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Abstract: A plasma photonic crystal (PPC) was formed using an array of discharge plasma tubes.
The transmission spectra and bandstructure of PPCs with different lattice types under different
polarization modes were studied through simulation and measurement. To study the types of
bandgap in PPCs, the bandstructure of the PPC is calculated using symplectic finite difference
time domain (SFDTD), a modified plane wave expansion (PWE) method, and a finite element
method (FEM) based on weak form equations. The bandstructure of the PPC is compared with
the transmission curve results. The results show that the bandgap is stable in the PPC, and the
experimental and numerical results of the transmission spectra agree well. There are different
types of bandgap in the PPC; the bandgap under TE-like polarization is caused by localized surface
plasmon (LSP) and Bragg scattering. The bandgap under TM-like polarization is caused by the cutoff
effect of plasma on the electromagnetic wave and Bragg scattering. The lattice type also affects the
position and number of the bandgap. The three methods have their advantages and disadvantages
when calculating bandstructure. Therefore, it is necessary to combine the results of three methods
and experimental results to accurately determine the bandgap type of the PPC.

Keywords: plasma photonic crystal (PPC); localized surface plasmon (LSP); bandstructure; plane
wave expansion (PWE); weak form equations; symplectic finite difference time domain (SFDTD)

1. Introduction

Plasma photonic crystals (PPCs) composed of plasma arrays not only have the proper-
ties of conventional photonic crystals (PCs), but can also change their dielectric constant
by controlling the plasma parameters (electron density, collision frequency, etc.), thereby
having a tunable photonic bandgap (PBG). In addition, PPCs can generate a localized
surface plasmon (LSP) bandgap in specific polarization mode; the LSP bandgap will have
a strong absorption effect on electromagnetic waves, and the LSP bandgap is also tunable.
Therefore, PPCs can be used to construct electromagnetic wave absorbing devices easily.
It has broad application prospects. In the future, PPCs are expected to be used in elec-
tromagnetic cloaking devices, microwave isolators, omnidirectional reflectors, and other
microwave devices.

Since the concept of PPCs was proposed, its transmission characteristics have been
the focus of research. Sakai et al. first proposed the concept of PPCs, constructed a helium
discharge plasma array at atmospheric pressure, and investigated the bandgap of PPCs by
experimental tests and numerical calculations [1,2]; Fan [3] and Wang et al. [4], used dielec-
tric barrier discharge (DBD) with two water electrodes to obtain a two-dimensional PPC
with tunable lattice arrangement and photonic bandgap; Wang et al. [5] designed a three-
dimensional woodpile type PPC and calculated and tested its transmission characteristics;
Zhang [6], Wen [7], and Wang [8] composed a PPC using plasma discharge tubes and tested
and calculated its transmission and absorption characteristics; V. I. Arkhipenko et al. [9]
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obtained PPCs using neon glow discharge arrays, placed them in waveguides, and studied
the transmission characteristics of PPCs at X-band; V. S. Babitski [10] obtained a PPC using
argon pulse discharge at atmospheric pressure and also calculated and tested the transmis-
sion characteristics of PPCs. The results show that the properties of PPCs are similar to
those of metallic photonic crystals at high electron density. Akinori et al. [11] constructed
a periodic array structure using double split ring resonators and plasma discharge tubes,
and the results showed that the structure has negative magnetic permeability, which means
the tunable negative-refractive-index device can be achieved. Wang et al. [12] composed a
photonic crystal using spherical silicon nitride and plasma discharge tubes and discussed
how such photonic crystals can be applied in photonic artificial neural networks and optical
computing systems.

In recent years, the study of the transmission characteristics of PPCs has been fruitful,
but not much literature has been published on the analysis of the PPC bandgap type.
Righetti [13], Tan [14], etc. determined the bandgap type by the transmission spectra and
dielectric constant of plasma. In the author’s opinion, more powerful evidence is needed
to determine the bandgap type.

In this paper, two different lattice types of PPCs are constructed using plasma dis-
charge tubes, a model for calculating PPCs is established, and the transmission spectra of
PPCs under different polarization modes are experimentally and calculated. To analyze the
bandgap types in the PPC transmission spectra, the bandstructure of the PPC is calculated
using the symplectic finite difference time domain (SFDTD) and modified plane wave
expansion (PWE) methods and finite element method (FEM) base on weak form equations;
the types of bandgap in PPC transmission spectra are analyzed based on the computational
and experimental results, and the characteristics of the three methods are discussed.

The calculation of the transmission spectra in this paper uses CST Studio software;
the details of the PWE method are shown in Appendix A; the details of the weak form
equations are shown in Appendix B, and the calculation is completed using COMSOL
software; the iterative scheme of SFDTD is shown in Appendix C.

In the experiment, a 7 × 6 (row × column) array of plasma tubes was used to form a
PPC with a square lattice and triangular lattice with a lattice constant a = 20 mm, as shown
in Figure 1. The plasma tubes were controlled by a set of ballasts based on the DALI control
protocol. Each plasma tube was 16 mm in diameter and 260 mm in length, with a mixture
of low-pressure argon gas and mercury vapor inside. The walls of the plasma tubes were
made of quartz glass with a thickness of 1 mm.
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Figure 1. (a) Schematic diagram of PPC lattice. (b) Experiment photo. Figure 1. (a) Schematic diagram of PPC lattice. (b) Experiment photo.

The experiments were conducted in a 6 m (length) × 6 m (width) × 6 m (height)
darkroom. A PPC was placed on a low scattering turntable, and the whole test system
was placed inside the microwave anechoic chamber. The vector network analyzer used for
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the measurement is Agilent N5224A, and the antenna is a dual-ridge broadband antenna
with an experimental frequency range of 1–12 GHz. The electromagnetic wave propagates
negatively along the X-axis, and the polarization directions are Y-direction and Z-direction,
respectively. Due to the limited length of the discharge tube in the experiment, the TE
polarization and TM polarization here do not satisfy the ideal situation, and for accurate
description, the Y-direction polarization is called TE-like polarization and the Z-direction
polarization is called TM-like polarization.

2. Transmission Characteristics and Bandstructure of PPC
2.1. Modeling of PPC Unit

The plasma distribution in the discharge tube is not uniform. Generally speaking, low-
pressure low-temperature plasma usually does not meet local thermodynamic equilibrium
(LTE) conditions. Therefore, the Boltzmann spectral lines method cannot be used to estimate
the electron temperature. However, the Fermi–Dirac model can be used to diagnose the
electron excitation temperature [15], and the trend of the electron excitation temperature is
similar to that of the electron temperature, so the change in the electron temperature can be
inferred according to the change law of the electron excitation temperature. Walker [16]
gave a Fermi–Dirac model for calculating the electron excitation temperature under non-
LTE conditions:

ln(Rp) = ln(
Iijλij

gi Aij
) = ln [exp(εi − µ)/kTexc + 1]−1 + C (1)

where Rp is the relative population, Iij is the measured relative emission intensity, λij is the
transition wavelength, gi is the upper state statistical weight, Aij is the Einstein coefficient
for spontaneous emission, εi is excitation energy, Texc is electron excitation temperature,
and C is a proportionality constant. Then, the values of parameters Texc, µ, and C were
obtained with the use of nonlinear-curve-fitting method.

The measurement points are shown in Figure 2a. The spectrometer is the HR4000+
produced by Ocean Optics. The spectral data comes from the National Institute of Stan-
dards and Technology (NIST) database [17], as given in Table 1. The result of electron
excitation temperature in the plasma tube is shown in Figure 3.
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Table 1. Spectroscopic data corresponding to the selected Hg I emission spectrum.

λij(nm) Aij(10−7s−1) εi(eV) gi

253.6521 0.84 4.887 3
312.6574 6.6 8.852 5
365.0158 12.90 8.857 7
404.6565 2.07 7.731 3
435.8335 5.60 7.731 3
546.075 4.9 7.731 5
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each measuring point with power. (b) Distribution of electron excitation temperature along the axis under different powers.

Figure 3a shows that as discharge power increases, the electron excitation temperature
in the tube also increases. Therefore, it can be considered that the electron temperature
also increases. The meaning of electron temperature is the average electron energy, so
the power increases, the energy gained by the electrons escaping from the electrode in-
creases, and the electron temperature increases. In a low-pressure glow discharge tube, the
electron temperature and electron density have similar changes along the axial direction.
Therefore, it can be considered that, when the discharge power increases, the electron
density increases. Figure 3b shows that the electron excitation temperature is more uni-
formly distributed outside the electrode, and the uniformity increases with the increase
in power. Since the discharge tube works under AC power, the two electrodes alternately
become cathode and anode, so the two electrodes may alternately be in the anode area
or cathode area; thus, the electron excitation temperature is different from other areas.
While the remaining measurement points are located in the positive column area, and the
plasma parameters’ distribution in the positive column area are uniform, so the electron
temperature distribution is relatively uniform. Based on this, it can be approximated that
the plasma distribution in the axial direction is relatively uniform, and the influence of the
axial direction is ignored in the modeling.

In the radial direction, the electron density is largest at the center and zero at the wall.
Therefore, an equivalent model is established, as shown in Figure 2b. The outermost layer
of the model is quartz glass, the dielectric constant ε is 3.8, the middle layer is air, and
the innermost layer is plasma. The radii of each layer are: R1 = 8 mm, R2 = 7 mm, and
R3 = 4 mm. The dielectric constant of the plasma uses the Drude model, and the specific
formula can be found in reference [8].

The electron density in the low-pressure glow discharge plasma tube is generally
considered to be in the range of approximately 1016/m3 to 1018/m3. The order of magnitude
of the collision frequency was estimated, using BOLSIG+ software [18], to be 109 Hz. The
power consumed by each discharge tube is P1 = 6.28 W, P2 = 6.43 W, and P3 = 6.56 W;
the corresponding electron density used for the calculation is: ne1 = 2.64 × 1017/m3,
ne2 = 2.92 × 1017/m3, and ne3 = 3.36 × 1017/m3.

As the electron density increases, the collision frequency also increases. Therefore, the
collision frequency is, respectively, taken as: v1 = 5 GHz, v2 = 6 GHz, and v3 = 8 GHz.

2.2. The Transmission Characteristics of PPC

The calculation and experimental results of the transmission spectra are shown in
Figures 4–6. In the legend, “Sqr” means square lattice, “Tri” means triangular lattice,
“TE−like” means TE−like polarization, “TM−like” means TM−like polarization, “exp”
represents the experimental results, and “sim” represents the numerical results.
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Figures 4–6 show that, under TE−like polarization, a wider and deeper bandgap
appears near 3 GHz in each transmission spectra, which may be due to the localized
surface plasmon (LSP) generated by the electromagnetic wave on the plasma surface
under TE−like polarization, and the depth of the LSP bandgap is much larger than the
conventional photonic bandgap generated by Bragg scattering. The main method of
electron generation in the discharge tube is the hot electron emission from the cathode. As
the discharge current rises, the temperature of the cathode rises, the number of electrons
escaping from the cathode increases, the electron density increases, the plasma frequency
rises, and the bandgap moves to a higher frequency. Additionally, as the electron density
increases, the collision frequency of the plasma in the discharge tube increases. From the
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Drude model, it can be seen that the collision frequency increases, the imaginary part of
the plasma dielectric constant decreases, i.e., the loss of electromagnetic wave propagation
in it decreases, so the bandgap depth becomes shallow. When the frequency is greater
than 5 GHz, the dielectric constant of the plasma tends to a vacuum, so the value of the
transmission spectra is close to 0. The experimental and simulated transmission curves are
in good agreement, indicating that the established layered model is reasonable.

It can be deduced from the Maxwell equations in the medium that electromagnetic
waves cannot generate LSP on the plasma surface under TM−like polarization [19]. At this
point, there is a cutoff region (1 to 3 GHz) in the transmission spectrum, and electromagnetic
waves cannot be transmitted in this region due to the cutoff effect of the plasma on
electromagnetic waves below the plasma frequency. However, the cutoff frequencies in
Figures 4b, 5b and 6b are lower than the plasma frequency, which indicates that the cutoff
phenomenon is somewhat weakened when the plasma is used as a scatterer.

Comparing the transmission spectra of triangular and square lattice PPCs, it can be
found that, under a TM−like mode, around 8.5 GHz, the triangular lattice PPC has an extra
bandgap. The reason may be that the structure of the triangular lattice is more compact,
and electromagnetic waves are more prone to generate Bragg scattering. Figures 4–6 show
that the bandgap of PPCs is determined by the polarization direction and the lattice type.

The difference between the experimental and numerical results may be caused by
the following reasons: the length of the plasma tube in the experiment is limited, and
the plasma distribution is not uniform, and the plasma distribution near the electrodes is
significantly different from the central region of the plasma tube; the calculation considers
that the plasma tube is infinitely long and the plasma is considered uniform. The metal
sheath at both ends of the plasma tube may have some influence on the results. In addition,
due to the limited number of plasma tubes, the PPC cannot cover the antenna completely
under TM−like polarization, and the low-frequency electromagnetic waves may enter
the receiving antenna due to diffraction, so the experimental and simulated transmission
curves differ below 2 GHz.

Figures 7 and 8 show the calculation results of the electric field distribution when the
discharge power P1 = 6.28 W. Under TE−like polarization with a frequency of 3.075 GHz
(within the bandgap), in the rightmost plasma tube, the electric field is significantly en-
hanced at the intersection of plasma and air, and this is consistent with the phenomenon
generated by LSP [20]. Under TM−like polarization, when the frequency is 1 GHz (within
the cutoff bandgap), there is no LSP-like phenomenon in the electric field. When the
incident frequency is 8.7 GHz (within the Bragg bandgap), the triangular lattice will have a
conventional photonic bandgap under the two polarization modes, while the square lattice
has no bandgap. The reason is as mentioned above. The more compact structure of the
triangular lattice leads to Bragg scattering in the PPC, but the Bragg bandgap does not
cause electromagnetic waves to be absorbed, so the bandgap depth is significantly smaller
than the LSP bandgap. Therefore, the cause of the photonic bandgap is closely related to
the polarization mode and the lattice structure. At the same time, the change in the lattice
structure significantly changes the distribution of the electric field.

2.3. The Bandstructure of PPC

In this section, the bandstructure of the PPC is calculated by SFDTD, PWE, and
FEM. Since the variation of electron density only affects the bandgap position, not the
bandstructure and bandgap type, so the case of discharge power P1 = 6.28 W (ne1 = 2.64
× 1017/m3) is chosen for analysis in this section. A comparison of the bandstructure and
transmission spectra is shown in Figures 9 and 10.
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From Figures 9a–c and 10a–c, it can be seen that the flat band appears in the band-
structure at frequencies of 2 to 4 GHz under TE−like polarization, which corresponds to
the bandgap in the transmission spectra. The reason for the generation of the flat band
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is the presence of LSP, which is a common feature of the bandstructure under TE−like
polarization in metallic photonic crystals and plasma photonic crystals.

On bounded surfaces, LSP can be generated by direct irradiation of electromagnetic
waves, which is essentially a resonance phenomenon. The incident electric field exerts a
force on the free electrons in the plasma, thus causing the free electrons to be deflected
relative to the positive ions, and the Coulomb force between the positive ions and the
electrons acts as an effective restoring force to pull the driven deflected electrons toward its
equilibrium position, thus causing resonance [13].

The LSP has two significant effects: first, the incident wave undergoes strong ab-
sorption and scattering at the LSP resonant frequency; second, there is a locally enhanced
electric field. Moreover, the LSP generated on the cylindrical PPC can be regarded as a
standing wave of the surface plasma wave propagating in the opposite direction, and the
electric field distribution with a knot-belly structure at the plasma-air interface can be
observed in both Figures 7a and 8a.

A conventional photonic bandgap appears near the frequency of 7 GHz, which arises
due to Bragg scattering caused by the periodic variation of the dielectric constant. From
the transmission spectra, it can be seen that the depth of the bandgap generated by the
LSP is larger than that of the Bragg bandgap. Since LSP is not generated under TM−like
polarization, there is no flat band in Figures 9b–d and 10b–d.

Figures 9 and 10 show that the bandstructure results of the three methods are in
better agreement with the experiments. Compared with the traditional FDTD method,
SFDTD constructs the symplectic scheme by the high-order symplectic integral method,
which has better numerical accuracy, but the multi-stage time advance and the high-
order spatial difference will increase the computation; the PWE method is simple to
program and fast to calculate; however, the generality is poor, and the calculation formula
varies with the increase in medium type; an FEM method based on weak form equation
simplifies the nonlinear eigenvalue problem into a linear eigenvalue problem, which saves
computational effort.

The bandstructure calculated by the SFDTD may “miss” or “misrecord” the eigenfre-
quencies because the calculation results of SFDTD depend on the number and location of
excitation sources and monitors. PWE and FEM methods will calculate some “pseudo”
eigenfrequencies when calculating the TE−like polarization bandstructure, because the
presence of LSP in PPCs makes it difficult to converge when solving for the complex
eigenvalues. Therefore, a combination of the three methods and experimental results is
needed to analyze the bandgap type of PPCs comprehensively and accurately.

3. Conclusions

In this paper, the transmission characteristics of triangular and square lattice PPCs
with different polarization modes are tested and simulated, the bandstructure of PPCs
is calculated by SFDTD, PWE, and FEM methods based on weak form equations, and
the bandgap types of PPCs are analyzed. Combining the above results, the following
conclusions are obtained.

1. A layered model is established for the plasma discharge tube, the simulation and
experiment results of the transmission spectra are in good agreement, indicating that
the layered model is reasonable.

2. The bandgap of a PPC is determined by the polarization direction and lattice type.
The rise in electron density and collision frequency makes the LSP bandgap move
toward high frequency and the bandgap depth becomes shallow.

3. The type of bandgap in the transmission spectra can be determined by the bandstruc-
ture: a flat band in the bandstructure indicates the presence of LSP in the PPC, and
regular bandgap is generated by Bragg scattering and the cutoff effect of plasma on
electromagnetic waves.



Photonics 2021, 8, 401 10 of 13

4. SFDTD, PWE, and FEM can calculate bandstructure; each has its advantages and
disadvantages. Therefore, it is necessary to combine the results of the three methods
and the experimental test results to accurately determine the bandgap type of the PPC.
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Appendix A. Modified Plane Wave Expansion Method

In the case of the TE (H polarization) mode, the z component of magnetic field Hz is

Hz(x‖|ω ) = ∑
G‖

A(k‖
∣∣∣G‖ )ej(k‖+G‖)·x‖ (A1)

when we substitute Equation (A1) into the wave equation about Hz, coefficients A(k‖
∣∣∣G‖ )

fulfill the following equation as

∑
G‖ ′

(k‖ + G‖)(k‖ + G‖′)H f (G‖ − G‖′)A(k‖
∣∣∣G‖ ) = ω2

c2 A(k‖
∣∣∣G‖ ) (A2)

where H f (G‖) are the Fourier coefficients of 1/ε(x‖|ω ), and G‖ is a reciprocal-lattice vector.

H f (G‖) =
1
s

x

S

ε(r‖) exp(−jG‖r‖)dr (A3)

ε(r‖) =
1
εb

+ (
1
εp
− 1

εb
) · F1(r‖) + (

1
εq
− 1

εb
) · F2(r‖) (A4)

F1(r‖) =
{

1, in the plasma region
0, in the the air region

(A5)

F2(r‖) =
{

1, in the quartz region
0, in the the air region

(A6)

In order to calculate Fourier coefficients of photonic crystal of arbitrary shape, numer-
ical integration method could be used. Here, takes the square lattice as an example, as
Figure A1 shows.

H f (G‖) =
1
s

M

∑
i=1

ε(xi, yi) exp(−j(Gxxi + Gyyi))∆ai (A7)

where subscript i represents the ith element, M is the total number of element, ∆ai is the
area of ith element, (xi, yi) is the coordinate of the center of ith element, ε(xi, yi) is the value
of Equation (A4) in ith element, (Gx, Gy) is the x-component and y-component of G‖.
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where the elements of the N N  matrices are X3 X2 X1 X0. N is the number of plane wave. 
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Using Equations (A2) and (A7) and µ = ω/c, Equation (A2) yields

µ4I− µ3X3 − µ2X2 − µX1 −X0 = 0 (A8)

where
X3(G‖

∣∣∣G‖′ ) = −j
v
c
· δG‖ ,G‖ ′ (A9)

X2(G‖
∣∣∣G‖′ ) = 1

s

M
∑

i=1

εq+F2εb−F1εq−F2εq+F1εbεq
εbεq

· exp{−j[(Gx − Gx′)xi + (Gy − Gy′)yi]}∆ai · (k‖ + G‖) · (k‖ + G‖′) +
ωp

2

c2 · δG‖G‖ ′
(A10)

X1(G‖
∣∣∣G‖′ ) = 1

s

M
∑

i=1

εq+F2εb−F1εq−F2εq+F1εbεq
εbεq

· exp
{
−j[(Gx − Gx′)xi + (Gy − Gy′)yi]

}
∆ai · (k‖ + G‖) · (k‖ + G‖′) · j v

c

(A11)

X0(G‖
∣∣∣G‖′ ) = 1

s

M
∑

i=1

εq+F2εb−F1εq−F2εq
εbεq

· exp{−j[(Gx − Gx′)xi + (Gy − Gy′)yi]}∆ai · (k‖ + G‖) · (k‖ + G‖′) · (−
ωp

2

c2 )

(A12)

where the elements of the N× N matrices are X3 X2 X1 X0. N is the number of plane wave.
This polynomial form is transformed into a linear problem in 4N dimensions by W that
fulfills

Wz = µz, W =


O I O O
O O I O
O O O I
X0X1X2X3

 (A13)

Similarly, for the TM (E polarization) mode, the calculation formula is directly given here:

µ3X3 − µ2X2 − µX1 −X0 = 0 (A14)

X3(G‖
∣∣∣G‖′ ) = 1

s

M
∑

i=1
(F1 + εb − F1εb − F2εb + F2εq)

· exp
{
−j[(Gx − Gx′)xi + (Gy − Gy′)yi]

}
∆ai

(A15)

X2(G‖
∣∣∣G‖′ ) = X3(G‖

∣∣∣G‖′ ) · (−j
v
c
) (A16)

X1(G‖
∣∣∣G‖′ ) = 1

s

M
∑

i=1
(F1

ωp
2

c2 ) · exp{−j[(Gx − Gx′)xi + (Gy − Gy′)yi]}

·∆ai − (k‖ + G‖)2δG‖G‖ ′

(A17)
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X0(G‖
∣∣∣G‖′ ) = −j

v
c
(k‖ + G‖)

2δG‖G‖ ′ (A18)

where the elements of N × N matrices are X3 X2 X1 X0. This polynomial form is trans-
formed into a linear problem in 3N dimensions by Q and V that fulfills

Qz = µVz, Q =

 O I O
O O I
X0X1X2

, V =

 I O O
O I O

O O X3

 (A19)

Appendix B. Derivation of Weak Form Equations

Taking the TE mode as an example, the Maxwell equation is:

∇× (
1
ε
∇×H)− µ

ω2

c2 H = 0 (A20)

According to Bloch′s theorem, the magnetic field H can be expanded as:

H(x) = u(x) exp[i(ωt− k · x)] (A21)

Substituting Equation (A21) into Equation (A20), Equation (A20) can be obtained:

k2

ε
u− k

ε
(k · u)− ik× (

1
ε
)− i∇× (

1
ε

k× u) +∇× (
1
ε
∇× u)− µ

ω2

c2 u = 0 (A22)

Both sides of Equation (A22) are multiplied by the weight function v

FH(v, u) = k2

ε v · u− k
ε (k · v)(k · u)− i( 1

ε )v · [k× (∇× u)]
−i(∇× v) 1

ε (k× u) + (∇× v) 1
ε (∇× u)− µ ω2

c2 v · u
(A23)

The FEM method requires the integration over the computational region provided that
the equations and boundary conditions are satisfied, and let Equation (A23) equal zero:

0 =
∫
Ω

d3xFH(v, u)

=
∫

Ωd3x v · [− 1
ε k× (k× u)− i 1

ε v · k× (∇× u) +∇× ( 1
ε∇× u)− µ ω2

c2 u]

+
∮
∂Ω

dAv · [∧n× 1
ε (−ik× u +∇× u)]

(A24)

For a 2D problem, Equation (A24) can be simplified to:

FHz(
∼
Hz, Hz) =

∫
d2x[∇×

∼
Hz ·

1
ε
· ∇ × Hz −

∼
Hz

µω2

c2 Hz] (A25)

With the following substitutions Hz = hze−ik·x,
∼
Hz =

∼
hze−ik·x, where

∼
Hz is weight

function, Equation (A25) becomes Equation (B7):

FHz(
∼
Hz, Hz) =

∫
d2x[(ik +∇)

∼
hz ·

1
ε
· (−ik +∇)hz −

∼
hz

µω2

c2 hz] (A26)

where k = k0 + λkn.
The contents of the square brackets in Equation (A26) are entered according to the

COMSOL format, and λ is the eigenvalue to be determined.
Similarly, the weak form equation of TM mode is Equation (A27):

FEz(
∼
Ez, Ez) =

∫
d2x[(ik +∇)×

∼
Ez ·

1
µ
· (−ik +∇)× Ez −

∼
Ez

εω2

c2 Ez] (A27)
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Appendix C. The Scheme of SFDTD

In this paper, we use the SFDTD (5, 4) scheme, which means five steps advance in the
time direction and a fourth order difference in the space direction. The iteration scheme of
SFDTD is:

Hn+l/m = Hn+(l−1)/m − cl∆t
µ0

(∇× En+(l−1)/m) (A28)

Jn+l/m = (
2− vcl∆t
2 + vcl∆t

)Jn+(l−1)/m +
2ε0clω

2
p∆t

(2 + vcl∆t)
En+(l−1)/m (A29)

En+l/m = En+(l−1)/m +
dl∆t

ε0
[(∇×Hn+l/m)− Jn+l/m] (A30)

where l = 0, 1, 2 . . . 5, m = 5, cl and dl are symplectic propagator. The specific coefficients
are in [21,22].
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