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Abstract: Spectral computed tomography (CT) can divide collected photons into multi-energy
channels and gain multi-channel projections synchronously by using photon-counting detectors.
However, reconstructed images usually contain severe noise due to the limited number of photons in
the corresponding energy channel. Tensor dictionary learning (TDL)-based methods have achieved
better performance, but usually lose image edge information and details, especially from an under-
sampling dataset. To address this problem, this paper proposes a method termed TDL with an
enhanced sparsity constraint for spectral CT reconstruction. The proposed algorithm inherits the
superiority of TDL by exploring the correlation of spectral CT images. Moreover, the method designs
a regularization using the L0-norm of the image gradient to constrain images and the difference
between images and a prior image in each energy channel simultaneously, further improving the
ability to preserve edge information and subtle image details. The split-Bregman algorithm has
been applied to address the proposed objective minimization model. Several numerical simulations
and realistic preclinical mice are studied to assess the effectiveness of the proposed algorithm. The
results demonstrate that the proposed method improves the quality of spectral CT images in terms
of noise elimination, edge preservation, and image detail recovery compared to the several existing
better methods.

Keywords: spectral computed tomography; prior image; tensor dictionary; L0-norm of image gradient

1. Introduction

Computed tomography (CT) can provide intramural organ tissue and structure infor-
mation via a nondestructive imaging technology, which has been extensively employed
in medical diagnosis, industrial detection, and archaeology [1,2]. However, traditional
CT still cannot satisfy many practical requirements due to its limitations. First, it uses the
energy integration detectors and performs poorly at identifying the energy of X-ray photon,
leading to energy-dependent information missing. Second, the reconstructed images often
suffer from strong beam hardening artifacts [3,4]. Moreover, it increases radiation risk
because multiple scans are needed to obtain multiple energy projections [5,6]. To solve
the limitations, spectral CT (also known as multi-energy CT) has attracted increasing at-
tention because of its superiority in material decomposition, lesion detection, and tissue
characterization [7,8]. Dual-energy CT (DECT) is a common and typical spectral CT that
collects projections using two different X-ray spectral. However, most DECT scanners
utilize energy-integrating detectors and there inevitably exists spectral overlap, which
reduces the energy resolution [9]. Recently, the photon counting detector-based spectral
CT has gained considerable attention; it divides the received photons into multiple energy
channels and generates multi-channel projections at the same time, providing more spectral
information than the DECT [10]. Nevertheless, because of the limited number of pho-
tons in the corresponding energy channel, single-channel projections are usually affected
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by severe quantum noise, leading to low signal-to-noise ratio (SNR) measurements [11].
Therefore, how to improve the image quality of PCD-based spectral CT has become a hot
research topic.

A large number of spectral CT reconstruction algorithms have been developed to
improve the quality of images from the contaminated projections. At the very beginning,
some traditional methods were used for spectral CT reconstruction. In 2012, Xu et al. re-
garded the spectral projection data as a traditional dataset and reconstructed an image in a
single energy channel independently using TV regularization [12]. Subsequently dictionary
learning was utilized for the reconstruction of spectral CT [13–15]. Zhao et al. proposed
an iterative reconstruction algorithm of spectral breast CT based on tight frames [16]. Re-
construction methods such as the above only consider the sparsity in the spatial domain
and ignore the sparsity in the spectral channel domain. To link the correlation between
different channels, Kim et al. the proposed low rank (LR) algorithm for spectral CT [17]. By
combining TV and LR constraints, the TVLR method showed a significant improvement
compared to the TV-only algorithm [18]. Rigie et al. developed an algorithm based on
total nuclear variation regularization to maintain image features for spectral CT reconstruc-
tion [19]. In 2014, Semerci et al. proposed a spectral CT reconstruction algorithm combining
a nuclear norm based on tensor and TV [20]. Gao et al. modeled a spectral CT image
as the superposition of a low-rank and a sparse matrix, and employed a reconstruction
algorithm based on a framework PRISM (prior rank, intensity, and sparsity model) [21].
Subsequently, the PRISM was improved by combining it with the higher-dimensional
tensor approach [22]. Wu et al. combined a weighted adaptive TV regularization and
image-spectral tensor factorization for photo-counting CT imaging [23]. To utilize the
non-local similarity in the spatial domain, Wu et al. considered the correlation and non-
local similarity among energy channels simultaneously, then proposed a cube matching
frame based on the spatial-spectral domain [24]. Later, Hu et al. proposed an algorithm
based on tensor combining the similarity with the spectral-image domain [25]. While the
above methods improve the spectral CT image quality greatly, if a high-quality prior image
containing the full energy spectrum is introduced, the quality of the reconstructed image
will be further improved [26–28].

Tensor dictionary learning (TDL) is an extension of traditional vectorized dictionary
learning [29]. Concretely speaking, the TDL method extracts tensor patches from the
image tensor to train a tensor-based dictionary, which is used to sparsely represent image
tensor patches during an iterative reconstruction process. Because TDL fully integrates
sparsity in both spatial and spectral dimensions, the noise and artifacts in reconstructed
images can be effectively suppressed [30]. The TDL-based method has been widely used in
hyperspectral images; Peng et al. employed decomposable non-local TDL to denoise multi-
spectral image [31]. Gong et al. proposed a low-rank tensor dictionary learning method for
hyperspectral image denoising and achieved better denoising results [32]. Then in the CT
reconstruction field, Tan et al. considered the relevance among atoms and across phases
and trained a tensor spatial-temporal dictionary for dynamic CT reconstruction [33]. Zhang
et al. utilized the correlation of images from different energy channels and developed TDL
for spectral CT reconstruction [30]. While the TDL method improves the image quality
by exploring the correlation of spectral CT images, it may decrease the ability of edge
protection under the situation of sparse view and low dose [34]. Recently, the image
gradient L0-norm, as an important regularization term, has been widely applied to image
smoothing, image segmentation, and image restoration [35–37]. Subsequently, it has gained
great attention in CT reconstruction, especially in reconstructing limited-view, sparse-view,
and low-dose CT images, which has a better performance in maintaining image edge,
reducing artifacts, and suppressing noise than the image gradient L1-norm. The main
reason is that the image gradient L0-norm calculates the number of non-zero pixels instead
of penalizing the large image gradient magnitudes. Therefore, it is more suitable to protect
edge information.



Photonics 2022, 9, 35 3 of 18

In this work, inspired by the pioneering study of TDL, and to address the limitation of
the TDL-based method for spectral CT reconstruction, this paper introduced the L0-norm of
image gradient and a prior image to the TDL model to further enhance the ability to recover
subtle image structures effectively. The proposed algorithm inherits the superiority of the
TDL method. Moreover, the algorithm designs a regularization using the image gradient
L0-norm and a prior image in each energy channel simultaneously. The regularization term
not only constrains the sparsity of a single image to improve the ability to preserve edge
information and reduce noise, but also introduces a prior image combining with the image
gradient L0-norm to constrain the difference among images to guide the protection of subtle
image details.

The main contribution of this work has three aspects. First, the L0-norm of the image
gradient is introduced to the TDL-based model to improve the edge retention ability.
Second, the prior image is used to enhance the detail recovery ability under the constraint
of the image gradient L0-norm. Third, an efficient split-Bregman algorithm is utilized to
address the objective minimization model.

The rest of this article is organized as follows. Section 2 briefly introduces related
mathematical foundations and basic theories. Section 3 presents the solution of the pro-
posed mathematical model in this paper. In Section 4, numerical simulation and preclinical
mouse dataset experiments are carried out. Finally, we present a conclusion and discussion
in the last section.

2. Fundamental Theory Methods
2.1. Tensor Dictionary Learning

A tensor is a multi-dimensional data array. An N-order tensor is written as χ ∈
RI1×I2×···×Ik×···×IN , where Ik is the length of the kth dimension (k = 1, 2, . . . N). Elements
of χ are denoted as xi1i2···iN (1 ≤ ik ≤ Ik, k = 1, 2, . . . N). Especially when N = 1, tensors
are vectors, and when N = 2, tensors are matrices. A tensor can multiply with a vector
or a matrix. The mode-k product of a tensor χ by a matrix P ∈ RJ×Ik is expressed as
χ×k P ∈ R

I1×···×Ik−1×J×···×Ik+1×···×IN , whose element is calculated by ∑Ik
ik=1 xi1i2···iN pjik . In this

work, we only consider a third-order tensor, and suppose χ(n) ∈ RN1×N2×N3 (n = 1, 2, . . . N)
to be a third-order tensor. The TDL can be regarded as solving the following problems:

argmin
D,αn

N

∑
n=1
||χ(n) − D×4αn||2F, s.t.||αn||0 ≤ L (1)

where D =
{

D(k)
}
∈ RN1×N2×N3×K (k = 1, 2, . . . K) is a tensor dictionary that could be

trained by utilizing the K-CPD algorithm [38], K represents the number of atoms in the
dictionary, αn is the coefficient vectors, L is the sparsity level, ||•||F and ||•||0 represent
Frobenius-norm and L0-norm. Equation (1) could be addressed by using the alternating
direction method of multipliers (ADMM) [39]. Firstly, the multi-linear orthogonal matching
pursuit (MOMP) method is used to update sparse coefficient vectors αn while fixing the
tensor dictionary D. The second step is to update the tensor dictionary D with fixed sparse
coefficient vectors αn. According to the alternating update methods, the optimal D and the
corresponding αn can be obtained at the same time.

2.2. TDL for Spectral CT Reconstruction

The TDL model for spectral CT reconstruction could be denoted as follows [30]:

argmin
x,αj ,nj

1
2

C

∑
c=1
||Axc − pc||22 +

λ

2
(∑

j
||Ej(χ)− Dn ×4 nj − D×4 αj||2F + ∑

j
νj||αj||0) (2)

where χ ∈ RN1×N2×C are third-order reconstructed image tensors, where N1 and N2
represent width and height of the reconstructed image, respectively; P ∈ RJ1×J2×C are
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projection data tensors, where J1 is the number of the detector and J2 is the projection
views. C represents the energy channels. xc and pc are the vectorized cth image and
projection, respectively, A is the system matrix, nj is the mean vector of every channel,
the operator Ej is utilized to extract the jth small tensor block from χ, where the size
of the tensor block is M·M·C, αj represents the sparse representation coefficient of the

corresponding tensor block. D =
{

D(k)
}
∈ RM×M×C×K represents the trained tensor

dictionary; Dn =
{

D(k)
}
∈ RM×M×C×C denotes the mean removal process. λ is a key

parameter balancing the data fidelity and the sparse representation; the parameter vj is used
to balance the representation accuracy and sparse level. To avoid repetition, the solution
of Equation (2) is described in the next section. Because the system matrix A depends on
system geometry, a different scanning strategy will generate a different A, which will affect
the values of parameter λ. To solve the problem, we rewrite λ as follows:

λ =

ηC
N1
∑

i1=1

N2
∑

i2=1
[ATA]i1i2

∑
j

C
∑

c=1

N1
∑

i1=1

N2
∑

i2=1
[Ej

TEj]i1i2

(3)

where η is a scale parameter, which balances the data fidelity term and a sparse representa-
tion regularization term.

2.3. L0-Norm of the Image Gradient

To enhance the image sparsity, the image gradient L0-norm was employed to limited
and sparse view CT reconstruction problems. The image gradient L0-norm counts the
number of non-zero components, which could be defined as:

||∇x||0 = ∑q ψ(|(∂xx)q|+ |(∂yx)q|) (4)

where q (q = 1, 2, . . . N1 × N2) denotes the location of the (n1, n2)th element in the image.
(∂xx)q and (∂yx)q represent (x(n1, n2) − x(n1 − 1, n2)) and (x(n1, n2) − x(n1, n2 − 1)),
respectively. Ψ is a counting operation and can be expressed as follows:

ψ(|(∂xx)q|+ |(∂yx)q|) =
{

1 if |(∂xx)q|+ |(∂yx)q| 6= 0
0 otherwise

(5)

From Equation (5), it can be seen that the image gradient L0-norm ignores the gradient
magnitude. In other words, larger gradient values are not penalized by L0-norm, which
means that edge information and subtle structures can be better preserved.

3. Methods
3.1. Mathematical Model

Tensor dictionary learning fully considers the spectral CT image similarity of different
channels and achieves better performance in reconstructing images, but it may fail to obtain
good edge information and small structures from such a sparse-view case. Therefore,
we introduce the image gradient L0-norm due to its advantages in not penalizing larger
gradient values. Different from [34], it is noted that if a high-quality prior image containing
the full energy spectrum is introduced, the quality of the reconstructed image will be further
improved. Then we integrate a prior image combining with image gradient L0-norm to
constrain the difference among images to guide the protection of subtle image details. Thus,
the mathematical model of our algorithm is defined as follows:

argmin
x,αj ,nj

1
2

C

∑
c=1
||Axc − pc||22 +

C

∑
c=1

(a||∇xc||0 + (1− a)||∇(xc − xprior)||0) +
λ

2
(∑

j
||Ej(X)− Dn ×4 nj − D×4 αj||22 + ∑

j
νj||αj||0) (6)
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where xprior is a prior image reconstruction from all energy channels’ projection data;
a ∈ [0, 1] is a scalar that balances the first and second terms in Equation (6).

3.2. Solution

Because Equation (6) has three variables, we divide it into three sub-problems:
Sub-problem 1:

Xm+1 = argmin
x

1
2

C

∑
c=1
||Axc − pc||22 +

C

∑
c=1

(a1||∇xc||0 + a2||∇(xc − xprior)||0) +
λ

2
(∑

j
||Ej(X)− Dn ×4 nj

m − D×4 αj
m||22) (7)

Sub-problem 2:

nj
m+1 = argmin

nj

λ

2
(∑

j
||Ej(Xm+1)− Dn ×4 nj − D×4 αj

m||22) (8)

Sub-problem 3:

αj
m+1 = argmin

αj

λ

2
(∑

j
||Ej(Xm+1)− Dn ×4 nj

m+1 − D×4 αj||22 + ∑
j

νj||αj||0) (9)

For sub-problems 2 and 3, they can be easily addressed using the same method in
paper [30]; therefore, we only focus on the discussion about sub-problem 1. Equation (7)
contains the L0-norm and the sparse representation based on the tensor dictionary, which
is a non-convex and NP-hard problem. To effectively address this problem, we firstly
introduce two auxiliary variables bc1 and bc2; Equation (7) can be rewritten as a constrained
optimization model:

argmin
x,{bc1,bc2}C

c=1

1
2

C
∑

c=1
||Axc − pc||22 +

C
∑

c=1
(a1||∇bc1||0 + a2||∇bc2||0) + λ

2 (∑
j
||Ej(X)− Dn ×4 nj

m − D×4 αj
m||22),

s.t.xc = bc1, xc − xprior = bc2, c = 1, . . . C
(10)

where bc1 and bc2 are auxiliary matrices in RN1×N2 for the cth energy channel. Then, the
scaled augmented Lagrangian function of problem (10) [40] can be converted into an
unconstrained mathematical model as follows:

argmin

x,{bc1,bc2}
C
c=1,{tc1,tc2}

C
c=1

1
2

C
∑

c=1
||Axc − pc ||22 +

C
∑

c=1
(a1 ||∇bc1 ||0 + a2 ||∇bc2 ||0) +

λ
2 (∑

j
||Ej (X)− Dn ×4 nj

m − D×4 αj
m ||22) +

θ1
2

C
∑

c=1
||xc − bc1 − tc1 ||

2
2

+
θ2
2

C
∑

c=1
||xc − xprior − bc2 − tc2 ||22

(11)

where tc1 and tc2 are auxiliary matrices in RN1×N2 for the cth energy channel, and θ1
and θ2 represent two Lagrangian multipliers for the energy channel. We further divide
problem (11) into three steps by using the split-Bregman (SB) algorithm:

Step 1:

Xm+1 = argmin
x

1
2

C
∑

c=1
||Axc − Pc||22 +

λ
2 (∑

j
||Ej(X)− Dn ×4 nj

m − D×4 αj
m||22) +

θ1
2

C
∑

c=1
||xc − bc1

m − tc1
m||22

+ θ2
2

C
∑

c=1
||xc − xprior − bc2

m − tc2
m||22

(12)

Step 2:

{bc1}m+1 = argmin
{bc1}C

c=1

C

∑
c=1

a1||∇bc1||0 +
θ1

2

C

∑
c=1
||xc

m+1 − bc1 − tc1
m||22 (13)
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{bc2}m+1 = argmin
{bc2}C

c=1

C

∑
c=1

a2||∇bc2||0 +
θ2

2

C

∑
c=1
||xc

m+1 − xprior − bc2 − tc2
m||22 (14)

Step 3:
tc1

m+1 = tc1
m − (xc

m+1 − bc1
m+1), c = 1, . . . , C (15)

tc2
m+1 = tc2

m − (xc
m+1 − xprior − bc2

m+1), c = 1, . . . , C (16)

A separable surrogate method could be used to solve the problem of Equation (12)
as follows:

xijc
m+1 = xijc

m −

[AT A]ij + λ[∑
j

Ej
T Ej]

ijm

+ θ1 + θ2

−1


[AT(Axc − Pc)]ij + θ1(xc
m − bc1

m − tc1
m)ij

+θ2(xc
m − xprior − bc2

m − tc2
m)ij

+λ[∑
j

Ej
T(Ej(Xm)− Dn ×4 nj

m − D×4 αj
m)]ijc

 (17)

To unify the parameter θ and λ, therefore, θ could be given as following:

θk =

σkC
N1

∑
i1=1

N2

∑
i2=1

[AT A]i1i2

∑
j

C
∑

c=1

N1

∑
i1=1

N2

∑
i2=1

[Ej
T Ej]i1i2

, k = 1, 2 (18)

The problem of step 2 includes a minimization problem of L0-norm, leading to a non-convex
and NP-hard problem. Here we use an approximate method proposed in this paper [35]. Since
Equations (13) and (14) are similar, we will only discuss (14) which is equivalent to the following
problem:

{bc2}m+1 = argmin
{bc2}C

c=1

C

∑
c=1
||xc

m+1 − xprior − bc2 − tc2
m||22 +

C

∑
c=1

2a2
θ2
||∇bc2||0 (19)

According to the approximate method [41], two ancillary variables (uc
k, vc

k) related to the
gradients (∂x(bc2

k), ∂y(bc2
k)) are introduced. Therefore, Equation (19) can be converted into the

following problems:

argmin
{bc2},{uk

c ,vk
c}

C

∑
c=1
||xm+1

c − xprior − bc2 − tm
c2||22 + γ2

C

∑
c=1

∑k ψ(|uk
c |+ |vk

c |) + τ2

C

∑
c=1

((∂x(bk
c2)− uk

c)
2
+ (∂y(bk

c2)− vk
c)

2
) (20)

where γ2 = 2a2/θ2 is a smoothing parameter, which affects the image details and image edge
preservation. τ2 is used to balance the similarity between (uc

k, vc
k) and (∂x(bc2

k), ∂y(bc2
k)). Because

Equation (20) has three variables, we continue to employ the SB algorithm to calculate the variables
and fix others. Equation (20) can be further divided into the following two parts:

Part 1:

{(uk
c)

r+1
, (vk

c)
r+1} = argmin

{uk
c ,vk

c}

C

∑
c=1

∑k ((∂x(bk
c2)

r − uk
c)

2
+ (∂y(bk

c2)
r − vk

c)
2
) +

γ2
τ2

C

∑
c=1

∑k ψ(|uk
c |+ |vk

c |) (21)

Part 2:

{bc2
r+1} = argmin

{b2}

C

∑
c=1
||xm+1

c − xprior − bc2 − tm
c2||22 + τ2

C

∑
c=1

∑k ((∂x(bk
c2)− (uk

c)
r+1

)
2
+ (∂y(bk

c2)− (vk
c)

r+1
)

2
) (22)

For Equation (21), it is easy to get that the energy function reaches its minimum, and the optimal
condition as follows:

((uk
c)

r+1
, (vk

c)
r+1

) =

{
(0, 0), (∂x(bk

c2)
r
)

2
+ (∂y(bk

c2)
r
)

2 ≤ γ2
τ2

(∂x(bk
c2)

r
, ∂y(bk

c2)
r
), otherwise

(23)

where τ2 is adjusted automatically in iterations starting from small values τ02; each time it is
multiplied by k2. This scheme can effectively speed up the convergence speed. τ1 is related to the
problem of Equation (13) and has the same process. τ1, τ2 and τmax have fixed values of 2γ1, 2γ2
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and 105, respectively. k1 and k2 are set to 1.5 and 1.1, which has a good balance between efficiency
and performance. The l0-norm of the image gradient algorithm is shown in Algorithm 1.

Algorithm 1 The l0-norm of image gradient algorithm

Input: B1
m, B2

m, γ1, γ2, τ1
(0) = 2γ1, τ2

(0) = 2γ2, τmax = 105, k1, k2
for c = 1:C

while (τ1 ≤ τmax)
do

Update
{
(uk

c)
r+1

, (vk
c)

r+1
}

same as Equation (23);

Update B1
r+1 same as Equation (24);

τ1 = k1τ1, r = r + 1
end while
while (τ2 ≤ τmax)
do

Update
{
(uk

c)
r+1

, (vk
c)

r+1
}

using Equation (23);

Update B2
r+1 using Equation (24);

τ2 = k2τ2, r = r + 1
end while
B1

m+1 = B1
r, B2

m+1 = B2
r

end for
Output: Return intermediate result B1

m+1, B2
m+1

To solve the optimization problem of Equation (22), we consider a fast method [42], which
combines the convolution theorem of Fourier transform and the diagonalized derivative operator. By
this method, the solution of the Equation (22) can be expressed as follows:

{br+1
c2 } = ∑

c
F−1{

F(xm+1
c − xprior − tm

c2) + τ2(F∗(∂x)F(ur+1) + F∗(∂y)F(vr+1))

F(1) + τ2(F∗(∂x)F(∂x) + F∗(∂y)F(∂y))
} (24)

where F and F* represent Fourier transform and conjugate Fourier transform, respectively. Finally,
the corresponding pseudo-code is shown in Algorithm 2.

Algorithm 2 The pseudocodes of the proposed algorithm

Input: parameters: η, ε, K, L, a, σ1, σ2. Initialization of X(0),
B← 0, T← 0; xprior reconstructing from broad-spectrum projection data
Part I: Dictionary training
Normalize the projection data;
Reconstruct image from normalized projection utilizing FBP;
Extract patches and train a global tensor dictionary D
Part II: Image reconstruction

while not satisfy the stopping criteria
do
Update χm+1 based on Equation (17);
Update B1

m+1, B2
m+1 using Algorithm 1;

Update T1
m+1, T2

m+1 using Equations (15) and (16);
Update nm+1 based on Equation (8);
Update αm+1 using MOMP algorithm;
Positive constraint on χm+1;
end while
Denormalize the image tensor.
Output: reconstructed image X

4. Results
To validate the feasibility and effectiveness of our algorithm, we conduct a large number of

experiments based on numerical simulations and a preclinical dataset. The conventional FBP, TV
minimization, TV combining with low rank (TVLR), and TDL are implemented and compared. For
all the iterative algorithms, the initial images are set to zero and all of them are stopped after 150
iterations because they have all converged. Specially, we make use of the ordered subset SART
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(OS-SART) algorithm to accelerate the convergence speed (the subset number is selected as 10) in this
paper. For global tensor dictionary training of the TDL and our method, we employ the full-view
projection-based FBP reconstruction results. The results of numerical simulations and pre-clinical
datasets show that the proposed algorithm is superior to other algorithms in terms of finer structure
restoration, image edge preservation, and noise reduction.

4.1. Numerical Simulation Study
In the simulation study, a digital mouse thoracic phantom with 1.2% iodine contrast agent

added into the blood circulation, as shown in Figure 1a,b, is utilized to compare the results of all
reconstruction methods. The voltage of the X-ray source is 50 kVp and the energy spectrum is divided
into eight channels, [16, 22) keV, [22, 25) keV, [25, 28) keV, [28, 31) keV, [31, 34) keV, [34, 37) keV,
[37, 41) keV, [41, 50) keV, as shown in Figure 1c. An equi-distant fan beam calculation is used. The
distances from the X-ray source to the PCD are 180 mm, while the distances from the X-ray source to
the rotation center are 132 mm. The detector system contains 512 units; each unit is 0.1 mm. Over a
full scanning, 640 projections were collected. The reconstructed image tensor size is 256 × 256 × 8,
where each pixel covers an area of 0.15 × 0.15 mm2. The number of photons in one X-ray path
is 5000. In the numerical simulations, in order to quantitatively assess the image quality, the root
mean square error (RMSE), structural similarity (SSIM) [43], and feature similarity (FSIM) [44] are
calculated and compared.
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Figure 1. (a) Mice thorax phantom, (b) iodine contrast agent, (c) spectrum curve.

To demonstrate the feasibility of the proposed algorithm for sparse-view projections in improv-
ing the quality of the reconstructed image, 160 and 80 views are extracted from a full scan. Ground
truth images are reconstructed by the OS-SART algorithm with noise-free full scan projections. For
briefness, this work only shows two representative energy channel such as the first and eighth chan-
nels. In this paper, the parameters have been optimized and selected through numerous experiments
empirically. In the case of 160 projections, we set parameters as follows: ε = 1.3 × 10−3, a = 0.5, σ1 =
4.3, σ2 = 6.5, K = 1024, L = 11, η = 1.1. The reconstructed images from 160 views by using FBP, TV,
TVLR, TDL, and our method are displayed in Figure 2. In Figure 2, the first row is the results of the
different reconstruction methods for the first channel; the third row is for the eighth channel. To better
compare the details of reconstructed images, we select the regions of interest (ROIs) and enlarge them
to further display the results. The ROIs are marked by red and yellow boxes as shown in the first
column in Figure 2. The enlarged results are shown in the second and fourth row of Figure 2. In the
case of 80 projections, we set the parameters as follows: ε = 1.7 × 10−3, a = 0.5, σ1 = 6.2, σ2 = 9.1, K =
1024, L = 9, η = 1.3. The reconstructed images from 80 views by using different algorithms are shown
in Figure 3. The first row is the results of the different reconstruction methods for the first channel;
the third row is for the eighth channel. We also select the same position of ROIs and enlarge them for
different algorithms.

From Figures 2 and 3, we can intuitively get the conclusion that our algorithm is good at
preserving image edge and recovering image finer structure than other algorithms. Concretely
speaking, the results reconstructed from the FBP algorithm contain serious noise and obvious artifacts,
as shown in (b1,b2). TV and TVLR results suffer from the image blurring and details missing as
shown in (c1,c2) and (d1,d2). The results of TDL are better than the other methods as shown in
(e1,e2). Yet from (f1,f2), it could be seen that our approach does well in maintaining subtle details
and suppressing the noise effectively. The results can be clearly observed in the ROIs by the arrows,
which point out some small image structures.
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To facilitate comparison of the numerical accuracy of reconstructed images, we compare the
image profiles of two representative regions, which are shown as a red line and a yellow line in
Figure 1 left, to verify the accuracy of different algorithms in reconstructing images. The analysis
results from 80 views are shown in Figure 4. The first and second rows are the first and eighth
channels, respectively. From the first column to the last column, the profile results are a red line and a
yellow line in the reconstructed images. The comparison algorithm is displayed in the legend. From
the Figure 4, we could observe that the image profile reconstructed by TV produces large oscillation,
especially in the eighth channel. Other algorithms obtain better results than TV. However, from
the two representative regions, it could be observed that our algorithm has the best reconstruction
accuracy.
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Figure 2. Reconstructed images from 160 projections using different methods. The first two rows are
the first channel and ROIs, the last two rows are the eighth channel and ROIs. From left to right, the
columns are Ground Truth (a), FBP (b), TV (c), TVLR (d), TDL (e), and our algorithm (f). The display
windows are [0, 0.25] cm−1 and [0, 0.08] cm−1, respectively.
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Figure 3. Reconstructed images from 80 projections using different methods. The first two rows are
the first channel and ROIs, the last two rows are the eighth channel and ROIs. From left to right, the
columns are Ground Truth (a), FBP (b), TV (c), TVLR (d), TDL (e), and our algorithm (f). The display
windows are [0, 0.25] cm−1 and [0, 0.06] cm−1, respectively.
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Figure 4. Comparison of the profile from 80 views. The comparison algorithm is displayed in
the legend.

To further demonstrate the superiority of our algorithm in preserving image edge and recovering
subtle structures clearly, we compare gradients of the reconstructed images from 80 views, as shown
in Figure 5. The first row is the first energy channel and the second row is the eighth energy channel.
We select the region of edge changed dramatically as the ROIs, which are marked by the yellow
rectangle. From the magnified ROIs, it could be observed that our method obtains better performance
in edge preservation, especially in the eighth energy channel as pointed out by the green arrow. The
red arrow shows a minor structure, it can be observed that our method dose well in recovering it
both low energy channel and high energy channel. In order to compare algorithms from numerical
indicators, we utilize three common indicators to evaluate such as RMSE, SSIM, and FSIM. The results
are displayed in Table 1. From the Table, it can be clearly observed that the proposed algorithm
has a better performance among the three indicators, which further demonstrates the superiority of
our method.
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achieves the most accurate and the relative deviations, which are below about 2% in all 
channels. The next one is the TDL method. For the soft tissues, TVLR gets the largest rel-
ative deviation with 3.3% in channel 8, followed by TDL with 0.65%. Meanwhile our al-
gorithm and the TV algorithm are only below 0.62%. Regarding the iodine contrast agent, 
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Photonics 2022, 9, 35 11 of 18

Table 1. Comparison of indicators in different angles using different methods.

Views
Channel RMSE SSIM FSIM

Method 1st 8th 1st 8th 1st 8th

80

TV 0.1646 0.0436 0.9167 0.8752 0.9036 0.8616
TVLR 0.1488 0.0389 0.9302 0.9071 0.9214 0.8961
TDL 0.1403 0.0322 0.9398 0.9128 0.9281 0.9024
Ours 0.1216 0.0213 0.9501 0.9255 0.9458 0.9137

160

TV 0.1486 0.0372 0.9313 0.8982 0.9237 0.8863
TVLR 0.1364 0.0283 0.9423 0.9123 0.9352 0.9014
TDL 0.1251 0.0239 0.9528 0.9235 0.9426 0.9135
Ours 0.1075 0.0187 0.9672 0.9364 0.9513 0.9308

Figure 6 displays the mean value and relative deviation of each channel in the bone, soft tissue,
and iodine-enhanced areas for the selected iterative reconstruction method. For simplicity, we only
show the results for 80 views. The relative deviation is computed as the absolute deviation divided
by the average value of the corresponding reference value in the energy channel. The reference
mean values of tissues (bone, soft, and iodine) are computed by the FBP algorithm from noise-free
projection data. The TV algorithm smooths subtle structures in the bone regions and causes the
largest relative deviation (up to 9.3% in channel 8), followed by TVLR (6.7% in channel 8). The
proposed method achieves the most accurate and the relative deviations, which are below about 2%
in all channels. The next one is the TDL method. For the soft tissues, TVLR gets the largest relative
deviation with 3.3% in channel 8, followed by TDL with 0.65%. Meanwhile our algorithm and the
TV algorithm are only below 0.62%. Regarding the iodine contrast agent, it can be seen from (c) that
TVLR has the greatest relative deviation in channel 6 with 12%, due to the spectral flattening effect
near the K-edge of iodine. The values from other algorithms are no more than 3%. In particular, the
relative deviations of iodine from the proposed algorithm are below 2%.

In addition, to validate the competence of the proposed algorithm for material decomposition,
the reconstructed spectral CT images from 80 views by FBP, TV, TVLR, TDL, and our algorithm are
decomposed into three basis materials (bone, soft tissue, and iodine contrast agent) utilizing the
material decomposition algorithm based on the image domain [45]. Figure 7 displays the decomposed
results and the corresponding color images. It is observed from the third row that our method and
TDL achieve the best accurate iodine regions, while other methods wrongly classify some pixels as
iodine components. However, for the soft tissues, it is seen from the second row that the performance
of our method is better than other competing methods.

4.2. Preclinical Mouse Study
To show the advantages of the proposed algorithm, we further perform it in the practical

application from a mouse injected with 0.2 mL of 15 nm Aurovist II gold nanoparticles (GNP)
(Nanoparticles; Yaphank, NY, USA). The CT system includes an X-ray source and a photon counting
detector. The distance from the X-ray source to the PCD is set as 255 mm, the distance from the
X-ray source to the rotation centre is set as 158 mm. In a full scanning, 371 projections were evenly
received. The 120 kVp energy spectrum of the X-ray source is divided into 13 channels. The channels
of practical datasets were different from the datasets in numerical simulation. More specifically, here
the X-ray photons are received by each energy channel only if the channel energy is higher than a
certain energy threshold. Therefore, the first channel has the lowest energy threshold and almost
contains all the photons, while the last channel has the least photons. The detector row contains
1024 elements, and the unit length is 55 µm. The diameter of the covered field of view (FOV) is 34.68
mm. To decrease noise in the sinogram, it is helpful to merge the adjacent detector bins to form a
new sinogram of size 512 × 371. The reconstructed CT images were three-order tensors of 256 ×
256 × 13, with an area of 18.41 × 18.41 mm2. We only show two representative channel images
(channels 1 and 13) in the next experiment.
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Figure 7. Material decomposition results from 80 views. From top to bottom rows, the first three
rows are the decomposed bone, soft tissues, and iodine contrast agent components, respectively. The
fourth row is the color representation of the corresponding basic materials. From left to right, the
columns are Ground truth, FBP, TV, TVLR, TDL, and our algorithm.
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To validate the feasibility of the proposed algorithm for sparse view projections, 120 and 60
views are extracted from a full scan. In the case of 120 views, we set the parameters as follows: ε = 7
× 10−4, a = 0.5, σ1 = 3.5, σ2 = 5.7, K = 1024, L = 12, η = 1.1. The reconstructed results of the FBP, TV,
TVLR, TDL, and our algorithm are displayed in Figure 8. The first row is the results for channel 1
and the second row is the results for channel 13. The last row is the corresponding regions of interest
(ROIs) from (a1) to (e2) in sequence. In the case of 60 projections, we set the parameters as follows:
ε = 8 × 10−4, a = 0.5, σ1 = 6.4, σ2 = 8.3, K = 1024, L = 10, η = 1.5. The reconstructed images of the
FBP, TV, TVLR, TDL, and our algorithm are displayed in Figure 9. The first and second rows are the
results for channels 1 and 13, respectively. The last row is the corresponding ROIs from (a1–e2) in
sequence. The columns are the different reconstruction algorithms. From Figures 8 and 9, it could
be observed that the images obtained by the FBP algorithm have serious noise as shown in (a1,a2).
The results of TV and TVLR contain blurry edges as shown in (b1,b2) and (c1,c2). The result of the
TDL algorithm improves the image quality to some extent, yet some details are lost as displayed in
(d1,d2). Obviously, the result of the proposed algorithm not only preserves the image edge, but also
recovers finer image structures as shown in (e1,e2).

In order to better compare the details of reconstructed images, we select the ROIs and enlarge
them to further display the results. The ROIs are marked by red and yellow boxes as shown in the
first column in Figures 8 and 9. The results are shown in the last row of (a1–e2) in sequence. From
the magnified ROIs, we can observe that our algorithm can achieve the best results in recovering
the finer image structures pointed out by the red and blue arrows, while it is difficult to distinguish
the images reconstructed by the FBP, TV, TVLR, and TDL methods. Meanwhile, the ability of our
algorithm to preserve image edge is better than other methods.

To further demonstrate the superiority of our algorithm in practical application clearly, we
compare gradients of the reconstructed images from 60 views as shown in Figure 10. The first row
is the first energy channel and the second row is the 13th energy channel. The first column is the
reconstructed images from full projections utilizing FBP. We mark the ROIs by the yellow rectangle.
From the enlarged ROIs, it could be seen that our algorithm obtains better performance in noise
reduction and edge preservation, especially in the 13th energy channel, as pointed out by the green
arrow shown in (e1,e2). The red arrow shows a minor structure; it can be seen that our method
does well in recovering it concerning both low energy channel and high energy channel. Figure 11
shows the results of three basis material decomposition and the corresponding color images from
60 projections. As far as GNP components are concerned, it could be seen that our algorithm has
fewer errors in misclassifying bone pixels as GNP regions indicated by the red arrows. On the whole,
our algorithm is better than other competing algorithms in material decomposition, as seen from the
color images.
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and our algorithm (e). The display windows are [0, 0.1] cm−1 and [0, 0.08] cm−1, respectively. 

In order to better compare the details of reconstructed images, we select the ROIs and 
enlarge them to further display the results. The ROIs are marked by red and yellow boxes 
as shown in the first column in Figures 8 and 9. The results are shown in the last row of 
(a1)–(e2) in sequence. From the magnified ROIs, we can observe that our algorithm can 
achieve the best results in recovering the finer image structures pointed out by the red 
and blue arrows, while it is difficult to distinguish the images reconstructed by the FBP, 

Figure 8. Reconstructed images from 120 projections using different methods. The first and the
second rows are the results for channels 1 and 13, respectively. The last row is the corresponding
ROIs from (a1–e2) in sequence. From left to right, the columns are FBP (a), TV (b), TVLR (c), TDL (d),
and our algorithm (e). The display windows are [0, 0.1] cm−1 and [0, 0.08] cm−1, respectively.
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algorithm (e). The display windows are [0, 0.1] cm−1 and [0, 0.08] cm−1, respectively.
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Figure 10. The gradient images from 60 projections. The first row is the first channel and the second
row is the 13th channel. The first column is an image reconstructed from full projections using the
FBP algorithm (a). Other columns are TV (b), TV + LR (c), TDL (d), and our algorithm (e). The display
windows are [0, 0.02] cm−1.

4.3. Parameters Analysis
It is challenging to determine the optimal parameters in iterative reconstruction algorithms

for CT reconstruction. In the proposed method, the objective function in Equation (6) contains two
regularization terms which need a number of parameters to optimize. Firstly, the parameters of
the TDL term mainly contain precision level ε, sparse level L, atom number K, and regularization
parameter η. In the paper by [30], it is very clear to illustrate the impact related to these parameters.
In summary, a smaller ε can cause noise structure, while larger ones can damage the structural details.
η controls the relationship among different channels, the larger η is, the stronger the relationship
is, the smoother the image is. With regard to L, the smaller value will result in blurred edge. K
is not sensitive to the reconstruction quality, which is set as 1024. We utilize the conclusion and
optimize the parameter selection empirically. Here, we mainly focus on the second regularization
term gradient L0-norm because the control factors a, σ1, and σ2 have a bigger impact on image quality
compared with η in the TDL regularization term. Different settings of these parameters could lead
to different quality of reconstructed images. In order to study the performance of our algorithm
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under different parameters, we only relax one or two free parameters while fixing other parameters.
We go through numerous experiments and observe the changes of image quality with parameters.
Figure 12 shows the RMSE and SSIM of the proposed algorithm with respect to different parameters.
It can be seen that when a is 0.5, the RMSE and SSIM achieve the best value. σ1 and σ2 control the
quality of reconstructed images. Smaller values will lead to noisy image, while larger values will
over-smooth the edge structures. The figure shows the change of σ1 and σ2; it can be observed that
when the values increase, the RMSE will be lower and SSIM will be higher, but if the values continue
to increase, the indicators will obtain unsatisfactory results.
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Figure 11. Material decomposition results from 60 views. From top to bottom, the first three rows
are the decomposed bone, soft tissues, and GNP components, respectively. The fourth row is the
color representation of the corresponding basic materials. From left to right, the columns are FBP, TV,
TVLR, TDL, and our algorithm.
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5. Discussion and Conclusions
In this study, to solve the limitation of the existing TDL-based spectral CT reconstruction

method and further improve the reconstructed image quality, we propose a method termed TDL
with an enhanced sparsity constraint for spectral CT reconstruction. The proposed algorithm inherits
the advantage of TDL by exploring the correlation of spectral CT images from different channels.
Moreover, the method designs a regularization using the L0-norm of the image gradient to constrain
images and difference between images and a prior image in each energy channel simultaneously.
Compared with the image gradient L1-norm, the image gradient L0-norm calculates the number of
non-zero pixels instead of penalizing the large image gradient magnitudes. Therefore, it is more
suitable to protect edge information. It is noted that the prior image used in our work is the total
image reconstruction from all energy channels’ projection data, which plays an important role in
the reconstruction process. Due to the similarity between a high-quality full-spectrum image and
the target image, by incorporating the guidance of a prior image in each energy channel into the
reconstruction model, the image quality is significantly improved, especially in the case of the sparse
view problem. A natural question is how much contribution does the prior image have on the
reconstruction images. To clearly show the contribution of the prior image, we also implemented the
TDL with only L0-norm and compared it with our algorithm. Figure 13 shows the results of TDL with
only L0-norm and our algorithm. From the figure, we can easily find that if a prior image is introduced
to guide the reconstruction, more subtle structures will be preserved whether in simulation data or
real data.
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Figure 13. Comparison of the results of TDL with only L0-norm and our algorithm. The first row is
the reconstruction results, the second row is the corresponding gradient images. (a,c) TDL with only
L0-norm; (b,d) our algorithm.

While better results have been obtained by utilizing the method, there are still some issues
existing. Firstly, there are numerous parameters that need to be determined. This paper selects the
optimal parameters empirically through a lot of experiments. Therefore, how to optimize parameters
automatically is still an open problem that needs to be explored. In addition, the high quality of the
global tensor dictionary and prior image are often not available in some cases. As a result, we have to
utilize low-quality reconstructed images to train the global tensor dictionary and form a prior image,
which may affect the final quality of the image. The problem of these cases will be investigated in our
future work.

In conclusion, we propose a TDL with an enhanced sparsity constraint method for spectral CT
reconstruction The proposed algorithm can not only eliminate noise, but also well preserve edge
information and recover image details. The experimental results confirm that the performance of our
algorithm is better than that of the TV, TVLR, and TDL methods.
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