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Abstract: Shaped optical fiber tips have recently attracted a lot of interest for photonic jet light
focusing due to their easy manipulation to scan a sample. However, lensed optical fibers are not
new. This study analyzes how fiber tip parameters can be used to control focusing properties. Our
study shows that the configurations to generate a photonic jet (PJ) can clearly be distinguished from
more classical-lensed fibers focusing. PJ is a highly concentrated, propagative light beam, with a
full width at half maximum (FWHM) that can be lower than the diffraction limit. According to the
simulations, the PJs are obtained when light is coupled in the guide fundamental mode and when
the base diameter of the microlens is close to the core diameter. For single mode fibers or fibers with
a low number of modes, long tips with a relatively sharp shape achieve PJ with smaller widths. On
the contrary, when the base diameter of the microlens is larger than the fiber core, the focus point
tends to move away from the external surface of the fiber and has a larger width. In other words, the
optical system (fiber/microlens) behaves in this case like a classical-lensed fiber with a larger focus
spot size. The results of this study can be used as guidelines for the tailored fabrication of shaped
optical fiber tips according to the targeted application.

Keywords: photonic jet; nanojet; waveguide; microlens; fiber tip

1. Introduction

The term photonic jet (PJ) was first coined by Z. Chen et al. in 2004 when Modelling
cylindrical dielectric structures under plane wave illumination; simulations showed that
light can be concentrated at the mesoscale with a full width at half maximum (FWHM)
lower than the diffraction limit (<λ/2, where λ is the free space wavelength), and with
a power density significantly higher than the incident wave [1–3]. The key properties
of the PJ include: its position (working distance WD: distance from the tip end to the
maximum intensity of the photonic jet), FWHM, light intensity peak value and intensity
decay length. The determination of these properties has been the aim of numerous the-
oretical and experimental studies [4–9]. The properties of the PJ depend on the material
refractive indexes, the dielectric object geometric shape and size, and on the incidence
wavelength [2,10,11]. PJ can be obtained using cyilnders, spheres or non-spherical dielectric
objects [11]. The interest of PJ has been demonstrated for applications such as enhanced
Raman scattering [12–14], fluorescence enhancement [15,16], improvement in optical-disk
data storage technology [17,18], in sub-micrometer laser etching process on semiconductors
and metals [19–22], to achieve optical tweezers [23] and many other applications [24].

Unfortunately, the technique is not easy to implement in some industrial processes
such as lithography or spectral analysis, where the PJ must scan a sample with a complex
pattern. For such applications, the sphere-like object cannot be directly placed on the
sample. A mechanical micro-holder or optical tweezers are required to manipulate it
accurately [19]. For these reasons, more recently, attention has been paid to PJ generation
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with waveguides [25] and optical fibers; solutions have been proposed to put the sphere
at the end of a hollow-core optical fiber [26,27] or to use an optical fiber with a shaped
tip [21,28–31]. Shaped fiber tips have several advantages: easy to move, no necessary
contact with the sample and possibility to collect the backscattered light. Owing to the
aforementioned arguments, this technique can become a major solution in industrial pro-
cesses and characterization such as sub-micron laser processing or high-resolution spectral
analysis. Nevertheless, the concept of shaped fiber tips has already been known as mi-
crolensed fibers for the past 40 years. Initially, microlensed fibers were extensively exploited
to improve the coupling between light sources and optical fibers [32–36]. Microlensed
fibers are also used in Optical Coherence Tomography OCT [37], scanning microscopy
and spectroscopy [38]. Lensed fibers have been fabricated using a large range of methods
including: chemical etching [39], laser heating [40] and electric arc discharge melting [41].

The aim of the present work is to investigate shaped optical fiber tips to identify what
distinguishes photonic jet generation from classical-lensed fibers focusing. This study also
makes it possible to control the properties of the PJ by optimizing the different parameters
of a shaped optical fiber tip.

2. Numerical Approach

First a multimode silica optical fiber with a low number of modes is considered for
2D simulation: core diameter 2a = 20 µm and cladding diameter of 125 µm (20/125 µm
fiber), cladding and core refractive index, 1.44 and 1.457 respectively, corresponding to a
numerical aperture (NA) around 0.22. The fiber is exited at a wavelength of 1064 nm by
its fundamental mode, approximated by a Gaussian function. The propagation direction
is set along the x-axis. The source wave is linearly polarized along the z-axis (see axes in
Figure 1). To describe the tip shape, the standard form of the rational quadratic Bézier
curve is used, set by the tip height (h), the base diameter (D) and the Bézier weight (W0) [31].
The tip is considered to have the same refractive index as the fiber core. This minimizes the
reflection. Light propagate along the fiber, then through the shaped fiber tip and then in
the air.

Figure 1. Tip shapes representation. Height h = 26 µm. (Top) W0 = 1.1, and 4 base diameters D:
30 µm, 50 µm, 70 µm, 80 µm and (down) D = 30 µm and 3 Bézier weights W0: 0.3, 0.6, 1.1. Core
diameter 2a = 20 µm.
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The electric field distribution is obtained numerically with a 2D finite element method
(FEM), COMSOL Multiphysics©, using a free triangular mesh having a maximum mesh
size of λ/10. Scattering boundary conditions are used along the fiber cladding and perfectly
matched layers (PMLs) around the free space surrounding the tip.

As illustrated in Figure 1-top, several microlens base diameters (30 µm, 50 µm, 70 µm
and 80 µm) were considered in order to study their influence on the PJ using the same
shape Bézier weight W0 = 1.1 and height h = 26 µm.The influence of the tip height (h) and
sharpness (described by the Bézier weight W0, see Figure 1-down) have also been studied.

3. Results

Figure 2a depicts the simulation of the intensity (|E|2) distribution inside and outside
the shaped optical fiber tip with a base diameter D = 30 µm, height h = 26 µm, weight
W0 = 1.1. A PJ is produced with a full width at half maximum (FWHM) of 1.2 µm and at a
working distance WD of 24 µm.

Figure 2. Photonic jet generation (intensity |E|2) for a 20/125 silica optical fiber, ng = 1.440 and
nc = 1.457 (NA of 0.22). Excitation by the fundamental mode at a λ = 1064 nm. Tips with h = 26 µm,
W0 = 1.1, (a) D = 30 µm, (b) D = 50 µm, (c) D = 70 µm, (d) D = 80 µm. White scale bars represent
20 µm.

More generally, Figure 2 shows the evolution of the 2D simulated intensity distribution
when the tip base diameters increases from 30 µm up to 80 µm. For each configuration the
maximum electrical field value outside the tip (for an unitary incident fundamental mode),
the corresponding FWHM (evaluate on the intensity) and working distance are given in
Table 1.

When the tip diameter increases, the PJ position (WD) is further, its electrical field
maximum decreases and FWHM increases. Figure 2d corresponds to the longer and
the largest PJ, with a working distance 200% longer than in Figure 2a. The FWHM is
260% larger and the electric field norm is 46% lower than the PJ obtained with the lowest
base diameter.
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Table 1. Focus parameters for several fibers and lens diameters D, λ = 1064 nm. Unitary fundamental
mode excitation.

Microlens Base
Diameter [µm] FWHM [µm] WD [µm] Electrical Field

[V/m]

Fiber 20/125, NA = 0.22, h = 26 µm, W0 = 1.1

30 1.2 24.6 3.08
50 3.0 65.6 2.08
70 3.9 73.6 1.73
80 4.2 74.7 1.66

Fiber 50/125, NA = 0.22, h = 36 µm, W0 = 0.7

60 1.1 41 4.63
70 1.2 57.1 4.51
80 1.3 76 4.45

110 2.5 153 3.40

Fiber 10/125, NA = 0.12, h = 14 µm, W0 = 1.1

15 1.0 9.4 2.76
17 1.1 11.9 2.60
19 1.2 17.7 2.46
21 1.7 23.2 2.12

The corresponding electric field norm |E| profile on the photonic jet planes has
been plotted for the 20 µm core fiber but also for optical fibers with core diameter 50 µm
(NA = 0.22) and 10 µm (NA = 0.12). Compared with the 20/125 fiber, a longer and not so
sharp tip (h = 36 µm, W0 = 0.7) is required for the 50 µm core fiber and inversely, a smaller
and sharper tip (h = 14 µm, W0 = 1.1) is required for the 10 µm core fiber, thus justifying
our choices. For the three fibers, the simulated base diameters have been chosen to be first
close to the core diameter and then larger. Figure 3 illustrates the corresponding electric
field norm |E| profile on the photonic jet planes. For the three fibers, a PJ is obtained when
the microlens base diameter is close to the core diameter. The trend of the simulations are
in good agreement: when the base diameter of the tip increases, the maximum electric field
decreases, the PJ FWHM and working distance increase. In other words, the optical system
(fiber/microlens) acts more and more as a classical-lensed fiber.

We now consider the influence of microlens Bézier weight (sharpness) and height on
the focusing properties. As illustrated in Figure 4a with the 20/125 silica fiber, an increase
of the Bézier weight (blunter tip) pushes the PJ (WD) away from the fiber tip end and
increases the PJ FWHM (as a lens having a larger focal distance would). The narrower PJ
FWHM, around 0.55 µm, is obtained for the the lower weight W0 = 0.3 (sharper tip) at
a working distance WD of 3 µm. Compared with W0 = 1.1, the PJ width is divided by 2.
Thus, the present investigation confirms that the Bézier curvature has a primordial role in
controlling the focusing parameters.

In Figure 4c,d, we can also observe that the FWHM and WD decrease with the increase
of the tip height.
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Figure 3. Electric field |E| profile on the PJ planes. The different colors represent the different base
diameter D of the microlenses for (a) a 20/125 silica fiber (h = 26 µm, W0 = 1.10, NA = 0.22). (b) a
50/125 silica fiber (h = 36 µm, W0 = 0.7, NA = 0.22). (c) a 10/125 silica fiber (h = 14 µm, W0 = 1.1,
NA = 0.12). Fundamental mode excitation at λ = 1064 nm.

Figure 4. Working distance WD (a,c) and FWHM (b,d) variations as a function of Bézier weight (a,b)
and height (c,d) of the shaped tip for the 20/125 fiber (NA = 0.22). Default value: D = 32 µm,
h = 26 µm and W0 = 1.1.
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4. Conclusions

The present study was designed to control photonic jet generation by assessing the
effect of the optical fiber tip parameters and to clarify the differences between classical
fiber lens and the shaped fiber tips making possible to obtain PJ. A first already known
difference is that PJ is only due to the fundamental mode, namely, the other modes being
off-axis focused [31]. We show in this paper that a second important difference is that PJs
occur when the microlens base diameter is close to the fiber core diameter, whereas classical
fiber lenses stand generally on the whole optical fiber cladding. When the tip is shaped by
thermoforming, this can explain why a PJ is easier to obtain with multimode fibers (having
a core diameter close to the optical cladding one). PJs achieved using a shaped fiber tip
may be used to scan a sample with a complex pattern and also collect the backscattered
light with the same fiber. They are, therefore, a promising solution for many applications
from laser nano-abalation to local spectrocopy.
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