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Abstract: Detection of small moving objects in long range infrared (IR) videos is challenging due to
background clutter, air turbulence, and small target size. In this paper, we present two unsupervised,
modular, and flexible frameworks to detect small moving targets. The key idea was inspired by
change detection (CD) algorithms where frame differences can help detect motions. Our frameworks
consist of change detection, small target detection, and some post-processing algorithms such as
image denoising and dilation. Extensive experiments using actual long range mid-wave infrared
(MWIR) videos with target distances beyond 3500 m from the camera demonstrated that one approach,
using Local Intensity Gradient (LIG) only once in the workflow, performed better than the other,
which used LIG in two places, in a 3500 m video, but slightly worse in 4000 m and 5000 m videos.
Moreover, we also investigated the use of synthetic bands for target detection and observed promising
results for 4000 m and 5000 m videos. Finally, a comparative study with two conventional methods
demonstrated that our proposed scheme has comparable performance.

Keywords: infrared videos; change detection; object detection; long range videos; synthetic images

1. Introduction

In long range surveillance, targets may have around 10 or even fewer pixels and these
are known as small targets. Small target detection is difficult in long range infrared videos
due to small target size and environmental factors. Small target detection for infrared
images has been a commonly explored problem in recent years [1–6]. Chen et al. [1]
proposed to detect small IR targets by using local contrast measure (LCM), which is time-
consuming and sometimes enhances both targets and clutters. To improve the performance
of LCM, Wei et al. [2] introduced a multiscale patch-based contrast measure (MPCM).
Gao et al. [3] developed an infrared patch-image (IPI) model to convert small target
detection to an optimization problem. Zhang et al. [4] improved the performance of the IPI
via non-convex rank approximation minimization (NRAM). Zhang et al. [5] proposed to
detect small IR targets based on local intensity and gradient (LIG) properties, which has
good performance and relatively low computational complexity. Recently, Chen et al. [6]
proposed a new and real-time approach for detecting small targets with sky background.

It should be noted that the aforementioned papers detect targets frame by frame.
Parallel to the above small target detection activities, there are some conventional target
tracking methods [7,8] for videos. In general, target detection performance in videos can
yield better results because target motion can be exploited. For instance, the paper [7]
combines single frame detection with a track fusion algorithm to yield improved target
detection in infrared videos. Furthermore, various target detection and classification
schemes for optical and infrared videos have been proposed in the literature [9–33]. Some
of them [9–11,13,33] used You Only Look Once (YOLO) for target detection. Although
the YOLO performance is reasonable for short ranges up to 2000 m in some videos, the
performance dropped quite a lot in long ranges where the target sizes are so small. This is
because some deep learning algorithms, such as YOLO, use texture information to help the
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detection. The use of YOLO is not very effective for long range videos in which the targets
are too small to have any discernible textures. Some of these new algorithms incorporated
compressive measurements directly for detection and classification. Real-time issues have
also been discussed [33]. In a recent paper [34], optical flow techniques were applied to
small target detection in long range infrared videos. Detection results using actual videos
in the range up to 5000 m yielded promising performance.

In this research, we focus on small moving target detection in long range infrared
videos where the ranges are 3500 m and beyond. In the literature, we have not seen target
detection studies for such long ranges before except papers written by us [7,9–11,34]. We
propose two approaches based on change detection (CD) techniques for target detection in
videos containing moving targets. We call these two approaches the standard and alternate
approaches. There are several steps in the standard approach. First, we propose to apply
change detection techniques to generate a residual image between two frames separated
by 15 frames. The number “15” is a design parameter that worked well in our experiments.
For other datasets, a different number may be needed. Although direct subtraction between
two frames can be used here, we compared three well-known change detection methods
known as covariance equalization (CE) [35], chronochrome (CC) [36], and anomalous
change detection (ACD) [37] and found that those change detection methods performed
better than direct subtraction. Second, a denoising step using a diffusion filter is used
to reduce some false positives Third, an image dilation step is performed afterwards to
enlarge the detected object. Fourth, a Local Intensity Gradient (LIG) [5] is applied to the
residual image to detect the targets in the residual image. It was discovered that this step
plays a dominant role in small target detection. Finally, another dilation is performed to
further enhance the target detection performance. In the alternate approach, the LIG and
change detection modules are swapped. Extensive experiments using three long range
infrared videos demonstrated that the performance of the standard approach is better than
the alternate approach.

In addition to the above studies, we also investigated the use of Extended Morpho-
logical Attribute Profile (EMAP) [38–42] and local contrast enhancement (LCE) [43] to
synthesize multiple bands out of the single infrared image. The motivation for this is that,
in our recent change detection applications [44,45], we noticed remarkable improvement
in change detection and target detection performance when EMAP was used. For LCE, it
was observed by Xia et al. [43] that target detection was also improved. The additional
synthetic bands from EMAP and LCE yielded comparable or better results than that of
using the original images for 4000 m and 5000 m videos.

Our contributions are summarized as follows:

• We present two new target detection frameworks from a change detection perspective
for small moving targets.

• The two new schemes are unsupervised approaches as compared to the deep learning
approaches in the literature. This means the proposed approaches require no training
data and hence are more practical.

• We demonstrated the efficacy of the proposed approaches using actual long range and
low quality MWIR videos from 3500 m to 5000 m.

• We investigated the use of synthetic bands for target detection. The performance
is promising as we have comparable or better detection results for 4000 m and
5000 m videos.

• We compared with two conventional approaches (frame by frame and optical flow)
and yielded comparable or better performance.

The remainder of the paper is as follows. Section 2 describes the motivation and the
proposed approaches. Section 3 summarizes the experimental results, including compara-
tive studies. Finally, some concluding remarks are presented in Section 4.
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2. Small Target Detection from the Change Detection Perspective
2.1. Motivation

Figure 1 contains three frame differences with different separations from a 3500 m
distance video, which is one of the daytime videos in the DSIAC dataset [46]. It can be
seen that, when two frames are separated by 15 or more frames, it is possible to see some
motion differences. This motivates us to pursue object detection using frame difference.
However, as one can see in later sections, a direct subtraction without the help of other
processing modules can have a lot of false positives.
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Figure 1. Direct subtraction results. The frame separation needs to be large enough in order to detect moving objects.

2.2. Proposed Unsupervised Target Detection Approaches Using Change Detection

From Figure 1, the difference maps usually contain a lot of noise for a number of
different reasons and the accurately detected change is still very dim. So, we tried us-
ing more sophisticated change detection algorithms. The three algorithms we tried are
Covariance Equalization (CE) [35], Chronochrome (CC) [36], and Anomalous Change
Detection (ACD) [37]. It should be noted that using change detection between two frames
will also result in two detections. If these frames are far enough apart, there would be two
vehicles present on the change detection map. In our experiments, a 15-frame gap between
image pairs seems to create a reasonable balance where the vehicles overlap on the change
detection map so there will only be one detection and the vehicles also create a reasonably
sized detection due to the amount of separation that can occur in 15 frames. A smaller
gap in frames has more overlap guaranteeing only one detection but creating a smaller
detection as well. A larger gap in frames has a larger detection but increases the odds that
there will be two changes detected rather than one.

The most effective workflow for tracking a moving target using change detection is
to only use one frame every 15 frames and perform the following steps for each pair. The
workflow of the standard approach is also illustrated in Figure 2 and the key steps are
summarized below:

1. Perform change detection using a CD algorithm between two frames.
2. Apply denoising to reduce the amount of noise in the change map.
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3. Perform dilation to increase size and intensity of detected changes
4. Use LIG to detect anomalies in each change detection map.
5. Perform dilation again to make detected change more visible
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Figure 2. Proposed standard approach to target detection.

In Figure 3, we also show an alternative approach to target detection. The difference
between the two approaches is the location of the LIG module. In the alternative approach,
the LIG is applied to the two individual frames first. We will compare these two approaches
in the experiments.
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In the following paragraphs, we will briefly summarize the details of each module.

2.2.1. Change Detection

We have applied three change detection algorithms in our experiments.

Covariance Equalization (CE)

Suppose I(T1) is the reference (R) image and I(T2) is the test image (T). The algorithm
is as follows [35]:

1. Compute mean and covariance of R and T as mR, CR, mT , CT
2. Do eigen-decomposition (or SVD).

CR = VRDRVT
R , (1a)

CT = VT DTVT
T (1b)

3. Do transformation.

PR(i) = VRD−1/2
R VT

R (R(i)−mR) (2a)

PT(i) = VT D−1/2
T VT

T (T(i)−mT) (2b)
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4. The residual image between PR and PT is defined as

ε = [PR− PT]TQ[PR− PT] (3)

where Q is the covariance of [PR− PT]. The changes will be reflected in the residuals.

Chronochrome (CC)

Suppose I(T1) is the reference (R) image and a later image I(T2) the test image (T). The
algorithm is as follows [36]:

1. Compute mean and covariance of R and T as mR, CR, mT , CT
2. Compute cross-covariance between R and T as CTR
3. Do transformation.

PR(i) = CTRC−1
R (R(i)−mR) + mT (4a)

PT = T (4b)

4. Compute the residual

ε = [PR− PT]TQ[PR− PT] (5)

where Q is the covariance of [PR− PT]. The change detection results between PR and PT
can be seen in ε.

Anomalous Change Detection (ACD)

ACD is a method of Anomalous Change detection created by Los Alamos National
Laboratory [37]. ACD is based on an anomalous change detection framework that is
applied to the Gaussian model. Suppose x and y are mean subtracted pixel vectors in two
images (R and T) for the same pixel location. We denote the covariance of R and T as CR
and CT , and the cross-covariance between R and T as CTR. The change value at pixel
location (where x and y are) is then computed using

ε = [ xT yT ]Q
[

x
y

]
(6)

The change map is computed by applying Equation (6) for all pixels in R and T. In
Equation (7), subscript R corresponds to the reference image, subscript T corresponds to
the test image and Q is computed as

Q =

[
CR CT

TR
CTR CT

]−1

−
[

CR 0
0 CT

]−1

(7)

Different from Chronochrome (CC) and Covariance Equalization (CE) techniques, in
ACD, the lines that separate normal from abnormal ones are hyperbolic.

2.2.2. Denoising

The denoising step is important in reducing speckle noise that could be detected as a
change between two frames. During this step, Matlab’s imdiffusefilt function is used [47].
This function applies anisotropic diffusion filtering to denoise the change map.

2.2.3. Dilation

When using dilation, we used Matlab’s imdilate function using a disk with a size of
2 pixels as the parameter. This made the results from change detection much more clear.
Figure 4 shows an example of its improvement.
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2.2.4. LIG for Target Detection

Since the detection results of YOLO at the longer ranges (3500 m and above) were
not as high as we would have liked, we also investigated a traditional unsupervised
small target detection method to see how it would perform on the long range videos.
The algorithm of choice for this study was a local intensity gradient (LIG) based target
detector [5], specifically designed for infrared images. The LIG is relatively faster than other
algorithms and is very robust to background clutter. Figure 5 highlights the architecture of
the LIG [5]. The algorithm scans through the input image using a sliding window, whose
size depends on the input image resolution. For each window, the local intensity and
gradient values are computed separately. Then, those values are multiplied to form an
intensity-gradient (IG) map. An adaptive threshold is then used to segment the IG map
and then the binarized image will reveal the target.
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A major advantage of these traditional/unsupervised algorithms is that they require
no training, so there is no need to worry about customizing training data, which is the case
with YOLO. A disadvantage of the LIG algorithm is that it is quite slow, taking roughly
70 s per frame.

There are two adjustments we made to the LIG algorithm to make it more suitable
for the DSIAC infrared dataset. First of all, we adjusted the way in which the adaptable
threshold T is calculated. One method to calculate T is to use the mean value of all non-
zero pixels [5]. For our dataset, this calculation produced a very small value due to the
overwhelming amount of very low non-zero pixels. The left image in Figure 6 highlights the
significant role that the threshold plays for this algorithm. Second, we have implemented
ways of speeding up the algorithm, such as incorporating multithreading within the script
and also converting it to a faster interpreted language than MATLAB. We were able to
speed up the computational time by close to three times.
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For the example in Figure 6, the mean value was 0.008. Using this threshold value
for binarization, we observe that roughly half the non-zero pixels would be considered as
detections, as seen on the left hand image of Figure 6. This originally resulted in hundreds
of false positives in the frames. So instead of using the mean of non-zero pixels in the LIG
processed frame, we use the mean of the top 0.01% of pixels. A higher threshold is essential
for eliminating false positives, as can be seen in the image on the right of Figure 6.

After running change detection using the CC method, the visual change maps ap-
peared to be correct in most cases but there were a couple of pairs with a lot of noise. The
LIG detection was able to clean up the noise in the pairs that performed poorly. Figure 7
below is an example of what these noisy frames looked like.
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2.2.5. Dilation Again after LIG

After LIG, dilation is again performed using a 10 × 10 pixel square as the parameter.
Figure 8 shows an example of how this improves the visual result.

2.2.6. Generation of Synthetic Bands

In the past, researchers have used EMAP to enhance change detection
performance [38–42]. It was observed that EMAP can generate synthetic bands and im-
prove the overall performance. As such, we considered using EMAP to improve the small
target detection performance in infrared videos. EMAP allows us to convert a single band
into a multispectral image made up of synthetic bands.
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In another study, researchers also found that some synthetic bands using the LCE can
help the target detection performance [43]. We implemented the LCE algorithm.

This section describes our attempts to expand this investigation.
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EMAP

Mathematically, given an input grayscale image f and a sequence of threshold levels
{Th1, Th2, . . . Thn}, the attribute profile (AP) of f is obtained by applying a sequence of
thinning and thickening attribute transformations to every pixel in f .

The EMAP of f is then acquired by stacking two or more APs while using any
feature reduction technique on multispectral/hyperspectral data, such as purely geometric
attributes (e.g., area, length of the perimeter, image moments, shape factors), or textural
attributes (e.g., range, standard deviation, entropy) [38–41].

In this paper, the “area (a)” and “length of the diagonal of the bounding box (d)”
attributes of EMAP [42] were used. For the area attribute of EMAP, two thresholds used by
the morphological attribute filters were set to 10 and 15. For the Length attribute of EMAP,
the thresholds were set to 50, 100, and 500. The above thresholds were chosen based on
experience, because we observed them to yield consistent results in our experiments. With
this parameter setting, EMAP creates 11 synthetic bands for a given single band image.
One of the bands comes from the original image.

LCE

LCE stands for Local Contrast Element [43]. This method of creating synthetic bands
by creating a window around each pixel and finding the most similar pixels to the center.
This method was used to create a varying number of bands. Figure 9 is a diagram explaining
the logic in creating these synthetic bands.
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3. Experiments
3.1. Videos

Our research objective is to perform target detection in long range and low qual-
ity MWIR videos. There are no such datasets in the public domain except the DSIAC
videos [47]. There are optical and MWIR videos in the DSIAC datasets. The optical and
MWIR videos have very different characteristics. Optical imagers have a wavelength
between 0.4 and 0.8 microns and MWIR imagers have a wavelength range between 3 and
5 microns. Optical cameras require external illuminations whereas MWIR counterparts
do not need external illumination sources because MWIR cameras are sensitive to heat
radiation from objects. Consequently, target shadows, illumination, and hot air turbulence
can affect the target detection performance in optical videos. MWIR imagery is dominated
by the thermal component at night and hence it is a much better surveillance tool than
visible imagers at night. Moreover, atmospheric obscurants cause much less scattering
in the MWIR bands than in the optical band. As a result, MWIR cameras are tolerant
of heat turbulence, smoke, dust and fog. In this paper, we focused on the mid-wave
infrared (MWIR) videos collected at distances ranging from 1000 m to 5000 m with 500 m
increments. Each video has 1800 frames. The video frame rate is 7 frames/second and the
frame size is 640 × 512. Each pixel is represented by 8 bits. These videos are challenging
for several reasons. First, the target sizes are small due to long distances between the
target and camera. This is quite different from some benchmark datasets such as the MOT
Challenge [48] where the range from target to camera is short and the targets are big.
Second, the target orientations also change drastically because the vehicles travel in a circle.
Third, the illuminations in different videos are also different because of changes in cloud
cover and time of day. Fourth, the cameras also move in some videos.

3.2. Performance Metrics

A correct detection or true positive (TP) occurs if the binarized detection is within a
certain threshold of the centroid of the ground truth bounding box. Otherwise, the detected
object is regarded as a false positive (FP). If a frame does not have a TP, then a missed
detection (MD) occurs. Based on the correct detection and false positive counts, we can
further generate precision, recall, and F1 metrics. The precision (P), recall (R), and F1 are
defined as

P =
TP

TP + FP
(8)

R =
TP

TP + MD
(9)

F1 =
2× P× R

P + R
(10)

3.3. Experiments to Demonstrate the Proposed Frameworks

In this section, we will include some experimental results to illustrate the importance
of some critical modules. Figure 10 shows a few frames in the 3500 m video (daytime) even
though the frames look very dark.

3.3.1. Baseline Performance Using Direct Subtraction

Although the results shown in Figure 1 appear to show that we are able to detect the
moving target using direct subtraction, there are actually many false positives in different
places. In order to quantify the performance of direct subtraction, we performed several
experiments by using 300 frame pairs in the 3500 m videos.

Here, we briefly mention how we generated the 300 frame pairs. For every five frames,
we would select a pre-image and the corresponding post-image would be the 15th frame
after the pre-image.
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The first experiment was to perform direct subtraction without any other processing
steps in the workflows. Table 1 summarizes the results. One can see that the false positives
are vast and greatly outnumber the true positives. In the second experiment, we performed
change detection by using direct subtraction in the standard workflow as shown in Figure 2.
It should be noted that the workflow remains the same except for the change detection
module in which a direct subtraction was performed. The detection results are shown in
Table 2. It can be seen that direct subtraction worked quite well. In the third experiment,
we excluded the LIG module in the standard workflow. The results are shown in Table 3.
We can see that the performance dropped quite significantly. This means that the LIG
module plays an important role in the workflow.

Table 1. Direct subtraction results using 300 frame pairs without subsequent processing steps.

TP FP MD P R F1

312 1494 0 0.1727 1 0.2945

Table 2. Detection results from using direct subtraction to generate change maps with full standard
workflow. 300 frame pairs are used.

TP FP MD P R F1

293 5 7 0.9832 0.9767 0.9799

Table 3. Direct subtraction with full standard workflow excluding LIG. 300 frame pairs are used.

TP FP MD P R F1

296 834 4 0.2619 0.9867 0.4139

3.3.2. Importance of LIG in the Full Standard and Alternative Workflows

From Section 3.3.1, we observed that LIG played a very important role in object
detection when simple direct subtraction was used for change detection. It will be important
to demonstrate the importance of LIG in the full workflows containing more sophisticated
change detection algorithms. When there is no LIG, the two workflows are actually
the same. In the change detection module, we have compared three change detection
algorithms. We performed an experiment using 300 frame pairs in the 3500 m video.

Table 4 shows the detection results without using LIG. It can be seen that there are
more than one detection per frame and a lot of false positives. This is similar to Table 3
where a direct subtraction was performed. Comparing Tables 3 and 4, we can observe the
following. First, ACD has the fewest false positives in this case. Second, all three change
detection methods performed better (fewer FP) than direct subtraction.

Table 5 summarizes the results with LIG in the standard workflow and the alternative
workflow, respectively. We can see that the standard approach performed much better than
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the alternate approach. In the alternate approach, there are simply more false positives.
We think that one possible reason for better results in the standard flow is because of the
location of the LIG in the workflow. It should be noted that the LIG contains an adaptive
thresholding step. In the standard workflow, this thresholding is done in the later stage
whereas the LIG is applied in the early stage in the alternative workflow. We believe that,
since the thresholding is a hard decision step, a wrong decision in the thresholding may
cause some additional wrong decisions in the subsequent steps. Hence, it is better to delay
the thresholding in the later stage of the workflow.

Table 4. Detection results of the standard/alternate approaches excluding LIG. 300 frame pairs were
used. Bold numbers indicate the best performing method in each column.

CD Method TP FP MD P R F1

ACD 298 120 2 0.7129 0.9933 0.83

CC 303 500 0 0.3773 1 0.5437

CE 301 497 0 0.3772 1 0.5478

Table 5. Detection results from the Standard and Alternate approaches with LIG. There is a 15 frame
separation. 300 frame pairs were used. Bold numbers indicate the best performing method in
each column.

(a) Standard Approach

CD Method TP FP MD P R F1

ACD 297 1 3 0.9966 0.99 0.9933

CC 297 1 3 0.9966 0.99 0.9933

CE 297 1 3 0.9966 0.99 0.9933

(b) Alternate Approach

CD Method TP FP MD P R F1

ACD 189 135 111 0.5833 0.63 0.6058

CC 309 16 0 0.9508 1 0.9747

CE 313 238 0 0.5680 1 0.7246

3.3.3. Detection Results for 4000 m and 5000 m Videos

Here, we will summarize additional experiments using videos from 4000 m and
5000 m ranges using the full standard and alternate workflow. Figure 11 shows a few
frames from the raw 4000 m video. The target sizes are quite small and it is hard to visually
see any potential targets in the scene. Table 6 summarizes the detection results using the
standard and alternate workflows. It can be seen that the standard approach has much
fewer false positives in two out of three cases. Moreover, in the 4000 m video, the CC and
CE performed slightly better than ACD.
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Table 6. Detection results from the Standard and Alternate approaches with a 15 frame separation
where the target is at 4000 m. 300 frame pairs were used. Bold numbers indicate the best performing
method in each column.

(a) Standard Approach

CD Method TP FP MD P R F1

ACD 295 3 5 0.9899 0.9833 0.9866

CC 297 1 3 0.9966 0.99 0.9933

CE 297 1 3 0.9966 0.99 0.9933

(b) Alternate Approach

CD Method TP FP MD P R F1

ACD 270 84 30 0.7627 0.90 0.8257

CC 362 4 0 0.9891 1 0.9945

CE 423 10 0 0.9769 1 0.9883

Figure 12 shows a few frames from the 5000 m video. The target size is even small than
other ranges. Table 7 summarizes the detection results using the standard and alternate
workflows. One can observe that there are more false positives and missed detection. This
is understandable as the target size is so small. Moreover, we can see that the standard
workflow performed better than the alternate workflow in two out of three cases. However,
the alternative workflow has better results in the CC case.
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Table 7. Detection results from the Standard and Alternate approach with a 15 frame separation
where the target is at 5000 m. Bold numbers indicate the best performing method in each column.

(a) Standard Approach

CD Method TP FP MD P R F1

ACD 288 10 12 0.9664 0.96 0.9484

CC 288 10 12 0.9664 0.96 0.9484

CE 288 10 12 0.9664 0.96 0.9484

(b) Alternate Approach

CD Method TD FP MD P R F1

ACD 281 65 19 0.8121 0.9367 0.8699

CC 330 19 0 0.9456 1 0.9720

CE 337 30 0 0.9183 1 0.9574
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3.3.4. Additional Investigations Using EMAP and LCE

Here, we summarize and compare the detection results using synthetic and original
bands. The videos range from 3500 m to 5000 m.

Results for the 3500 m Video

As shown in Table 8, the results when using the single band original image are
significantly stronger than the synthetic bands especially when compared against EMAP.

Table 8. Detection results of the standard approach with 15 frame separation comparing the single
band approach to the multi band synthetic approach. The target is at a distance of 3500 m. LCE5 has
5 bands. EMAP has 11 bands. Bold numbers indicate the best performing method in each column.

Image Used CD Method TP FP MD P R F1

Original ACD 297 1 3 0.9966 0.990 0.9933

Original CC 297 1 3 0.9966 0.990 0.9933

Original CE 297 1 3 0.9966 0.990 0.9933

EMAP ACD 288 10 12 0.9664 0.960 0.9632

EMAP CC 267 31 23 0.8959 0.890 0.8929

EMAP CE 291 7 9 0.9765 0.970 0.9732

LCE5 ACD 293 5 7 0.9832 0.9767 0.9799

LCE5 CC 291 7 9 0.9765 0.970 0.9732

LCE5 CE 294 4 6 0.9866 0.980 0.9833

Table 8 shows the results from those two experiments. In LCE5, there are 5 bands. In
every case, the single band approach is stronger at 3500 m.

Results for the 4000 m Video

The results below are created using the standard approach. As shown in Table 9, the
detection results at 4000 m were very good for all cases. We also observe that the EMAP
results with ACD and CE are comparable to those using the original video.

Table 9. Detection results of the standard approach with 15 frame separation using the original single
band frames. The target is at a distance of 4000 m. LCE5 has 5 bands. EMAP has 11 bands. Bold
numbers indicate the best performing method in each column.

Image Used CD Method TP FP MD P R F1

Original ACD 295 3 5 0.9899 0.9833 0.9866

Original CC 297 1 3 0.9966 0.990 0.9933

Original CE 297 1 3 0.9966 0.990 0.9933

EMAP ACD 297 1 3 0.9966 0.990 0.9933

EMAP CC 284 16 16 0.9467 0.9467 0.9467

EMAP CE 297 1 3 0.9966 0.990 0.9933

LCE5 ACD 295 3 5 0.9899 0.9833 0.9866

LCE5 CC 295 3 5 0.9899 0.9833 0.9866

LCE5 CE 296 2 4 0.9933 0.9867 0.985



Photonics 2021, 8, 394 14 of 18

Results for the 5000 m Video

As shown in Table 10, the single band approach had 10 false detections for all three CD
methods. The EMAP performed slightly worse, especially with the CC change detection
method. The LCE5 approach with ACD and CE shows improvement over the single band
case. In order to find improvements with EMAP, we tried modifying the vector value and
the attribute value but no changes to those values show any significant improvement.

Table 10. Detection results of the standard approach with 15 frame separation. The target is at
a distance of 5000 m. LCE5 has 5 bands. EMAP has 11 bands. Bold numbers indicate the best
performing method in each column.

Image Used CD Method TP FP MD P R F1

Original ACD 288 10 12 0.9664 0.96 0.9484

Original CC 288 10 12 0.9664 0.96 0.9484

Original CE 288 10 12 0.9664 0.96 0.9484

EMAP ACD 283 16 17 0.9465 0.9433 0.9449

EMAP CC 268 33 32 0.8904 0.8933 0.9071

EMAP CE 277 22 23 0.9264 0.9233 0.9249

LCE5 ACD 288 11 12 0.9832 0.96 0.9715

LCE5 CC 288 10 12 0.9664 0.96 0.9484

LCE5 CE 289 9 11 0.9698 0.9633 0.9666

3.3.5. Subjective Results

Figures 13–15 show some detection results for the three long ranges. Since the detec-
tion involves two frames, we denote the current frame as the reference frame. The other
frame is 15 frames before the reference frame. The ground truth target location, correct
detection location, and false position location are overlaid to the reference frame. A green
box highlights a true detection. A blue box highlights the ground truth bounding box and
a red box highlights a false positive.

3.3.6. Computational Times

As can be seen in Table 11, the most time-consuming module in the standard approach
is the LIG module, which takes about 70 s per frame. For the alternate approach, there
are two LIG modules and hence it takes 140 s per frame pair. Since the bottleneck is LIG,
there are several potential methods to speed up the processing of LIG that can be done
in the future. First, since LIG is a local approach that performs object detection window
by window, one feasible approach is to apply a graphical processor unit (GPU) to speed
up the process. In a typical GPU, there are several thousand processors. If done properly,
each processor can handle a small window. Consequently, significant speed up can be
achieved. Second, one can also analyze the LIG algorithm closely and see if one can
optimize the implementation. Third, if one needs to implement LIG in hardware, then field
programmable gate array (FPGA) can be utilized. Based on our understanding, FPGA can
also execute parallel processing tasks.
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Table 11. Computational times per frame pair of the two workflows.

Change Detection (s) LIG (s) Denoising (s) Dilation (s)

Standard 70 <1 <1 <1

Alternative 140 <1 <1 <1

3.3.7. Performance Comparison with Other Approaches

Here, we compare the performance of the proposed algorithm (standard workflow
containing the CC change detection method) with two other conventional algorithms. One
conventional algorithm is based on frame by frame detection [7] and the other one is based
on optical flow [34]. Details can be found in [7,34]. Table 12 summarizes the detection
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metrics for 3500 m, 4000 m, and 5000 m videos. One can see that the proposed method has
comparable or better detection results than the two other methods.

Table 12. Comparison of the proposed algorithm with two conventional algorithms. Bold numbers
indicate the best performing method in each column.

3500 m 4000 m 5000 m

P R F1 P R F1 P R F1

Single frame [7] 0.941 0.95 0.945 0.943 0.943 0.943 0.928 0.943 0.936

Optical flow [34] 0.969 0.969 0.969 0.928 0.928 0.928 0.986 0.986 0.986

Proposed (standard with CC) 0.9966 0.990 0.9933 0.9966 0.990 0.9933 0.9664 0.96 0.9484

4. Conclusions

In this paper, we presented two approaches for small moving target detection in
long range infrared videos. Both approaches are unsupervised, modular, and flexible
frameworks. The frameworks were motivated by change detection algorithms in remote
sensing. It was observed that change detection algorithms performed better than direct
subtraction. Another observation is that the standard approach performed better than the
alternate approach in most cases. The most influential module is the LIG detection module,
which can detect small targets quite effectively. We also experimented with synthetic band
generation algorithms. We have seen some positive impacts in longer ranges such as
4000 m and 5000 m videos.

One limitation of the current approaches is that the computational time is too long. Fast
implementation using GPU and FPGA will be explored in the near future. It is also noted that
there are some recent advances in target detection in remote sensing images [49–51] that may
have great potential in infrared images/videos.
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