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Abstract: Mosaic imaging is a computer vision process that is used for merging multiple overlapping
imaging patches into a wide-field-of-view image. To achieve a wide-field-of-view photoacoustic
microscopy (PAM) image, the limitations of the scan range of PAM require a merging process,
such as marking the location of patches or merging overlapping areas between adjacent images.
By using the mosaic imaging process, PAM shows a larger field view of targets and preserves
the quality of the spatial resolution. As an essential process in mosaic imaging, various feature
generation methods have been used to estimate pairs of image locations. In this study, various feature
generation algorithms were applied and analyzed using a high-resolution mouse ear PAM image
dataset to achieve and optimize a mosaic imaging process for wide-field PAM imaging. We compared
the performance of traditional and deep learning feature generation algorithms by estimating the
processing time, the number of matches, good matching ratio, and matching efficiency. The analytic
results indicate the successful implementation of wide-field PAM images, realized by applying
suitable methods to the mosaic PAM imaging process.

Keywords: mosaic imaging; scale-invariant feature transform (SIFT); speed up robust feature (SURF);
oriented FAST and rotated BRIEF (ORB); GoodPoint; photoacoustic microscopy

1. Introduction

Computer vision is a branch of artifact intelligence that simulates human interactions
with algorithms that can solve recognition problems in the real world. The most significant
limitation of computer vision for detecting the structure of an object is the correlation
between the field of view (FOV) and resolution. Mosaic imaging, also known as the
merging technique, merges small imaging patches with similar features into a whole
image [1–3]. To achieve accurate mosaic imaging, image patches require overlapping parts
for correlation comparison. The more extensively overlapping areas provide a greater
chance of matching the patches together [4]. Mosaic imaging is widely applied in many
fields such as astrophysics [5], automatic vehicles [6,7], agriculture [8,9], and biomedical
imaging [10–13].

As an essential process in mosaic imaging, various feature detection algorithms have
been used to extract image information and make local decisions about points of interest
for recognizing the shape and boundaries of objects [14]. By classifying edges or blobs,
points of interest are easily extracted from closed regions (inside corners) surrounded
by districted neighborhood pixels. With the Laplacian scale selection or Hessian ma-
trix estimation, the representative feature generation estimating methods, including the
scale-invariant feature transform (SIFT) and speed-up robust feature (SURF) generate
interesting points by calculating the difference among the individual scaled spaces. In
mobile devices, oriented Features from an Accelerated Segment Test (FAST) [15] with ro-
tated Binary Robust Independent Elementary Features (BRIEF) [16] (or ORB for short) [17]
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and accelerated nonlinear-scale space processes (AKAZE) [18] were used as the replaced
algorithms requiring less computation power and storage; so they can be fitted in small
devices such as vehicles or smartphones. Unfortunately, these traditional methods are
limited by large databases or hand-tuning to find the models closest to the experiment.
Thus, GoodPoint [19] is introduced as a balanced solution with deep learning-based feature
generation to accelerate and learn without bulky algorithms to define the properties of
the regions of interest. After generating the feature information, pairs of patches with
overlapping areas were combined using the mosaic imaging process. By estimating the
transformation using a random sample consensus (RANSAC), multiple patches of the
object are combined into a single frame of a full picture [20].

In biomedical imaging, mosaic imaging has been widely utilized as an image recon-
struction process to assemble individual imaging patches of conventional clinical imaging
methods, including computed tomography (CT), X-ray imaging (XRI), ultrasound imag-
ing (USI), and magnetic resonance imaging (MRI). The mosaic imaging process allowed
a larger imaging area to help users easily track changes in the target. For instance, CT uses
the mosaic imaging process as combined bone image scanning [21] and full-body CT scan
registration [22]. In MRI, the mosaic imaging process has been used to merge overlapping
thin MRI volume stacks [23] or match them with CT scans for better visualization [24]. XRI
utilized the mosaic imaging process in full-body-bone scanning [25] and chest scanning [26]
by joining all bone patches into a larger XRI image. In USI, the 3D panorama USI volume
was reconstructed by applying 3D SIFT [27] to register multiple USI volumes with small
overlapping areas. Fluorescence microscopy (FLM) continuously monitors a larger skin
region than the FOV of the sensor [28]. Confocal microscopy (CM) tracked the localization
of large areas with resected tissue using the mosaic imaging process for fast scans [29].
X-ray microscopy has improved the resolution by merging cell images acquired with a soft
X-ray sub-micrometer into the hard X-ray domains of larger and more complex biological
tissue through the mosaic imaging process [12]. In conventional optical microscopy (COM),
the mosaic imaging process was used to merge the non-marked positions of overlapping
vessel patches using the SURF method [10].

Photoacoustic microscopy (PAM) has a spotlight as an emerging imaging modality
which helps detect optical absorption contrast with microscale resolution through photoa-
coustic effects. Under the influence of a nanosecond pulsed laser, molecules absorb the
laser energy and generate wide-band acoustic waves via thermal elastic expansion. The
acoustic signal is detected using an ultrasound transducer [30–32]. Compared to other
microscopy techniques, PAM showed a deep tissue imaging ability by maintaining its
superior resolution, providing the structural and functional information of microvessels.
Depending on the systemic configuration, it can be categorized by tweaking the main
components as optical-resolution PAM (OR-PAM) to achieve a high spatial resolution and
acoustic-resolution PAM (AR-PAM) to provide enhanced depth penetration [33]. These
multiscale PAM systems have been widely used in many biomedical imaging applications,
such as structural imaging (single cell [34–37], microvasculatures [38–41], organs [42,43]),
label-free functional imaging (brain activity [44,45], blood flow [46,47]), and molecular
imaging [48–52].

Unfortunately, the PAM technique is limited in its application in pre-and clinical imple-
mentations owing to its narrow image scanning range induced by short-range scanners. In
particular, although MEMS [53,54] and galvanometer [55,56] scanner-based PAM systems
provide almost real-time imaging speed, they still require additional imaging rearranging
and reconstruction processes. Peng et al. [57] developed a fast scanning OR-PAM system
with a position-recording method that automatically stitches patches into a larger image.
Cho et al. [58] developed a photoacoustic visualization studio (3D PHOVIS) that allows
merging small-ranged PAM images without manual modification of the hardware con-
figuration and flexible position. However, these approaches cannot be used in complex
situations, including tilted images and non-marking regions, to merge these patches auto-
matically. To stitch multiple scanning OR-PAM images correctly, Zhao et al. [59] compared
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the patches and matched them using the SIFT feature detection technique to achieve high
accuracy motion correction for high-resolution imaging of the mouse ear. Although feature
extraction algorithms such as SIFT have begun to be used in the implementation of large-
area mosaic images of vascular PAM images, there is a lack of studies on feature extraction
algorithms suitable for PAM.

In this study, we compared the performance of feature detection algorithms for the
mosaic PAM imaging process. As testing samples, we prepared a dataset of high-resolution
mouse ear PAM images composed of seven small-range PAM patch images. In particular,
representative feature detection algorithms, including SIFT, SURF, ORB, AKAZE, and
GoodPoint, were compared and analyzed. First, we found the features of each PAM
imaging patch using all feature detection algorithms. Then, good matching points were
selected by calculating the nearest neighbor distance ratio (NNDR). RANSAC was used
with at least four matches to merge by affine transform among the neared PAM imaging
patches. To evaluate the performance of each feature detection algorithm in mosaic PAM
imaging, (1) processing time, (2) number of matching points, (3) good matching ratio, and
(4) matching efficiency were calculated and compared. Based on these performance factors,
we concluded a suitable approach for the mosaic PAM imaging process.

2. Materials and Methods
2.1. Feature Generation Process

Feature generation (or feature detection) is the process of finding the corners and
shapes of objects, which reveals interesting feature objects [60]. Figure 1 shows the step-by-
step feature generation process and provides information about two important features:
(1) feature localization and (2) feature descriptor. Feature localization is generated from the
shape of the object in the image, which shows the difference in intensity between the object
and the background. To describe the aiming positions selected as the featured location,
the feature values of adjacent pixels surrounding a location are vectorized to identify
differences in points that are more interesting than others. This identification process is
called the feature descriptor. SIFT, SURF, ORB, and AKAZE are traditional interest feature
generation algorithms. As shown in Figure 1a, they follow a single workflow, which
locates the feature points first, and then describes the features by vectorizing neighboring
pixels. Unfortunately, the performance of these approaches is limited by the hardware
performance, storage, and manual work [61]. New solutions are being investigated by
applying deep learning algorithms for mosaic imaging, such as convolutional neural
networks (CNNs) or GoodPoints [19]. Both methods extract feature localization and
feature descriptors from a CNN model, which offers the same information but treats it
differently. By generating the feature locations and descriptors simultaneously, the deep
interest feature generation shows the possibility of overcoming the time reduction and
increasing the calculation efficiency compared to the traditional methods. (Figure 1b).

2.2. Scale Invariant Feature Transform (SIFT)

The SIFT algorithm, introduced by D.G. Lowe [62], was presented as a solution to gen-
erate feature descriptions from the patch, even when the rotational and transformational
intensity changes during the matching process. The SIFT algorithm consists of four basic
processes: (1) estimating an extreme spatial scale by the difference of Gaussian (DoG),
(2) extracting features position, (3) assigning orientation on a local patch gradient, and
(4) generating a descriptor from features to compute consumption vectors defined for each
feature based on feature gradient magnitude and orientation. In the first step, SIFT esti-
mated an extreme spatial scale to find the possible interest points of DoGx,y,σ (in Equation (1))
in image I between Gaussian G in layer k and the first layer. The local difference of the
maximum and minimum in DoG was estimated by comparing each sample point to its
neighbors in image I. Then, the low-contrast points were removed along the edge. Finally,
the feature locations (x, y) were extracted.
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DoGx,y,σ =
[
∆Gx,y(k− 1)σ

]
∗ Ix,y (1)

The feature point was compared to neighboring points with the same scale to choose
candidate features L. The difference between candidate features and neighboring points
was expressed as ∆Lx = Lx+1,y,σ − Lx−1,y,σ and ∆Ly = Lx,y+1,σ − Lx,y−1,σ. The descriptor
of the point was defined by the magnitude feature point neighborhood m (in Equation (2))
and gradient orientation θ (in Equation (3)), which provides invariant features.

m =
√

∆Lx2 + ∆Ly2 (2)

θ = tan−1
(

∆Ly

∆Lx

)
(3)

After obtaining feature information (position, scale, and orientation), we built a de-
scriptor for each feature. A window around the feature point was selected by determining
a square region of 16 × 16 pixels around the feature. We divided the region into 4 × 4 sub-
regions, which resulted in 16 sub-vectors of 16 pixels each while accessing 128-dimensional
vectors, denoted by SIFT128.

2.3. Speeded-Up Robust Features (SURF)

The SURF algorithm was introduced by H. Bay [63] and showed that convolution
with the matrix kernel could be accelerated to extract the feature’s location in parallel
for different scales. The SURF algorithm has the following four steps: (1) estimating
an extreme spatial scale by integral spatial generation, (2) extracting feature position by
Hessian detector, (3) assigning orientation on local, and (4) generating a descriptor from
features to compute consumption vectors. To adapt to any scale and provide a point (x, y)
in image I, the Hessian blockH(X,σ) (in Equation (4)) in (x, y) at scale σ was defined by
the approximated Laplacian of Gaussian (LoG) represented as Lxx, Lxy, Lyy.

H(X, σ) =

[
Lxx((x, y), σ) Lxy((x, y), σ)
Lxy((x, y), σ) Lyy((x, y), σ)

]
(4)

The determinant of the Hessian block was given as Det
(
Happrox

)
= Dxx ∗ Dyy

−
(
0.9Dxy

)2. The use of integral patches made the calculation time independent of the
window size, so the SURF was built using a 9 × 9 box with approximations of Gaussian
with σ = 1.2. To generate the feature descriptor, the SURF algorithm based on Haar
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wavelet responses and could be calculated efficiently using integral patches. To determine
the orientation, the round cover group of interest was defined with the achievement of
orientation-invariant surface rotation in the horizontal direction dx and vertical direction dy.
Once the wavelet responses were calculated, they were weighed using a Gaussian kernel.
After obtaining the orientation of all interest points, a square block covered the interesting
point at the center and oriented along the direction. The area was split into a smaller block
of 4 × 4 to preserve space information. Thus, each sub-area resulted in a descriptor vector
of four dimensions V = (Σdx, Σ|dx|, Σdy, Σ|dy|) with all sub-areas and a descriptor vector
with 64 dimensions.

2.4. Oriented FAST and Rotated BRIEF (ORB)

Presented by Rublee [3], the ORB has been a rotation-invariant, noise-resistant, and
fast algorithm by using a FAST location detector and the BRIEF descriptor. The FAST is a
good choice for finding features that match, although it does not measure corners and fails
to provide multi-scale features. To obtain scale information, the ORB applied the Harris
algorithm to measure the corner at the FAST feature location and then utilized a scaled
surface with each stage producing certain FAST features. The orientation of FAST features
(in Equation (5)) was produced by the intensity centroid, where m01 and m10 represented
the moments of a patch mpq = ∑x,y xp ∗ yq ∗ I(x, y).

θ = a ∗ tan2(m01, m10) (5)

The ORB algorithm used the orientation to direct the original BRIEF descriptor. To
patch box P, a binary condition τ was formed by condition variable p(x) and p(y) as the
intensity of box P at location (x, y) (in Equation (6)) as:

τ(p; x, y) = f (x) =
{

1, p(x) < p(y)
0, p(x) ≥ p(y)

(6)

In each patch, the feature was mapped as a vector T by the statistical method to
estimate the point-to-point mapping address. In this study, we chose to limit the map to
10,000 feature points and consider 31 × 31 pixels squared windows for each point in its
5 × 5 sub-windows to set a couple of matches. We used the greedy search method, which
repeated the correlation comparison between the next quantity in the mapped vector with
a Gaussian distribution around the center of the point until the vector length is 256, and
the rotation-aware BRIEF (rBRIEF) feature descriptor is defined.

2.5. Accelerated-KAZE (AKAZE)

Presented by Alcantarilla [64], the AKAZE algorithm was based on a nonlinear scale
normalized determinant called fast explicit diffusion (FED). By constructing images of
different scales that contain different sublayers, all layers in the AKAZE group showed
a similar resolution to the original patch. Thus, the AKAZE algorithm obtains an approxi-
mate solution and constructs the cropped pyramid. After nonlinear scale normalization,
each patch was computed using the Hessian matrices in different nonlinear scale spatial.
This allowed us to classify the maximum value of the detector response in a spatial location.
Similar to the SIFT algorithm, the AKAZE algorithm detected feature points by comparing
a pixel to its nearby 26 pixels in a 3 × 3 box in its current size and adjacent. By identifying
the location features in the center, we found the main directions for the search radius with
a sampling step size to ensure that the characteristic rotation is invariant. After obtaining
the feature location, scale, and orientation information, we built a feature descriptor by
modifying the local difference binary (LDB) to describe the feature descriptors. We selected
a patch around the feature location, split it into rectangular grids, and then extracted
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representative information from each grid cell. Then, the following binary condition g was
applied by extracting information from a pair of grid cell I(i) and I(j).

g(I(i), I(j)) =
{

1, i f (I(i)− I(j) > 0, i 6= j
0, otherwise

(7)

The AKAZE algorithm chose a binary selection that chooses a group of relevant pairs
to model the final descriptor to improve pairing and storage efficiency.

2.6. GoodPoint

Based on the CNN architecture backbone, A.V. Belikov [19] designed unsupervised
learning processes for feature detectors and descriptors by following four stages: (1) warping
two patches into the same size, (2) extracting feature positions and feature position using
a two-headed CNN, (3) calculating descriptor loss as for all interpolated descriptors, (4) the
feature location match with the descriptor was used as positive examples from detector
training. The detector was trained with a loss function of position map Lp by the summation
of the feature’s loss L f eatures and heatmap’s loss Lheatmaps.

Lp = L f eatures + Lheatmaps (8)

The descriptor was determined by the loss function of the description map Ld con-
sisting of three components: (1) the loss of ground truth from normalized descriptors Lgt,
(2) the minimized similarity of incorrectly matched pairs of descriptors Lunmatch, and
(3) the minimized difference of randomly sampled descriptors Lrandom.

Ld = Lgt + Lunmatch + Lrandom (9)

After generating both features and descriptors, GoodPoint brought pairs of matching
points closely matched by coordinates and descriptors as the nearest neighbors. To apply
the training process of GoodPoint, we created a patch of 64-pixel squares with PAM samples
and then used SIFT as the based-learning method. We named it “PAM dataset,” which has
two sub-paths: (1) paired PAM images and (2) listing the top 10 matches of each paired.
Gaussian noise with different angles of 10◦ was applied to the couples. Therefore, the total
number of trainable parameters was the same. The descriptor was applied by SoftMax to
ensure that the points were not extremely close to each other. Subsequently, normalized
tensors were formed on a confidence map interpolated in the feature location.

2.7. Optical-Resolution Photoacoustic Microscopy (PAM)

An OR-PAM system was used to acquire all experimental data in this study (Figure 2).
The nanosecond pulsed laser (SPOT-10-200-532, Elforlight, Daventry, UK) was controlled
by a pulse-width modulation (PWM) channel from the data acquisition board (DAQ)
(PCIe-6321, NI Instruments, Austin, TX, USA) to operate the 532 nm centered wavelength
laser beam with a pulsed width of 6 ns. The laser beam was collimated to a diameter
of 2 mm using an optical fiber (P1-405BPM-FC-1, Thorlabs, NJ, USA). A doublet lens
(AC254-060-A, Thorlabs, NJ, USA) formed the focused laser beam. This beam laser, which
was reflected 45◦ by a custom aluminum-coated prism in the beam combiner, was oriented
to scan along the x-axis with a single-axis MEMS scanner [54] (OptichoMS-001, Opti-
CHO Inc., Ltd., Pohang, Korea). To achieve large-area mosaic scanning, two linear stages
(L-509, Physik Instrumente (PI), Karlsruhe, Germany) were used for the y-axis and ad-
ditional x-axis scanning. When the laser beam irradiated the sample, an acoustic wave
was generated and passed through the customized beam combiner, which was inten-
sively detected by a commercial transducer (V214-BC-RM, 50 MHz center frequency,
Olympus, PA, USA). The acoustic signal was amplified using an amplifier (ZX60-3018G-S+,
Mini-Circuit, Brooklyn, NY, USA) with a low-pass crystal filter (CLPFL-0050, 50 MHz, CRYS-
TEK, Fort Myers, FL, USA). A digitizer (ATS9371, AlazarTech, Pointe-Claire, QC, Canada)
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converted the acoustic signal to digital values. The OR-PAM scanning driver and re-
construction process were operated using the LabVIEW program (National Instruments,
Austin, TX, USA). The measured lateral and axial resolutions were 12 µm and 27 µm,
respectively [41]. The size of each PAM image patch was 30 mm/500 pixels on the y-axis
and 5 mm/140 pixels on the x-axis.
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Figure 2. Diagram of optical resolution-photoacoustic microscopy. M, mirror; C, collimator;
OB, objective lens; LS, linear stages; BC, beam combiner mirror; WT, water tank; AMP, amplifier.

2.8. Animal Preparing

The experimental animal procedures followed the laboratory animal protocols admit-
ted by the institutional animal care and use committee of Chonnam National University
Hwasun Hospital. One healthy eight-week-old male BALB/c mouse, weighing ~20 g, was
purchased from Orient Bio (Iksan, Korea). To anesthetize the mouse, a cocktail of ketamine
and xylazine (80:12) was applied. After removing the downy hair with the hair removing
gel, the mouse was placed on a fixed holder with a temperature maintaining bed using
an isoflurane system (Luna Vaporiser, NorVap International Ltd., Barrowford, UK) while
scanning in vivo observations. The energy of the illuminated laser pulse on the mouse skin
was approximately 5 mJ/cm2 below the ANSI safety limit of

(
20 mJ/cm2).

2.9. Mosaic PAM Imaging Process

The mosaic image generation is shown in Figure 3. This process followed three steps:
(1) selecting good matching points by the nearest neighbor distance decision, (2) aligning
feature couples using the RANSAC algorithm [65], and (3) connecting the matching area
using the homograph transform. First, we used a feature-based generator to extract the
feature information (location and vector descriptors). Each feature was linked together as
matches using the k-nearest neighbor algorithm by a binary decision to find approximate
nearest neighbors. This step removed negative matches and maintained the positive ones
chosen by the NNDR value below 0.7 [62]. To minimize the matching error, the RANSAC
algorithm was applied iteratively to obtain the largest matches adequate for the merging
process. These inlier matches had been used to estimate the space transform between two
duplicated areas of PAM images. The homograph matrix H could be presented as the
transfer from X coordinate to X′ of two sub-images:

X′ = HX (10)
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Figure 3. Flowchart of the mosaic PAM imaging generation.

After obtaining the homograph, two sub-images were selected: the target patch and
the source patch. In this process, we decided that the source patch has an overlap area
on the right of the patch as the current space. Therefore, the target patch was warped
from another direction to the current space as defined by the previous step. Because these
patches were recorded in the same scan, the difference in contrast and brightness had
no influence.

2.10. Computing System

The specifications of the computing system were as follows: Processor Intel® Core ™
i9-10900K @ 3.70 GHz (Intel Corp., City of Santa Clara, CA, USA) with 64 GB of RAM
(Samsung Corp., Suwon, Korea). The program was written in Ubuntu 20.04 LTS 64-bit,
using Python 3 as a compiler with basic image processing and feature generation of the
OpenCV 3.4 library. For the deep feature architecture, we used the PyTorch framework.

2.11. Performance Evaluation

To compare the performance of different mosaic imaging processes, we chose four factors
that directly affected our decision: (1) processing time, (2) number of matching points,
(3) good matching ratio, and (4) matching efficiency.

(1) Processing time: Using system resources directly, we estimated the time consumed to
complete the feature generation process. The processing time began from algorithm
detection until the matching process was completed. By estimating the processing
time, we could determine which methods were lighter and required few resources to
process while maintaining the same performance.
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(2) Number of matching points: By maintaining the same conditions for the mosaic imag-
ing generator (NNDR ≥ 0.7), each feature generation method provided a different
number of matching points. The number of matching points (matrix transformation
conditions) should be as more than four as possible. More matching points mean
more chances for a high-quality mosaicking process.

(3) Good matching ratio (GMR): By removing negative matching points (NNDR < 0.7)
and maintaining positive matching points (NNDR ≥ 0.7), we estimated the accuracy
of the feature generation methods.

GMR =
Number of positive matching points

Total of matches
× 100(%) (11)

(4) Matching efficiency: Matching efficiency shows the number of positive matching
points in one millisecond. In this way, we estimated algorithms to reduce the time
consumed while maintaining similar performance.

Matching efficiency =
Number of positive matches

Processing Time
(12)

2.12. Dataset Preparing

The dataset was reconstructed to the maximum amplitude projection (MAP) from the
OR-PAM scanning of the mouse ear. The dataset for training included 7-volume patches
shown as the different areas on the mouse ear with the duplicated area (from 5% to 80%
area of each patch, Figure 4).
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Figure 4. Dataset of the mouse ear OR-PAM imaging patches and whole OR-PAM images. (a) Maximum amplitude
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patches (yellow arrow) and right patches (red arrow). (b) Merged patches into a single projection manually.

For testing GoodPoint, we prepared the MS-COCO dataset [66] and FIRE dataset [67]
as the pre-trained dataset to ensure that the amount of data files was large enough for
training and closest to vessel shapes. We used 40 OR-PAM patches with ±10◦ angle with
salt-and-pepper noise σ = 0.05 and created a dataset with SIFT matching as fine-tuned
data to fit with PAM general properties. The training was conducted using AdamW [68] as
an optimization algorithm with an initial learning rate of 0.0005, and all other parameters
were set to default values [17].

3. Results
3.1. Performance Comparison

As shown in Figure 5, the feature extraction and matching in two neared PAM image
patches were conducted by SIFT, SURF, ORB, AKAZE, and GoodPoint by controlling the
overlapping area from 5% to 80%. The matched condition, in which the NNDR ratio
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equaled 0.7, is indicted by the green lines in Figure 5b–f at different feature matching
algorithms. To evaluate the performance, we calculated the stitching processing time for
the two PAM MAP image patches, as shown in Figure 6a. ORB (1.177 ms) and AKAZE
(1.273 ms) were the fastest algorithms in replying to the results. Slower than these, SURF
required 2.148 ms to generate and match. SIFT took an average of 3.045 ms; thus, it was
the slowest traditional algorithm. GoodPoint took 5.294 ms to load the trained model and
conduct the process. Next, by estimating the number of matching points, feature generation
methods generally showed an increasing number of matching points depending on the
change in the overlapping range, as shown in Figure 6b. When the overlapping area was
below 10%, none of the methods generated sufficient matches for the mosaicking process.
SIFT, SURF, and GoodPoint showed one or three matches, and both ORB and AKAZE did
not generate any matching points. In the range from 10% to 40%, SIFT and GoodPoint
could generate an average of 12 and 20 matching points, respectively, while SURF only
showed two matching points at a 20% overlapping range and 12 matching points at a 30%
overlapping range. In the upper 40% duplicated overlapping area, SURF showed the
number of matching points equal to SIFT (35 matching points) at a 45% overlapping
area, when GoodPoint generated 24 matching points. At 50% duplicated overlapping
area, ORB and AKAZE generated approximately four matching points. To obtain more
than four matching points, the ORB needed an overlapping range of more than 65%.
Figure 6c showed the GMR values for different overlapping areas. GoodPoint showed
good opportunity with 55.4 matching points and passed the NNDR condition at the 20%
overlapping range. The GMR of SIFT and SURF linearly increased from 2% at a 10%
overlapping area to 75% (SIFT) and 65.6% (SURF) at an 80% overlapping area. AKAZE
showed a GMR value of 2% at a 40% overlapping area and a GMR value of 65.6% at an
80% overlapping area. ORB showed the lowest GMR value of 1.63% at a 60% overlapping
area and a slight increase in the GRM value of 9.8% at an 80% overlapping area. To clarify
the goals, we estimated the matching efficiency (Figure 6d), which indicated the number of
accepted matches by time to compare the efficiency among all implemented algorithms.
GoodPoint was too slow, so its generator only showed 0.7 matching points per 1 ms. At a
30% overlapping range, SIFT and SURF enabled the generation of 6.46 and 5.78 matching
points per 1 ms, respectively. AKAZE could generate 6.46 matching points (at a 60%
overlapping range), and ORB could generate 6.51 matching points (at a 70% overlapping
range) per 1 ms.
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red arrow); matching by (b) SIFT, (c) SURF, (d) ORB, (e) AKAZE, and (f) GoodPoint to match feature point from patches
(green line).
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3.2. Whole Mosaic OR-PAM Image Generation

Using the feature generation algorithms, we applied mosaic processing to our custom
PAM system to reconstruct a wide-field PAM MAP image of the mouse ear. As shown in
Figure 4a, the overlapping areas among the small imaging patches were smaller than 20%.
Therefore, based on our analysis results, only the SIFT, SURF, and GoodPoint methods
were available and could be used to complete the mosaic imaging process. In Figure 4b,
we manually merged all PAM imaging patches by removing non-linear areas and cutting
the overlapping range. Then, we assembled the imaging patches manually. In Figure 7a–c,
we used feature generation algorithms as the marked border to automatically remove
non-linear areas and merge duplicated patches by homography estimation. SIFT, SURF,
and GoodPoint successfully generated mosaic 30 × 30 mm PAM MAP images.
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4. Discussion

We compared the performance of feature generation algorithms for PAM images in
Section 3.1 and applied these algorithms with our custom experiment setup in Section 3.2.
Comparing the processing time in Figure 6a, the traditional feature generation algorithms
were 100 times faster than the deep learning feature generation algorithm (GoodPoint).
The GoodPoint algorithm did not optimize the decoder layers to extract feature points
in a short time (approximately 300 ms). The traditional feature generation algorithms
required a focused window of feature points in SIFT and SURF or binary mapping in ORB
and AKAZE. The traditional feature generation methods showed similar processing times
because the computer system supported Intel Distribution for Python [69]. So, the feature
generation algorithms of SIFT (approximately 2.6 ms), SURF (approximately 1.5 ms), ORB
(approximately 1.1 ms), and AKAZE (approximately 1.2 ms) consumed less processing
time when merging small mosaicking patches’ size.

By analyzing Figure 6b, GoodPoint ’s matching points showed a similar quantality
of SIFT and SURF when the overlapping range was smaller than 45% because we used
our OR-PAM projection dataset created by the SIFT algorithm. ORB and AKAZE did not
generate sufficient feature matching when the overlapping range was smaller than 50%.
Above the 50% overlapping range, the SURF algorithm extracted most matching points
and increased 1.5 times faster by each step with a 10% overlapping increment range. In
this range, the GoodPoint algorithm did not generate noticeably matching points. ORB
and AKAZE slowly increased from less than four matching points but did not generate
enough matching points for decision (less than 11 matching points when the overlapping
range was 80%).

According to Figure 6c, GoodPoint was the best choice when you wanted to store
similar matching points such as SIFT and SURF and maintain similar good matching points
(GoodPoint showed 24 matching points, but 11 matching points did not pass the NNDR
condition). At less than a 40% overlapping area, SIFT and SURF only maintained less than
40% and 25% good matching points, respectively. This means that most of the matching
points were removed. More than 88% of the ORB matching points did not pass the NNDR
condition. Therefore, the ORB algorithm was not a good algorithm for mosaic PAM image
generation. AKAZE was the better choice than ORB when the overlapping area was larger
than 50%. However, the ORB and AKAZE algorithms were not suitable for generating
the features in PAM images, which maintained mosaicking patches with less than a 10%
overlapping range.

By analyzing the matching efficiency in Figure 6d, we could observe that the SIFT
generated more matching points than the other methods when the overlapping range
was below 30%. Although GoodPoint generated the same matching points as SIFT or
SURF in that range because the processing time of GoodPoint was 100 times that of SIFT
and SURF, the matching efficiency value of GoodPoint was the lowest. In addition, in
a custom experimental setup, GoodPoint was slow enough to have a negative impact on
a real-time system.

To apply feature generation algorithms with our custom OR-PAM setup, the algo-
rithms were coded in Python executable and were used as LabVIEW’s custom library. In
Section 3.2, the mosaic images of SIFT, SURF, and GoodPoint showed similarities when
merging six patches automatically. Compared to manual mosaicking in Figure 4b, the
mosaic projection by SIFT showed acceptable scaling. SURF and GoodPoint showed that
a few unmatching vessels were not better than manual mosaicking. Because the GoodPoint
processing time was slow (approximately 500 ms for each mosaicking process), the total
scanning process was slow. SIFT and SURF, which were optimized using the OpenCV
library and Intel Distribution for Python, proved to be good solutions with our current
experimental computer configuration.
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5. Conclusions

In this study, we compared and analyzed the performance of various feature-generation
algorithms for mosaic PAM images. In short, traditional feature generation algorithms
were stable and easy to apply. However, owing to the limitations of computing power, tra-
ditional feature generation algorithms require computing systems up-gradation to increase
efficiency. Contrary to our expectations, the deep learning feature generation algorithms
did not overperform traditional algorithms when they required a pre-training dataset that
should be such as an object’s properties and consumed more processing time than that
required by traditional algorithms. These were the disadvantages of applying deep learn-
ing feature generation algorithms. However, the advantage of deep learning generation
algorithms was that they could be modified to focus more on the best matching ratio, make
better decisions, and spend less computing power to generate matching points. These
results were used and chosen as customized choices for the mosaicking process. Finally, we
updated our PAM reconstruction program using mosaic processing as the default option.
Further, SIFT, SURF, and GoodPoint were added to the optional functions. We confirmed
that the program could be used safely without interference during operation.
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