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Abstract: The celebrated Gaussian Schell model source with its shift-invariant degree of coherence
may be the basis for devising sources with space-variant properties in the spirit of structured
coherence. Starting from superpositions of Gaussian Schell model sources, we present two classes of
genuine cross-spectral densities whose degree of coherence varies across the source area. The first
class is based on the use of the Laplace transform while the second deals with cross-spectral densities
that are shape-invariant upon paraxial propagation. For the latter, we present a set of shape-invariant
cross-spectral densities for which the modal expansion can be explicitly found. We finally solve the
problem of ascertain whether an assigned cross-spectral density is shape-invariant by checking if it
satisfies a simple differential constraint.

Keywords: coherence; structured light; propagation; shape-invariant fields

1. Introduction

In research on partially coherent structured light, a frequent need is to devise the cross-
spectral density (CSD) [1] of a source in such a way as to obtain prescribed results from it.
This is one of the most demanding aims of coherence theory because of the non-negative
definiteness constraint a CSD has to obey. A well-known rule to devise a correct correlation
function is the following [2–4]:

W(r1, r2) =
∫

p(v)N∗(r1, v)N(r2, v)d2v, (1)

where N is an arbitrary kernel and p is a non-negative function. The variable v can be of
the same physical nature as r, but is not necessarily. Furthermore, v can be a continuous or
discrete, scalar or vectorial variable. Since N(r, v) can always be formally read as a field at
point r, depending on a parameter v, the product N∗(r1, v)N(r2, v) can be thought of as a
CSD—a peculiar CSD in fact, because being the product of the complex conjugate of the
field at r1 times the field at r2, it specifies a fully coherent field [1]. A useful extension of
Equation (1) is

W(r1, r2) =
∫

p(v)w(r1, r2; v)d2v, (2)

where w is a genuine CSD depending on the parameter v. The advantage of Equation (2) is
that it allows us to combine with weight p(v) all the CSDs of a continuous or discrete set.
This opens the way to numberless variations on the theme. For the sake of brevity, from
now on we shall refer ourselves to one-dimensional cases. For most of them the extension
to two-dimensional cases is straightforward.

A class of sources can be generated on assuming that w is a Gaussian Schell model
(GSM) CSD depending on a scalar variable v. Let us first recall the CSD of a GSM source [1],
which we shall use as a basic tool. We shall let

w(x1, x2; v) = exp

{
− x2

1 + x2
2

4σ2(v)
− (x1 − x2)

2

2δ2(v)
− i

k(x2
1 − x2

2)

2R(v)

}
, (3)
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where σ2 and δ2 are the intensity and coherence variances, respectively, and R is the radius
of curvature, all of them depending on v, which possibly ranges from 0 to ∞.

Expression in Equation (2) directly suggests a way to practically synthesize sources of
this kind by the superposition of a discrete set of GSM beams with weights p(v). Any beam
with Schell model type can be produced by the dynamic computer-generated holograms
loaded on spatial light modulators, as in [5], and the corresponding weight p(v) can
be controlled through the loading time of the dynamic holograms associated with each
CSD [6].

2. Laplace

A useful choice for the dependence of the parameters of Equation (3) from v is to
assume that such dependence is

σ2(v) =
σ2

v
; δ2(v) =

δ2

v
; R(v) =

R
v

, (4)

with constant σ, δ, and R, in such a way that Equation (3) becomes

w(x1, x2; v) = exp

{
−v

[
x2

1 + x2
2

4σ2 +
(x1 − x2)

2

2δ2 +
ik
2R

(x2
1 − x2

2)

]}
. (5)

Now, we for brevity put

u =
x2

1 + x2
2

4σ2 +
(x1 − x2)

2

2δ2 +
ik
2R

(x2
1 − x2

2), (6)

and write Equation (2) as

W(x1, x2) =
∫ ∞

0+
p(v) exp(−uv)dv. (7)

We see that W is obtained as the Laplace transform [7] of p(v) having u, i.e., the quantity
given by Equation (6), as outcome variable. Equation (7) gives the expression of the Laplace
transform where it is explicitly indicated that the integration interval is open at both sides.
In the following we shall use the standard notation, where the lower integration limit
is simply written as zero. Note that even if the integration variable is real the outcome
variable of a Laplace transform is meant to be (possibly) complex. This is what we need for
a CSD.

For a simple example we put

p(v) = P exp(−Tv), (P > 0, T > 0), (8)

and assume for brevity that R→ ∞. The overall CSD is then

W(x1, x2) = P
∫ ∞

0
e−Tv exp

{
−v

[
x2

1 + x2
2

4σ2 +
(x1 − x2)

2

2δ2

]}
dv =

P

[
T +

x2
1 + x2

2
4σ2 +

(x1 − x2)
2

2δ2

]−1

.

(9)

In particular the intensity is

I(x) = W(x, x) = P
(

T +
x2

2σ2

)−1

, (10)
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i.e., a Lorentzian function. Let us evaluate the degree of coherence (DOC) [1]

µ(x1, x2) =
W(x1, x2)√
I(x1)I(x2)

, (11)

by using Equations (9) and (10). We find

µ(x1, x2) =

√√√√
(

T +
x2

1
2σ2

)(
T +

x2
2

2σ2

)

T +
x2

1 + x2
2

4σ2 +
(x1 − x2)

2

2δ2

.
(12)

The DOC for the CSD in Equation (5), for R → ∞, is shift-invariant (it depends on
x1 − x2 only), while the present one is not. Some examples are shown in Figure 1 for
µ(x0, x0 + x) as a function of x with x0 = 0, 50, 100, letting T = 1, σ = 4, δ = 1.

-20 -10 10 20
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0.6

0.8

1.0

Figure 1. DOC µ(x0, x0 + x) vs. x with T = 1, σ = 4, δ = 1, for x0 = 0, 50, 100 (from the narrowest to
the widest curve).

Apparently the field tends to become more and more coherent when x0 grows. Ob-
viously it is important to see whether the growth can occur for appreciable intensities.
The answer is affirmative, as confirmed by Figure 2, which shows the curves of the DOC
µ(x1, x) vs. x (with x1 = 0, 10, . . . , 40), for T = 1, σ = 10, δ = 1, together with the plot of
the normalized intensity (dashed curve). It is interesting to note that, from a superposition
of GSM CSDs with suitably chosen parameters, a new source has been obtained whose
DOC, roughly speaking, seems to be Gaussian, but it is not shift invariant. In this particular
example, the coherence area increases on receding from the source center.
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Figure 2. DOC µ(x1, x) vs. x with x1 = 0, 10, . . . , 40, for T = 1, σ = 10, δ = 1 (from left to right). The
dashed curve is the normalized intensity.
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A whole set of sources can be evaluated replacing Equation (8) with a generalized
version as follows [8]:

p(v) = P vν−1 exp(−Tvs.), (P > 0, ν > 0, T > 0). (13)

Instead of Equation (9) we obtain

W(x1, x2) = P Γ(ν)

[
T +

x2
1 + x2

2
4σ2 +

(x1 − x2)
2

2δ2

]−ν

, (14)

where Γ denotes the Gamma function [8]. In particular,

I(x) = P Γ(ν)
[

T +
x2

2σ2

]−ν

, (15)

and

µ(x1, x2) =




√√√√
(

T +
x2

1
2σ2

)(
T +

x2
2

2σ2

)

T +
x2

1 + x2
2

4σ2 +
(x1 − x2)

2

2δ2




ν

. (16)

Plots of the normalized intensity are reported in Figure 3 for T = 1, σ = 10, δ = 1
and different values of ν (0.5, 1, and 5). At first we could think that for increasing ν only a
contraction of the Lorentzian curve occurs. Actually the shape of the curves changes, too.
This can be seen on evaluating the abscissa and the I value corresponding to the inflection
point where d2 I/dx2 = 0.

Similar results hold for the DOC. The same values of the parameters have been used
in Figure 4 to plot the curves of µ(0, x).

Figure 5 is analogous to Figure 2 and shows the DOC curves as functions of x2 for
different values of x1 together with the normalized intensity, with ν = 0.5.

Many other examples can be built using a table of Laplace transforms for non-negative
functions [8].
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Figure 3. Intensity profiles vs. x given by Equation (15), for T = 1, σ = 10, δ = 1 and ν = 0.5, 1, 5
(from the widest to the narrowest curve).
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Figure 4. Plots of µ(0, x) vs. x given by Equation (16) for T = 1, σ = 4, δ = 1 and ν = 0.5, 1, 5 (from
the widest to the narrowest curve).
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Figure 5. The same as Figure 2, but for the CSD in Equation (14), with ν = 0.5.

3. Shape Invariance

Generally speaking, upon propagation the functional form of the CSDs of the sources
in Section 2 will change (see also Section 5). In most cases the propagated field will have
to be evaluated numerically. Although the disadvantage of this has been progressively
reduced by the availability of more and more powerful mathematical softwares, we may
wonder whether this can be avoided.

A significant class of cases in which the propagation process is simple to treat is that
of shape-invariant (SI) fields [9]. To discuss this case it will be useful to recall the pertinent
propagation formulas. For an elementary GSM CSD they are of the following type [1]:

wz(x1, x2; v) =
1

F2
z (v)

exp

{
i

k(x2
2 − x2

1)

2Rz(v)
− x2

1 + x2
2

4 σ2(v)F2
z (v)

− (x1 − x2)
2

2 δ2(v)F2
z (v)

}
, (17)

where the propagation factor Fz and the curvature radius Rz are given by





F2
z (v) = 1 +

[
λz

2πσ(v)

]2[ 1
4σ2(v)

+
1

δ2(v)

]
;

Rz(v) = z
[

1 +
1

F2
z (v)

]
.

(18)

A typical CSD obtained by superposition of elementary GSM CSDs will be shape-
invariant if all of them have the same propagation factor. It is seen instead from Equation (9)
that for the typical Laplace-like CSD in the integration process the quantities σ and δ are
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replaced by σ/
√

v and δ/
√

v. Accordingly, the propagation factor varies with v and there
cannot be any shape invariance except when p(v) is delta-like.

Yet, a pseudo-Laplace superposition of GSM CSDs with one and the same factor Fz can
be generated as follows, leading to our second class of sources. The basic remark is that the
propagation factor depends on a specific combination of σ(v) and δ(v) ((see Equation (18)).
This implies that an infinite number of different couples σ(v), δ(v) can give rise to one and
the same propagation factor. In fact, on imposing that the quantity

1
4σ2(v)

(
1

4σ2(v)
+

1
δ2(v)

)
= K (19)

be constant, Equation (18) takes the form

F2
z (v) = 1 + K

(
λz
π

)2
, (20)

which is independent of v. Such a choice guarantees that all the constituting beams spread
with the same rate upon propagation and give rise, up to a curvature factor and a transverse
scaling factor, to the same CSD as that across the starting plane.

It remains to be seen how to choose σ(v) and δ(v). First, for a chosen σ(v), the needed
value of δ(v) for obtaining a prescribed K is deduced by

1
δ2(v)

= 4σ2(v)K− 1
4σ2(v)

. (21)

Alternatively, for any chosen δ(v) > 0, the required value of σ(v) is obtained by

1
4σ2(v)

=
1
2

(√
1

δ4(v)
+ 4K− 1

δ2(v)

)
. (22)

Note that, since 1/δ2(v) > 0 (∀v), Equation (21) requires

16 K σ4 > 1 (∀v). (23)

An elementary example obtained through superposition of only two CSDs will help
to appreciate the effects of the superposition. Consider the following CSD structure, where
proportionality factors have been omitted:

W(x1, x2) = exp

[
− x2

1 + x2
2

4σ2
1
− (x1 − x2)

2

2δ2
1

]
+ exp

[
− x2

1 + x2
2

4σ2
2
− (x1 − x2)

2

2δ2
2

]
, (24)

where the intensity and DOC variances are such that

1
4σ2

1

(
1

4σ2
1
+

1
2δ2

1

)
=

1
4σ2

2

(
1

4σ2
2
+

1
2δ2

2

)
. (25)

The main effects of the superposition can be appreciated by the curves of Figure 6,
drawn for σ1 = 30, δ1 = 1, δ2 = 10, and σ2 = 4.49, the latter being derived from
Equation (22). The curve of the normalized intensity (the dashed one) clearly shows the
superposition of two Gaussian functions of different width. If the light were coherent the
shape of the curve would change on propagation because the initially narrower curve
would spread at a higher rate than that of the initially wider curve. A value of z would even
exist at which the two contributions would have the same width (even if with different
height and curvature radius). With shape-invariant light, instead the intensity profile does
not change because the narrower peak is made suitably less coherent than the other. The
effect on the DOC is subtler. Within the central region, the DOC curve is not Gaussian (not
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even approximately), and its shape roughly resembles the intensity profile. Across the lat-
eral wings of the intensity pattern, where essentially only one of the two beams contributes
light, the DOC curve is nearly Gaussian, and is narrower than in the central peak.

-30 -20 -10 0 10 20 30

0.2

0.4

0.6

0.8

1.0

Figure 6. Normalized intensity (dashed curve), together with µ(0, x), µ(10, x) and µ(20, x) vs. x
(from left to right) for the CSD in Equation (24), with σ1 = 30, δ1 = 1, δ2 = 10, and σ2 = 4.49.

Let us pass to the general case of shape invariance. What is required is the continuous
superposition of GSM CSDs weighted with a function p(v) in which the shape-invariance
condition is satisfied for any value of v. Thanks to Equation (22), this occurs for

W0(x1, x2) =
∫ ∞

0
p(v) exp

[
− x2

1 + x2
2

4σ2(v)
− (x1 − x2)

2

2δ2(v)

]
dv =

∫ ∞

0
p(v) exp

[
− x2

1 + x2
2

2

(√
v2 + 4K− v

)
− (x1 − x2)

2

2
v

]
dv,

(26)

where we put

σ2(v) =
1√

v2 + 4K− v
; δ2(v) =

1
v

. (27)

An example is shown in Figure 7, which shows the DOC curves for four different
values of x1, together with the normalized intensity (the widest curve). There we put K = 1
and the weight function has been chosen as in Equation (8), with T = 1/20. The obtained
result is somewhat similar to that shown in Figure 2, but in this case the coherence area
decreases on receding from the source center.

-2 0 2 4 6 8

0.2
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0.6

0.8

1.0

Figure 7. Normalized intensity (dashed curve), and DOC µ(0, x), µ(3, x), µ(5, x), µ(7, x) vs. x, from
Equations (8) and (26) with K = 1 and T = 1/20.
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4. Modes of Shape-Invariant Sources

As well known, the modal theory of coherence [1] gives a useful tool for the physical
interpretation of coherence-depending phenomena and for the study of the propagation of
partially coherent fields. It requires the determination of eigenfuctions (the modes of the
source) and eigenvalues of the following homogeneous Fredholm integral equation of the
second kind [1]: ∫

W0(x1, x2)Φ∗(x2)dx2 = γ Φ(x1). (28)

In this section, we evaluate modes and eigenvalues of the CSD in Equation (26).
According to Mercer’s theorem, the elementary GSM CSD can be expanded in the

following series [10]

w0(x1, x2; v) =
∞

∑
n=0

γn(v) Φ∗n(x1; v)Φn(x2; v), (29)

where

Φn(x; v) =

(
2

πu2
0(v)

)1/4
1√
2nn!

Hn

(
x
√

2
u0(v)

)
e−x2/u2

0(v),

γn(v) ∝ qn(v), (n = 0, 1, . . . ),

(30)

Hn being the n-th Hermite polynomial [8]. Finally q(v) is given by

q(v) =


 2σ(v)/δ(v)

1 +
√

1 + [2σ(v)/δ(v)]2




2

, (31)

where σ(v) and δ(v) are given by Equation (27) and the spot-size u0(v) is derived from the
formula [10]

1
u0(v)

=

[
1

4σ2(v)

(
1

4σ2(v)
+

1
δ2(v)

)]1/4
= K1/4. (32)

Since we work with a prescribed value of K, u0(v) does not depend on v, so that all
the elementary sources in the integral (26) have the same modes, and the latter equation
can be written as

w0(x1, x2; v) =
∞

∑
n=0

γn(v) Φ∗n(x1)Φn(x2). (33)

On inserting from Equation (33) into Equation (2) we obtain the modal expansion of
W0(x1, x2), i.e.,

W0(x1, x2) =
∞

∑
n=0

εn Φ∗n(x1)Φn(x2), (34)

whose eigenvalues have the form

εn =
∫ ∞

0
p(v)γn(v)dv; (n = 0, 1, . . . ). (35)

This is a remarkable property, in that it solves the integral equation in Equation (28)
for an infinite class of kernels, which depend on the choice of the positive parameter K and
on the form of the nonnegative function p(v).

5. A Condition for Shape Invariance

The shape-invariance property of a CSD is defined with reference to its propagation
features [9]. Since the latter are tied to the properties of Hermite–Gauss (HG) modes,
we shall say a CSD is SI to mean that it can be expanded in a series of HG modes with
non-negative coefficients [11–17]. Deciding whether a given CSD is SI without knowing its
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modal expansion could not seem a simple task. Here we show that this can be done using
a criterion based on the second order partial derivatives of the CSD.

To simplify the derivation let us rewrite the functions defined in Equation (30) as

ψn(x; u0) = An(u0)Hn

(
x
√

2
u0

)
e−(x/u0)

2
; (n = 0, 1, . . . ), (36)

where An are normalization factors and u0 is the spot size of the modes.
Imagine we have a CSD W(x1, x2). Since it is SI, we know it admits of a modal

expansion of the form (a real W is assumed)

W(x1, x2) =
∞

∑
n=0

ηnψn(x1; u0)ψn(x2; u0), (37)

with non-negative eigenvalues ηn (n = 0, 1, . . . ), although we do not know the value of u0.
Now differentiate twice W with respect to x1 and remember the property

d2ψn

dx2 =
4 x2

u4
0

ψn(x; u0)−
2n + 1

u2
0

ψn(x; u0), (38)

derived from Equation 22.6.20 of [8]. The second order partial derivative of W with respect
to x1 then reads

∂2W(x1, x2)

∂x2
1

=
∞

∑
n=0

ηn
d2ψn(x1; u0)

dx2
1

ψn(x2; u0) =

∞

∑
n=0

ηn

[
4 x2

1
u4

0
ψn(x1; u0)−

2n + 1
u2

0
ψn(x1; u0)

]
ψn(x2; u0) =

4 x2
1

u4
0

W(x1, x2)− L(x1, x2),

(39)

where L is the symmetric kernel

L(x1, x2) =
∞

∑
n=0

2n + 1
u2

0
ηn ψn(x1; u0)ψn(x2; u0). (40)

Repeating derivation with respect to x2, we similarly obtain

∂2W(x1, x2)

∂x2
2

=
4 x2

2
u4

0
W(x1, x2)− L(x1, x2), (41)

so that on subtracting Equation (41) from Equation (40) we have

∂2W(x1, x2)

∂x2
1

− ∂2W(x1, x2)

∂x2
2

=
4(x2

1 − x2
2)

u4
0

W(x1, x2). (42)

In conclusion, if the CSD W is SI it has to satisfy Equation (42). The condition expressed
in Equation (42) provides a tool to ascertain whether a given CSD is of the SI type, by
checking its functional features, in that the right-hand side has to be proportional to x2

1− x2
2.

Once this is verified, Equation (42) also gives the value of u0, which was introduced as an
unknown in Equation (37).
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As an added bonus of the previous derivation we note that, if W is SI, we can generate
further genuine SI CSDs by simple differentiation. In fact L(x1, x2) is shown to be SI by
Equation (40) whose closed form expression is obtainable by one of the two following formulas

L(x1, x2) =
4x2

i
u4

0
W(x1, x2)−

∂2W(x1, x2)

∂x2
i

, (i = 1, 2), (43)

or, in a more symmetric way, from

L(x1, x2) =
2(x2

1 + x2
2)

u4
0

W(x1, x2)−
1
2

[
∂2W(x1, x2)

∂x2
1

+
∂2W(x1, x2)

∂x2
2

]
. (44)

This procedure can be repeated iteratively starting from L(x1, x2) instead of W(x1, x2).
It is to be noted that the eigenvalues of L are significantly modified with respect to

those of W. For example, if W is the CSD of a GSM source, its eigenvalues are of the form
(see Equation (30))

ηn = η0 qn, (45)

with 0 < q < 1 and η0 a suitable constant. The eigenvalues of L are

η′n = η′0 (2n + 1)qn (46)

and are considerably depressed for low indices and enhanced afterward. We can normalize
them in such a way that for both of them the sum from 0 to ∞ is 1. This requires

η0 = 1− q; η′0 = (1− q)2/(1 + q). (47)

The plots of the eigenvalues are shown in Figure 8.
It will be noticed that the differential operator appearing in Equation (38), whose

functional structure can be reduced to

ĤHO = − d2

dx2 + x2, (48)

is the Hamiltonian of the quantized harmonic oscillator [18]. In this view, Equation (36)
specifies the energy eigenfunctions, and the CSD (37) plays the role of the density operator [18].
This formal analogy played a role in recent research about partially coherent sources described
by the Christoffel Darboux formula [16] and could be further exploited here.

It can also be noted that from the HG family further sets of orthonormal modes can be
derived for propagation in lossless first-order optical systems [19].
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This procedure can be repeated iteratively starting from L(x1, x2) instead of W(x1, x2).98

It is to be noted that the eigenvalues of L are significantly modified with respect
to those of W. For example, if W is the CSD of a GSM source, its eigenvalues are of the
form [see Eq.(30)]

hn = h0 qn , (45)

with 0 < q < 1 and h0 a suitable constant. The eigenvalues of L are

h0
n = h0

0 (2n + 1)qn , (46)

and are considerably depressed for low indices and enhanced afterward. We can nor-
malize them in such a way that for both of them the sum from 0 to • is 1. This requires

h0 = 1 � q ; h0
0 = (1 � q)2/(1 + q) . (47)

The eigenvalues are shown in Fig. 8 where discrete values are joined with continuous99

curves to ease visualization.100
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Figure 8. Normalized eigenvalues h and h0 (of W e L in Eqs. (45) and (46), respectively), as
functions of the index n for q = 0.9.

It will be noticed that the differential operator appearing in Eq. (38), whose func-
tional structure can be reduced to

bHHO = � d2

dx2 + x2, (48)

is the Hamiltonian of the quantized harmonic oscillator [15]. In this view Eq. (36) specify101

the energy eigenfunctions, and the CSD (37) plays the role of the density operator [15].102

This formal analogy played a role in recent research about partially coherent sources103

described by the Christoffel Darboux formula [13] and could be further exploited here.104

It can also be noted that from the HG family further sets of orthonormal modes can105

be derived for propagation in lossless first-order optical systems [16].106

6. Conclusions107

In this paper we examined two classes of sources that offer variable coherence108

features across their area. Both of them are based on the familiar GSM sources, but are109

endowed with a space variant DOC.110

The first approach emphasizes the role that the Laplace transform, with its rich set111

of properties, may have in the problem at hand.112

The second approach examines variant coherence sources in the realm of SI CSDs113

where the propagation problems become fairly simple. Two basic results are: a) the114

solution of the infinite set of involved integral equations; and b) the derivation of a115

simple differential test to ascertain whether an assigned CSD is SI.116
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6. Conclusions

In this paper, we examined two classes of sources that offer variable coherence features
across their area. Both of them are based on the familiar GSM sources, but are endowed
with a space variant DOC.

The first approach emphasizes the role that the Laplace transform, with its rich set of
properties, may have in the problem at hand.

The second approach examines variant coherence sources in the realm of SI CSDs
where the propagation problems become fairly simple. The two basic results are: (a) the
solution of the infinite set of involved integral equations and (b) the derivation of a simple
differential test to ascertain whether an assigned CSD is SI.
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CSD cross-spectral density
GSM Gaussian Schell model
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SI shape-invariant
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