0
DSSag

(
τ−1

e F2 − ζS αH − αH G0

)
(23g)

Λ0 ≡ α2
H

a2
g

[
DSS

(
ζ2

S
+ G2

0 + 2ζS G0

)
+ ζS Nτ−1

sp

]
+
(

τ−1
e ζS + agG0S0

)2
4Dφφ (23h)

∆2 ≡ K2
c ζ2

S
+ τ−2

e F2
1 − 2F1agG0S0F3 (23i)

∆0 ≡
(

agG0S0F3 +KcζS τ−1
e

)2
, (23j)

can be written as:

4π2S(1)
f

(23)
=

(A46)
=

Λ4Ω4 + Λ2Ω2 + Λ0

∆4Ω4 + ∆2Ω2 + ∆0
. (24)

This is an analytical solution for the FN PSD of the isolated laser system. From the following
expression [46] :

S(1)
f (Ω→ 0) = 2π∆ f , (25)

which is valid for a Lorentzian lineshape, the intrinsic linewidth can be obtained. As shown
in Appendix F:

F ≡ ∆ f
∆ f0

(
1 + α2

H

) (A49)
= [1 + γH κ2t2 cos(φ2 + θH)− γH κ1t1 cos(φ1 − θH)]

−2, (26)

where ∆ f0 is the Schawlow–Townes linewidth [47]. The expression found for the intrinsic
linewidth has two feedback terms, one contribution from each side, with a sign that depends
on φ1 and φ2. Recalling from Equation (2b) that these quantities are a function of tj and
φmj , a proper design of the laser can yield linewidth stability or a reduction of the intrinsic
linewidth with respect to the case of one-sided feedback. This is further explored using a
numerical analysis in Section 3. Additionally, it is possible to find an analytical expression
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for Equation (26) under the conditions for frequency stability, namely conditions (8), (11)
and (12). Using this assumptions in Equation (26):

F = {1 + γH κtext[cos(φ2 + θH)− cos(φ1 − θH)]}
−2. (27)

Taking a closer look at the feedback terms yields:

cos(φ2 + θH)
(12)
= ωreftext + φm1 − 2θH + θH = cos(φ1 − θH). (28)

Using Equation (28) in Equation (27) yields a value of F = 1 which indicates that, under the
assumed conditions, the intrinsic linewidth is insensitive to feedback. This result is signifi-
cant as under the same condition the frequency is also feedback-insensitive, as shown in
Section 2.1, regardless of lasing frequency. It is worth noting however that weak feedback
is assumed in this analysis, with which the upper bound for feedback strength under which
these equation are valid is not established. Nevertheless, achieving stability in the full
frequency domain even under this condition is an improvement with respect to the single
feedback case.

3. Numerical Study

Laser stability is studied by numerically evaluating the equations for the shift in lasing
frequency, threshold gain and intrinsic linewidth under the revised EOF conditions, namely
Equations (5) and (26), under different feedback parameters. Particular attention is given
to the previously analyzed case under conditions (8), (11) and (12), which shows feedback-
insensitive solutions for the lasing frequency and intrinsic linewidth. System tolerances
to these conditions are explored by varying each while keeping the other two fixed. The
simulated equations are plotted as a function of the unperturbed laser frequency multiplied
by t2, which represents the phase delay in the right external cavity for the free running
laser frequency. It is kept between 0 and 1 (i.e., ωreft2 ∈ (0, 2π]) given the periodicity of
the numerically solved functions. Furthermore, without loss of generality, φm2 is kept
fixed at zero so that the value of ∆φm is selected by varying φm1 . Additionally, simulations
assume αH = 3. This value is compatible with measurements for semiconductor lasers [48],
and thus meeting condition (12) requires that ∆φm = 2θH ' 2.5. A summary of the values
used in the numerical solutions is given in Table 1.

Table 1. Summary of values used in numerical solutions of Equations (5) and (26).

Parameter Value

ωreftext (0,2π)

αH 3

0.1581 (case 1)
κ2t2 0.3162 (case 2)

0.4111 (case 3)

φm2 0

Results are compared with the case with feedback from a single side, where:

κ1 = 0. (29)

In this case, as shown in [7], as feedback strength increases solutions for the lasing frequency
become multi-valued. This gives rise to instabilities in the system such as mode hopping
or coherence collapse regimes. The separation between single-valued and multi-valued
solutions is related to the coefficient:

C = γH κ2t2, (30)
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where C = 1 is the critical value that separates both behaviours.
Numerical solutions of the proposed system under conditions (8) and (11) are thus

compared to the single feedback case for three cases:
Case 1: C = 0.5. This represents the single-feedback case with a single solution,

and results for various values of ∆φm are shown in Figure 2. Column A, B and C show
the numerical solutions for the variations in lasing frequency, threshold gain and intrinsic
linewidth, given by Equations (5) and (26) , respectively. By plotting the logarithm of the
latter, negative values correspond to linewidth narrowing. The blue and orange plots
represent the double-feedback and the single-feedback case, respectively, and these labels
are maintained throughout the document.

Figure 2. Numerical solutions for C = 0.5 under conditions (8) and (11) for different ∆φm. Double-
feedback case shown in blue, single feedback case shown in orange. Column (A) shows the lasing
frequency shift results. Column (B) shows the threshold gain shift. Column (C) shows the intrinsic
linewidth variations.

The upper row shows the case where ∆φm = 0, i.e., additional phase shifts at, for
example, the external mirrors (φmj ) are kept at zero. Linewidth narrowing for a wide range
of frequencies can be observed, evidenced, as mentioned, by ln(F) < 1. As an example,
when freft2 = 0.75, a 74% and a 42% reduction in linewidth is seen with respect to the
free running laser and the single feedback case, respectively. Additionally, the signal is
singled valued in the full domain, yet it is close to the critical point where multi-valued
solutions arise. As ∆φm increases, the amplitude of the lasing frequency shift is reduced
until becoming zero for all values when condition (12) is met, as expected from previous
analysis. Under this condition the intrinsic linewidth does not experience fluctuations either,
and the amplitude of the threshold gain fluctuations is lower than in the single feedback
case, indicating better stability across the three analyzed parameters with respect to the
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single feedback case. For the case of ∆φm = π, the threshold gain shows no fluctuations
as predicted by Equation (14), and while the lasing frequency and intrinsic linewidth
fluctuations are no longer zero, they are less pronounced than in the single feedback case.
Further increases in ∆φm show an increase in the fluctuations across all functions, and for
φm > 6 multi-valued solutions arise.

Case 2: C = 1. This represents the limiting case between single and multivalued
solutions in the single-feedback case. Results for various values of ∆φm are shown in
Figure 3. As expected, the threshold gain is stable for ∆φm = π, and meeting condition (12)
results in a stable lasing frequency and intrinsic linewidth. As ∆φm deviates from these
optimal points in either direction, the amplitude of fluctuations increase until reaching
multi-valued solutions for ∆φm < 1.5 and ∆φm > 3.5. Comparing these results with the
previous case shows that as feedback increases, the single valued solutions become more
sensitive to the value of ∆φm.

Figure 3. Numerical solutions for C = 1 under conditions (8) and (11) for different ∆φm. Double-
feedback case shown in blue, single feedback case shown in orange. Column (A) shows the lasing
frequency shift results. Column (B) shows the threshold gain shift. Column (C) shows the intrinsic
linewidth variations.

Case 3: C = 1.3. This represents the single-feedback case with multi-valued solutions.
Results for various values of ∆φm are shown in Figure 4. In the single feedback case,
multi-valued solutions are present in a given frequency range, and this span increases
with increasing feedback strength. The multi-valued characteristics are evidenced experi-
mentally with unstable regimes characterized by mode hopping and eventually coherence
collapse for sufficiently high feedback. In contrast, the system proposed in this work shows
that by tuning the value of ∆φm to meet condition (12), even with increasing feedback it
is possible to achieve stable performance regardless of frequency. In the case shown in
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Figure 4 for C = 1.3, single valued solutions can be found for ∆φm ∈ (1.5, 3.3) which is
equivalent to a phase variation of more than 90◦. Still, comparing with previous cases it is
possible to see that as feedback increases, the single valued solutions tolerance with respect
to ∆φm decreases. Nevertheless, it is an improvement with respect to the single feedback
case which shows no single value solutions across all frequencies for C > 1.

Figure 4. Numerical solutions for C = 1.3 under conditions (8) and (11) for different ∆φm. Double-
feedback case shown in blue, single feedback case shown in orange. Column (A) shows the lasing
frequency shift results. Column (B) shows the threshold gain shift. Column (C) shows the intrinsic
linewidth variations.

Taking all cases into account, it can be seen that linewidth narrowing regions are
present for all cases of ∆φm analyzed. The only exception are the stable cases when meeting
the three conditions (8), (11) and (12), yet the feedback-insensitivity provided by this case
is also beneficial. Selecting an appropriate ∆φm can thus be used to harness linewidth
narrowing properties at a desired frequency.

Furthermore, system tolerances to conditions (8) and (11) are studied, while main-
taining condition (12). Results for up to a 20% deviation are shown in Figures A2–A4 for
cases 1, 2 and 3, respectively, where single valued solutions are observed in all cases in
the full frequency span. Results show a high tolerance with respect to feedback strength.
Looking at case 3, single valued solutions are obtained for κ1/κ2 ∈ (0.2, 1.7). While the
system is no longer feedback-insensitive, results evidence single-valued solutions that are
robust with respect to condition (8). The system is more sensitive with respect to (11),
with single valued solutions achieved within t1/t2 ∈ (0.47, 1.2). Nevertheless, tolerances
become once again stricter as feedback increases for both parameters, thus laser design
is of paramount importance and should focus on meeting the discussed stability condi-
tions. In particular, choosing equal lengths for both external cavities should suffice to meet
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condition (11). Fabrication tolerances in foundry processes are the main limiting factor for
time delay accuracy. To meet condition (8), a possible approach is to merge the output of
the two external cavities into a single one using a coupler, which can be included in the
laser on-chip. Finally, as mentioned before, condition (12) can be met by using a phase
shifter, which is a mature component in active platforms.

All in all, results demonstrate that, with proper design of the laser cavity,
conditions (8), (11) and (12) can be met, with which it is possible to obtain lasing frequency
and intrinsic linewidth insensitivity to feedback.

4. Discussion

The existing mature photonic integration fabrication processes are very flexible with
respect to device geometry. They are however limited by a lack of commercially available
on-chip isolators, and thus new approaches are required to minimize the effect feedback
has on laser stability. The current work proposes a theoretical extension of laser dynamics
under EOF by considering two external reflections, one from each side of the cavity. The
proposed analysis yields new laser dynamic equations. These are numerically solved,
which show the existence of a stable regime with high feedback tolerances. Similar results
have been seen in previous double external cavity schemes [28], with EOF on the same
side of the laser cavity, which showed robust stabilization of the chaotic regime by tuning
the external feedback parameters. Yet other feedback regimes are not explored, and nei-
ther analytical stability conditions nor dependence with free laser running frequency are
reported. The present analysis shows that feedback-insensitivity is achievable for a wide
range of feedback strengths, under conditions that can be met with current laser fabrication
processes and components, such as phase shifters for meeting condition (12) and couplers
for condition (8).

It has previously been shown, for the single feedback case, that tuning the feedback
phase can result in linewidth narrowing [13], however this still requires low feedback levels
and a precise phase shift which can suffer variations due to external parameters, such
as temperature or driving currents. In the approach proposed in this work, the stability
conditions do not require specific values, instead relating the feedback parameters from one
side to those from the other side. For example, condition (11) only implies equal round-trip
times at the external cavities, regardless of value. This allows for additional flexibility in
the feedback parameters and gives versatility to the device. Furthermore, this method
allows for feedback-insensitivity across the full spectra, which is not seen in the single
feedback case. This is of particular importance for tunable lasers, as all lasing frequencies
are thus equally affected. Additionally, it relaxes the need for an isolator, reducing the
cost and size of packaging processes. Another significant improvement of the proposed
method with respect to the single feedback case is the increase in feedback tolerance: by
choosing feedback parameters close to the stability conditions of Equations (11) and (12),
higher levels of feedback strength are allowed without seeing multi-valued solutions, which
results in experimentally seen mode-hopping. As a weak feedback approximation is used,
the upper bound for feedback tolerance cannot be extracted from this analysis. Despite
this, even under this approximation, tolerances are higher than that of the single feedback
case. Furthermore, this system has a high tolerance to deviations from the optimal stability
conditions as analyzed in the previous section. Linewidth narrowing can be achieved
in these cases for certain frequency values, which can be tuned by selecting appropriate
feedback parameters, as was the case for single feedback conditions, while maintaining
stable solutions.

Finally, while the dynamics under consideration are complex, the laser system itself
involves a straight-forward configuration using widely used on-chip components, which
are available in generic foundry platforms. Previously studied methods to reduce feedback
sensitivity include resourceful yet intricate designs. The proposed system is, in contrast,
potentially easier to design, fabricate and characterize. An experimental study of this laser
system is essential to validate the obtained results, and more importantly to explore the



Photonics 2022, 9, 43 13 of 26

limitations of the model, and is the next step for a more comprehensive understanding of the
proposed system. It is worth noting that, for the single feedback case, the Lang-Kobayashi
approach yields results compatible with experimental data [49–51], which suggests that
future experimental realization of the method here presented will be compatible with its
theoretical predictions.

5. Conclusions

This work explores an extension of the theoretical background of EOF. By assuming
that feedback couples into the laser cavity from both sides, new dynamic equations are
found for the lasing frequency, the threshold gain and the intrinsic linewidth. These are
numerically evaluated to analyze laser stability. Solutions with linewidth reduction are
observed, where tuning of the feedback parameters yielded a 74% and a 42% reduction
with respect of the free running laser and the single feedback case, respectively. Results
also show the existence of a stable solution, with feedback-insensitive lasing frequency and
intrinsic linewidth, regardless of the lasing frequency. This case is obtained by tuning the
phase of the feedback field, for external cavities with equal lengths and coupling factors.
Furthermore, the feedback-insensitive case exists regardless of the feedback strength,
within a weak feedback approximation, which is an major improvement with respect to
the single feedback case. Additionally, the stability conditions show good tolerances with
respect to all feedback parameters, albeit they become stricter as the feedback strenght
increases. Choosing feedback parameters close to the feedback-insensitive conditions
ensures stable solutions that are feedback tolerant. Finally, the proposed system relies on
few components in straight-forward configurations, and the stable conditions can be met
with mature components available in generic foundry platforms. This enables close to
market, low cost, feedback-tolerant semiconductor lasers which have direct applications
in multiple fields that rely on stable laser sources, such as coherent communications
and spectroscopy.
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Appendix A. Amplitude and Phase Conditions

To obtain the revised lasing conditions resulting from the additional feedback compo-
nent, extracting the amplitude and phase of the effective reflection coefficients is needed.
In polar notation:

ρeff
j =

∣∣∣ρeff
j

∣∣∣eiϕj , (A1)

where the magnitude is computed as:∣∣∣ρeff
j

∣∣∣2/ρ2
j

(3)
=
[
1 + κjtcav cos(φj)

]2
+
[
κjtcav sin(φj)

]2
= 1 + 2κjtcav cos(φj) + κ2

j t2
cav. (A2)
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Assuming condition (1) of weak external feedback, the last term on the right-hand side of
Equation (A2) is neglected, resulting in:∣∣∣ρeff

j (ωFB)
∣∣∣ /ρi =

√
1 + 2κjtcav cos(φj)

(1)
≈ 1 + κjtcav cos(φj). (A3)

The phase of the effective reflection coefficient is extracted from:

ϕj = arctan
[(

ρeff
j

)′′ / (
ρeff

j

)′] (3)
= arctan

[
±κjtcav sin(φj)

1 + κjtcav cos(φj)

]

(1)
≈ arctan[±κjtcav sin(φj)]

(1)
≈ ±κjtcav sin(φj). (A4)

The fields traveling forward and backward in the laser cavity, Ef and Eb shown in Figure A1,
can now be related by the effective reflection coefficients:

Ef(z = 0) = ρeff
1 Eb(z = 0) (A5a)

Eb(z = L) = ρeff
2 Ef(z = L). (A5b)

Using the propagation constant:
β ≡ nω/c , (A6)

with n the effective refractive index of the lasing mode and c the speed of light in vacuum,
the fields can be written as:

Ef = A f e−iβz+ 1
2 (Γg−α)z (A7a)

Eb = Abe−iβ(L−z)+ 1
2 (Γg−α)(L−z), (A7b)

where g is the gain coefficient and α is the attenuation coefficient. Replacing Equation (A5)
into Equation (A7):

E f 0
(A1)
=
∣∣∣ρeff

2

∣∣∣eiϕ2 Abe−iβL+(Γg−α)L/2 (A8a)

Eb0
(A1)
=
∣∣∣ρeff

1

∣∣∣eiϕ1 A f e−iβL+(Γg−α)L/2, (A8b)

and inserting Equation (A8a) into Equation (A8b) results in:

1 =
∣∣∣ρeff

1

∣∣∣eiϕ1
∣∣∣ρeff

2

∣∣∣eiϕ2 e−2iβL+(Γg−α)L =
∣∣∣ρeff

1 ρeff
2

∣∣∣e−i(2βL−ϕ1−ϕ2)e(Γg−α)L. (A9)

Once lasing has been established, the gain assumes its threshold value:

eff eff

fε

bε
Figure A1. Schematic of the effective cavity of the laser, resulting from calculating effective reflec-
tion coeffitients.

g = gFB , (A10)
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where gFB is the threshold gain with feedback. Thus, Equation (A9) yields a lasing condition
for the amplitude:

1 =
∣∣∣ρeff

1 ρeff
2

∣∣∣e(ΓgFB−α)L

(A10)
=

(A3)
≈ ρ2 ρ1 [1 + κ2tcav cos(φ2)][1 + κ1tcav cos(φ1)]e(

ΓgFB−α)L, (A11)

and the phase:

2πm = 2βL− ϕ2 − ϕ1
(A4)
= 2βL + κ2tcav sin(φ2)− κ1tcav sin(φ1) , m ∈ Z. (A12)

where the influence of feedback gives rise to two terms in Equations (A11) and (A12), one
from each side. The new lasing conditions result in a variation of the lasing frequency and
threshold gain of the system, and thus have to be studied to determine the laser dynamics.

Appendix B. Threshold Gain Reduction and Lasing Frequency Shift

Under feedback from both sides of the laser cavity, new lasing conditions are found
which subsequently result in a shift of the laser threshold gain and lasing frequency with
respect to the case without feedback, in which:

κj = 0. (A13)

In this case, the amplitude condition from Equation (A11) becomes:

1
(A13)
= ρ2 ρ1 e(Γgth−α)L. (A14)

Using the expansion:

ln(1 + x) ' x, (A15)

the threshold gain reduction due to feedback can be found by computing the ratio between
Equations (A11) and (A14):

1 =
ρ2 ρ1 [1 + κ2tcav cos(φ2)][1 + κ1tcav cos(φ1)]e(

ΓgFB−α)L

ρ2 ρ1 eΓgref−αL

= [1 + κ2tcav cos(φ2)][1 + κ1tcav cos(φ1)]e
Γ(gFB−gref)L

(2)⇔ GFB − Gref ≈ −2κ2 cos(φ2)− 2κ1 cos(φ1). (A16)

The relation between the right hand terms determines the threshold gain reduction, as dis-
cussed in Section 2.1.

The phase lasing condition from Equation (A12) yields the lasing frequency shift
equation. Consider the following definitions related to the effective refractive index [52]:

n ≡ n′ + in′′ (A17a)

ng ≡ n + ω
∂n
∂ω

(A17b)

n′′ ≡ − cG
2ωvg

, (A17c)
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αH ≡ ∆n′/∆n′′ (A17d)

∂n
∂N

=
∂n

∂n′′
∂n′′

∂N

(A17a)
=

(A17c)
=

(A17d)
= − ∂G

∂N
αH c

2ωvg
, (A17e)

where ng is the group refractive index. To find the lasing frequency shift equation, calculat-
ing the change in β is first needed:

cδβ
(A6)
= δ(nω) = ωδn + nδω

(2c)
= ω

[
∂n
∂N

(N − Nth) +
∂n
∂ω

δω

]
+ nδω

(A17b)
=

(A17e)
= −GFB − Gth

2vg
αH c + ngδω

(5a)
= [κ2 cos(φ2) + κ1 cos(φ1)]

αH c
vg

+ ngδω, (A18)

with which:

2Lδβ
(5a)
= [κ2 cos(φ2) + κ1 cos(φ1)]αH tcav + tcavδω. (A19)

Furthermore, using: sin[arctan(x)] =
x√

1 + x2
(A20a)

cos[arctan(x)] =
1√

1 + x2
(A20b)

sin(x± y) = sin(x) cos(y)± cos(x) sin(y) (A20c)

cos(θH)
(4e)
=

(A20b)
=

(4d)
= 1/γH , (A20d)

the following can be computed:

αH cos(φj)
(A20a)
=

(4d)
=

(4e)
= γH sin(θH) cos(φj)

(A20c)
= γH

[
sin(θH ± φj)∓ cos(θH) sin(φj)

]
(A21)

(A20d)
= γH

[
sin
(
θH ± φj

)
∓ sin(φj)

/
γH

]
⇔ αH cos(φj)± sin(φj) = γH sin

(
θH ± φj

)
.

Finally, using the phase condition in Equation (A12), and assuming without generality loss
that m = 0, it is possible to compute:

2πm
(A19)
= tcavδω + κ2tcav[αH cos(φ2) + sin(φ2)] + κ1tcav[αH cos(φ1)− sin(φ1)]

m=0⇔ δω = −κ2[αH cos(φ2) + sin(φ2)] + κ1[αH cos(φ1)− sin(φ1)] (A22)

δω
(A21)
= −γH [κ2 sin(φ2 + θH) + κ1 sin(φ1 − θH)],

which describes the lasing frequency shift as a function of the feedback parameters κ1, κ2, φ1
and φ2, Similarly to the threshold gain reduction, the interaction between the two right
hand terms determines the lasing frequency stability which is discussed in Section 2.1.
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Appendix C. Deriving the Rate Equation for the Intensity and Phase

To further inspect the laser dynamics, the rate equations for the intensity and phase
must be studied. Considering Equation (15), and a slowly varying electric field given by:

E(t) = A(t)e−iωFB t, (A23)

and following the approach from Lang and Kobayashi [39], the laser field equation which
considers EOF from both sides of the laser cavity can be written as:

Ė =

(
−iωref + ∆G

1− iαH

2

)
E(t) + κ2E(t− t2) + κ1E(t + t1)

(A23)⇔
d
[
A(t)e−iωFB t

]
dt

(15)
= e−iωFB t

[(
−iωref + ∆G

1− iαH

2

)
A(t) + κ2A(t− t2)eiφ2 + κ1A(t + t2)e−iφ1

]
(A24)

⇔ Ȧ(t) (2c)
=

(2b)
=

(
iδω + ∆G

1− iαH

2

)
A(t) + κ2A(t− t2)eiφ2 + κ1A(t + t2)e−iφ1 .

The last two right-hand terms appear as a result of the imposed feedback conditions, each
term to account for feedback on each side of the cavity. In the case without feedback the
lasing frequency become ωFB = ωref and κj = 0, thus recovering the no-feedback field
Equation [42]. The slowly varying field amplitude A can be modeled as Equation (15a),
and thus the rate equations for the photon number S and phase φ can be found using:

Ṡ =
d[AA∗]

dt
= AȦ∗ +A∗Ȧ (A25a)

φ̇ = − 1
S
=
(
A∗Ȧ

)
. (A25b)

Replacing Equations (15a) and (A24) into Equation (A25a) the photon rate equation reads:

Ṡ
(15d)
=

(15e)
= S∆G + 2S−2

√
S cos(∆Φ−2 ) + 2S+1

√
S cos(∆Φ+

1 ). (A26)

In the case of the phase, its rate equation comes from replacing Equations (15a) and (A24)
into Equation (A25b):

φ̇
(15)
=

∆G
2

αH − δω−
S−2√

S
sin
(
∆Φ−2

)
−
S+1√

S
sin
(
∆Φ+

1
)
. (A27)

Equations (A26) and (A27) are the amplitude and phase rate equations for the laser system
proposed in this work. These are the starting point to compute the frequency noise PSD,
and extract the intrinsic linewidth.

Appendix D. Small-Signal Analysis

To find the FN PSD, the system shown in Equation (16) is to be solved. This is done
using the small-signal analysis proposed in Equation (19). Assuming a narrow-linewidth
laser, i.e., a long coherence time with respect to the external cavity lenghts:

text < tcoh, (A28)

the following approximation is valid:

Ωtext � 1. (A29)
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By linearizing the following expressions:√
S(t± tj)

S(t)
(A28)
≈ =

√
1± Ṡ

S
tj

(19a)
≈

√
1± iΩ′S∆

S0
tj

(A29)
≈ 1± iΩ′S∆

2S0
tj (A30a)

φ− φ(t± tj)
(A28)
≈ φ− φ∓ tjφ̇

(19b)
= ∓itjΩ′φ∆ , (A30b)

it is possible to rewrite Equation (16) as:

iΩ′S∆
(A30)
= S∆G + Rsp + 2

κ2

tcav
S
(

1− iΩ′S∆

2S0
t2

)
cos
(
iΩ′φ∆t2 + φ2

)
+ 2κ1S

(
1 +

iΩ′S∆

2S0
t1

)
cos
(
iΩ′φ∆t1 + φ1

)
+ FS

iΩ′φ∆
(A30)
= αH

∆G
2
− δω− κ2

tcav

(
1− iΩ′S∆

2S0
t2

)
sin
(
iΩ′φ∆t2 + φ2

)
(A31a)

+ κ1

(
1 +

iΩ′S∆

2S0
t1

)
sin
(
iΩ′φ∆t1 + φ1

)
+ Fφ (A31b)

iΩ′N∆
(19)
=

(A30)
= I − GFB S− Nτ−1

sp + FN . (A31c)

Solving Equation (A31) requires the steady-state solution of Equation (16). Under station-
ary conditions:

Ṡ = 0⇒ S(t) = S(t± tj) = S0 (A32a)

φ̇ = 0⇒ φ(t) = φ(t± tj) (A32b)

Ṅ = 0⇒ N(t) = N(t± tj) = N0, (A32c)

the steady-state equations are:

τ−1
ph = G0 + 2κ2 cos(φ2) + 2κ1 cos(φ1) +

Rsp

S0
(A33a)

δω = αH

G0 − τ−1
ph

2
− κ2 sin(φ2) + κ1 sin(φ1) (A33b)

I = G0S0 + N0τ−1
sp , (A33c)

where the Langevin noise terms are not included as their mean value is zero. Next,
using Equation (A33) and the following expansions:

sin(x + ∆) ≈ sin(x) + ∆ cos(x) (A34a)

cos(x + ∆) ≈ cos(x)− ∆ sin(x), (A34b)
Equation (A31a) can be rewritten as:

iΩ′S∆
(19)
=

(A33)
=

(20)
≈
(

G0 + agN∆ −
{

G0 + 2[κ2 cos(φ2) + κ1 cos(φ1)] +
Rsp

S0

})
(S0 + S∆)

+ 2
{

κ2(S0 + S∆)
[
cos(φ2)− iΩ′φ∆t2 sin(φ2)

]
− κ2(S0 + S∆)

iΩ′S∆

2S0
t2
[
cos(φ2)− iΩ′φ∆t2 sin(φ2)

]
+ κ1(S0 + S∆)

[
cos(φ1)− iΩ′φ∆t1 sin(φ1)

]
+ κ1(S0 + S∆)

iΩ′S∆

2S0
t1
[
cos(φ1)− iΩ′φ∆t1 sin(φ1)

]}
+ Rsp + FS.
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Simplifying this equation, and neglecting the quadratic terms yields:

iΩ′S∆
(20)
≈ agN∆S0 − ζS S∆ − iΩ′φ∆2KsS0 + iΩ′S∆(κ

c
1 − κc

2) + FS. (A35a)

In a similar way, Equation (A31b) can be rewritten using Equations (A33) and (20):

iΩ′φ∆ ≈
αH

2

(
G0 + agN∆ − τ−1

ph

)
−
[

αH

G0 − τ−1
ph

2
− κ2 sin(φ2) + κ1 sin(φ1)

]

− κ2

(
1− iΩ′S∆

2S0
t2

)[
sin(φ2) + iΩ′φ∆t2 cos(φ2)

]
(A35b)

+ κ1

(
1 +

iΩ′S∆

2S0
t1

)[
sin(φ1) + iΩ′φ∆t1 cos(φ1)

]
+ Fφ

⇔ 2iΩ′φ∆
(20a)
=

(20b)
= αH agN∆ + 2(κc

1 − κc
2)iΩ

′φ∆ +
iΩ′S∆

S0
Ks + 2Fφ.

Finally, Equation (A31c) can be rewritten as:

iΩ′N∆
(19)
=

(A33)
=

(20)
≈ G0S0 −

(
G0 + agN∆

)
S0 −

(
G0 + agN∆

)
S∆ − τ−1

sp N∆ + FN

⇔ iΩ′N∆
(20h)
= − τ−1

e N∆ − G0S∆ + FN . (A35c)

The linearized rate equations of the laser under study are thus Equations (A35a)–(A35c),
from which the power spectral density, and subsequently the intrinsic linewidth, can
be computed.

Appendix E. Power Spectral Density

The next step is to find an expression for φ0p from which the FN PSD, and thus the
laser intrinsic linewidth, can be computed. The following definitions are convenient:

Aφ ≡
(

iΩ + τ−1
e

)(
iΩKc +

agG0

iΩ + τ−1
e

S0 + ζS

)
(A36a)

2AS ≡ iΩKs
iΩ + τ−1

e
S0

− αH agG0 (A36b)

2AN ≡
αH Aφ + 2S0 AS

iΩ + τ−1
e

ag (A36c)

Bφ ≡ Kc Aφ − αH agG0S0Ks + iΩK2
s

(
iΩ + τ−1

e

)
. (A36d)

First, N0p is extracted from Equation (21c):

N0p =
F̂N − G0S0p

iΩ + τ−1
e

. (A37)
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Next, replacing Equation (A37) into Equation (21a) yields the expression for S0p:

(iΩKc + ζS)S0p = ag
F̂N − G0S0p

iΩ + τ−1
e

S0 − 2iΩS0Ksφ0p + F̂S

⇔
Aφ

iΩ + τ−1
e

S0p = agS0
F̂N

iΩ + τ−1
e
− 2iΩS0Ksφ0p + F̂S (A38)

⇔ S0p
(A36a)
=

agS0 F̂N − 2iS0ΩKs
(
iΩ + τ−1

e
)
φ0p +

(
iΩ + τ−1

e
)

F̂S

Aφ
.

Finally, inserting Equation (A37) and (A38) into Equation (21b) and grouping the terms
with φ0p, F̂S, F̂φ and F̂N yields:

2iΩBφ φ0p
(A36)
=
[
−αH agG0S0 + αH Aφ + iΩKs

(
iΩ + τ−1

e

)] ag

iΩ + τ−1
e

F̂N + 2AS F̂S + 2 Aφ F̂φ

(A36b)
=

(
αH Aφ + 2S0 AS

) ag

iΩ + τ−1
e

F̂N + AS F̂S + 2Aφ F̂φ (A39)

⇔ φ0p
(A36c)
=

AN F̂N + AS F̂S + Aφ F̂φ

iΩBφ
.

With Equation (A39) it is possible to calculate an expression for Equation (22):

2π2|Bφ|2S(1)
f

(22)
= Ω2|Bφ|2

〈
φ0p(Ω)φ∗0p(Ω)

〉
(A39)
= Ω2|Bφ|2

〈
AN F̂N + AS F̂S + Aφ F̂φ

iΩBφ

(
AN F̂N + AS F̂S + Aφ F̂φ

iΩBφ

)∗〉
(A40)

=

〈(
AN F̂N + AS F̂S + Aφ F̂φ

)(
AN F̂N + AS F̂S + Aφ F̂φ

)∗〉
.

It can be seen from Equation (A36) that the coefficients Ai are independent of time, and as-
suming an ergodic process they can be taken out of the average in Equation (A40), obtain-
ing:

π2|Bφ|2S(1)
f

(17b)
= |AN |2DNN + |AS|2DSS + |Aφ|2Dφφ +

(
AS A∗N + AN A∗S

)
DSN (A41)

⇔ 4π2|Bφ|2S(1)
f

(A36)
=

(23)
=
[(

ζS αH ag
)2

+ Ω2a2
gF

2
2

]
DNN

+

[
Ω4K2

c + Ω2F0 +
(

τ−1
e ζS + agG0S0

)2
]

4Dφφ

+

{
Ω2

[(
τ−1

e
Ks

S0

)2
+ 2αH agG0

Ks

S0

]
+ Ω4

(
Ks

S0

)2
+
[
αH agG0

]2}DSS

− 2
[
−α2

H
a2

gG0ζS + Ω2Ks

S0
ag

(
τ−1

e F2 − ζS αH

)]
DSS

⇔ 2π2S(1)
f

(23)
=

Λ4Ω4 + Λ2Ω2 + Λ0

2|Bφ|2
. (A42)
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Furthermore, using the following definitions:

∆4 ≡ F2
1 (A43a)

∆2 ≡ K2
c ζ2

S
+ τ−2

e F2
1 − 2F1agG0S0F3 (A43b)

∆0 ≡
(

agG0S0F3 +KcζS τ−1
e

)2
, (A43c)

the expression for Bφ from Equation (A36d) can be rewritten as:

Bφ = agG0S0F3 −Ω2F1 + iΩ
(
KcζS + τ−1

e F1

)
+KcζS τ−1

e (A44a)

⇔ |Bφ|2 = Ω2
(
KcζS + τ−1

e F1

)2
+
(

agG0S0F3 −Ω2F1 +KcζS τ−1
e

)2

(A43c)
= Ω4∆4 + Ω2

[(
KcζS + τ−1

e F1

)2
− 2F1agG0S0F3 − 2F1KcζS τ−1

e

]
+ ∆0

(A43c)
= Ω4∆4 + Ω2∆2 + ∆0, (A44b)

with which the expression of the FN PSD becomes:

4π2S(1)
f

(23)
=

Λ4Ω4 + Λ2Ω2 + Λ0

∆4Ω4 + ∆2Ω2 + ∆0
. (A45)

Appendix F. Expression for the Intrinsic Linewidth

The laser intrinsic linewidth can be found from Equation (25). Defining:

βAg ≡
τ−1

e ζS

agG0S0
; δAg ≡

ζS

G0
; ∆ f0 =

Rsp

4πS0
, (A46)

where, following [3]:
δAg ' 0 ' βAg , (A47)

as δAg < 10−2, which accounts for shot noise in the generation and recombination of
minority carriers, and βAg is inversely proportional to the laser power which above thresh-
old becomes negligible. Starting from Equation (A45) and setting Ω = 0 as required by
Equation (25):

4π∆ f = Λ0
/

∆0

(A43c)
=

(23)
=

(
ζS αH ag

)2
[

RspS0

(
1 + (G0)

2

ζ2
S

+ 2G0
ζS

)
+ Nτ−1

sp

]
+
(
τ−1

e ζS + agG0S0
)2 Rsp

S0(
agG0S0F3 +KcζS τ−1

e

)2

⇔ ∆ f
∆ f0

=

(
αH
G0

)2
(

ζ2
S
+ G2

0 + 2G0ζS +
ζ2

S
Nτ−1

sp
RspS0

)
+
(

βAg + 1
)2

(
KcβAg + F3

)2

=

(
βAg + 1

)2
+ α2

H

[
1 + 2δAg + δ2

Ag

(
1 +

Nτ−1
sp

RspS0

)]
(
KcβAg + F3

)2
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(A47)⇔ ∆ f
∆ f0

(
1 + α2

H

) ' F−2
3

(23)
=

(20)
= {1 + κ2t2[cos(φ2)− αH sin(φ2)]− κ1t1[cos(φ1) + αH sin(φ1)]}−2

(A20a)
=

(A20b)
= [1 + γH κ2t2 cos(φ2 + θH)− γH κ1t1 cos(φ1 − θH)]

−2. (A48)

The presence of EOF from both sides of the laser cavity results in two terms in the linewidth
expression, one for each side, as was seen in the threshold gain reduction and lasing
frequency shift due to feedback. This result is discussed in Section 2.3.

Appendix G. Suplementary Images: Tolerances

Figure A2. Numerical solutions for C = 0.5 under condition (12) for a ±20% variation of
conditions (8) and (11). Double feedback case shown in blue, single feedback case shown in or-
ange. Column (A) shows the lasing frequency shift results. Column (B) shows the threshold gain
shift. Column (C) shows the intrinsic linewidth variations.
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Figure A3. Numerical solutions for C = 1 under condition (12) for a ±20% variation of
conditions (8) and (11). Double feedback case shown in blue, single feedback case shown in orange.
Column (A) shows the lasing frequency shift results. Column (B) shows the threshold gain shift.
Column (C) shows the intrinsic linewidth variations.
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Figure A4. Numerical solutions for C = 1.3 under condition (12) for a ±20% variation of
conditions (8) and (11). Double feedback case shown in blue, single feedback case shown in or-
ange. Column (A) shows the lasing frequency shift results. Column (B) shows the threshold gain
shift. Column (C) shows the intrinsic linewidth variations.
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