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Abstract: The COVID-19 pandemic has made it abundantly clear that the state-of-the-art biosen-
sors may not be adequate for providing a tool for rapid mass testing and population screening in
response to newly emerging pathogens. The main limitations of the conventional techniques are
their dependency on virus-specific receptors and reagents that need to be custom-developed for each
recently-emerged pathogen, the time required for this development as well as for sample preparation
and detection, the need for biological amplification, which can increase false positive outcomes, and
the cost and size of the necessary equipment. Thus, new platform technologies that can be readily
modified as soon as new pathogens are detected, sequenced, and characterized are needed to enable
rapid deployment and mass distribution of biosensors. This need can be addressed by the develop-
ment of adaptive, multiplexed, and affordable sensing technologies that can avoid the conventional
biological amplification step, make use of the optical and/or electrical signal amplification, and
shorten both the preliminary development and the point-of-care testing time frames. We provide a
comparative review of the existing and emergent photonic biosensing techniques by matching them
to the above criteria and capabilities of preventing the spread of the next global pandemic.

Keywords: biosensors; pathogen detection; rapid sensing; optical amplification; point-of-care testing

1. Introduction

To achieve both selectivity and sensitivity of detection, bio(chemical) sensors typically
require a target recognition element that has a strong affinity with the molecular target
analyte in the tested sample, a transducer that generates a signal based on the presence
of an analyte, which can be detected and processed, and an amplifier that increases the
signal level, thus decreasing the minimum amount of target molecules that can be reliably
detected. Biosensors with photonic transducers generate optical signals, which carry
the information on either the presence or absence of the target analyte in the biological
sample. These optical signals can be generated as a result of linear and/or non-linear
light–matter interactions, including effective refractive index changes, increased light
absorption, fluorescence, and Raman or Brillouin scattering. Small size, weak non-linear
response, and low refractive index values of biological molecules of interest severely
limit the intensity of any optical signal they can generate. Detection becomes even more
challenging when only a few copies of these molecules are present in the tested sample,
which is often the case in the early disease diagnostic efforts.

To address these challenges, various transducers and signal amplification schemes
have been developed and optimized in the past decades. Despite many specific device
realizations, descriptions of which can be found in recent review articles [1–5], the unique
mechanisms of the observable optical signal generation include: (i) local changes to the
light wave propagation and dissipation caused by the capture of the target molecules
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(Figure 1a), (ii) native non-linear signatures of target molecules revealed by optical excita-
tion (Figure 1b), and (iii) target-activated release of optical labels that are the actual sources
of the observable optical signals (Figure 1c). The affinity-type sensors shown in Figure 1a
evaluate selective target capture events and, while they can be used in the label-free format,
require development of target-specific receptors to achieve selectivity [5–7]. The detection
of newly-emerged or mutated viral strains requires the development of new receptors to
maintain specificity.
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Figure 1. Different detection mechanisms used in bio(chemical)sensors with optical signal readout. (a) Target-capture based
detection provides selectivity via the use of target-specific receptors (such as antibodies or aptamers) and sensitivity via the
use of resonant photonic structures for optical signal amplification. (b) Spectroscopic label-free detection provides selectivity
by using the native vibrational or fluorescence spectra of the target material and often uses polaritonic surface-mode
enhancement mechanisms to increase sensitivity. (c) Reporter-release-based detection (illustrated here with an example of
the RT-PCR technique) typically provides selectivity via a target-activated release of fluorescent reporters and relies on
biological target amplification to increase sensitivity.

In contrast, spectroscopic label-free detection techniques, schematically illustrated in
Figure 1b, enable reading the native optical signature of the target molecules, which do not
necessarily need to be selectively captured by the sensor surfaces [8]. However, nonlinear
light–matter interactions that cause the generation of native optical fingerprints of target
biomolecules are weak and often require optical or plasmonic amplification [9–12].

Finally, molecular recognition events that yield selectivity to the reporter-release
biosensors are often similar to those used in the affinity-type sensors, with the observable
signals being produced when optically-bright reporters are released during the recognition
process and start generating optical signals (most often, fluorescence or visible color
changes). This mechanism is illustrated in Figure 1c with a specific example of the reverse
transcription polymerase chain reaction (RT-PCR), currently considered the gold standard
for SARS-CoV-2 detection [13–15].
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All the above sensing approaches often rely on some signal amplification mechanisms
that can help to reduce the limit of detection (LOD) and make them suitable for real-life
applications in the field of medical diagnostics. As we will discuss in detail below, both
the affinity-type and the spectroscopic detection approaches typically make use of the
optical signal amplification techniques, based on the photonic density of states engineering
to enhance both linear and nonlinear light–matter interactions. The use of labels (e.g.,
fluorophores or secondary receptors captured by the target molecules in the sandwich
sensor format) can further increase the affinity detector sensitivity [16] but also increases
its cost and complexity of preparation and testing procedures. However, in the case of
low target molecule densities and high noise background, the sensor LOD may still be
too high to efficiently reduce the false-negative detection rate. To address this challenge,
spectroscopic sensors often use digital signal pre- and post-processing techniques as the
means of signal enhancement [17,18]. Affinity-type sensors also increasingly employ the
emerging machine learning tools for the digital signal amplification [16,19,20].

On the other hand, most successful commercial techniques, such as the RT-PCR
method, combine the reporter-release approach with the biological signal amplification,
where the small amount of target molecules is dramatically increased by their chain-
replication [13–15,21]. In particular, the RT-PCR method involves multiple repeating cycles
of DNA denaturation, followed by hybridization with appropriate primers and extension
by polymerase (Figure 1c). This biological amplification decreases the LOD but increases
the sensor complexity, detection time, and probability of false positive outcomes [22,23].
Furthermore, multiple required temperature-changing cycles increase the detection time
and require precise temperature control instruments. The isothermal biological amplifica-
tion techniques, on the other hand, often require multiple enzymes or complex primers.

Recently, a new biological recognition and amplification mechanism has been identi-
fied and is increasingly utilized in medical research and diagnostics. It is based on using the
enzymes capable of hydrolyzing phosphodiester bonds that link nucleotides in DNA/RNA
chains, such as deoxyribonuclease (DNase) [24] or Clustered Regularly Interspaced Short
Palindromic Repeats-associated complexes (CRISPR-Cas) [25,26]. In particular, CRISPR-
Cas systems are RNA-guided adaptive immune systems that protect prokaryotes from
invading nucleic acids. They provide excellent biological selectivity as they may be selec-
tively activated by the target RNA, which binds to the CRISPS complex and induces its
conformational change. Some of these complexes, once activated, cleave both target RNA
and any other RNA or single-stranded DNA present in the sample, thus providing a strong
biological amplification mechanism that can significantly reduce the sensor LOD [25,27].
We believe that the use of cleavage-type detection mechanism is very promising for the
development of new types of biosensors for the rapid detection of new pathogens and
early disease diagnostics, especially if combined judicially with the previously developed
optical amplification, digital amplification, and multiplexed detection techniques. In the
following sections, we discuss the advantages and disadvantages of the above optical signal
generation and signal amplifications mechanisms and chart the roadmap for combining
them with each other and the emerging cleavage-based techniques of biological target
recognition and amplification.

2. Affinity-Type Biosensors with Optical Signal Amplification

Affinity-type refractometric optical sensors use target-specific receptors anchored to
their surface to capture biological molecules. The presence of captured molecules changes
the effective refractive index (RI) of the optical transducers, which can be integrated waveg-
uides, optical fibers, photonic crystal cavities, microresonators, metasurfaces, etc. [28].
The role of the transducer is not only to produce an optical signal but also to amplify it
to the level where it can be distinguished from the noise level. The observable dielectric
constant of a medium above the transducer is a function of the concentration of the target
biomolecule [29,30]; thus, signal amplification is required because nanoscale objects, such as
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biological molecules, are often present in small concentrations and do not cause a strong
detectable perturbation of the optical field.

The linear response of a molecule to the external electric field is characterized by
its complex polarizability α, which, for objects much smaller than the excitation field
wavelength, can be evaluated from the Clausius–Mossotti equation in the dipole approx-
imation: α = 4πa3ε0εh{

εp−εh
εp+2εh

} and scales with the object volume (i.e., third power of
its radius) [29,30]. Here, εp is the relative dielectric permittivity of the molecule (typi-
cally about 2.25 for biological molecules such as DNA and RNA); a is a molecule radius
(typically measuring few to hundreds of nanometers); and εh is the dielectric permit-
tivity of the host medium (e.g., εh = 1 for air and εh = 1.737 for water in the visible
frequency range). The scattering cross-section of a molecule scales with the square of its

polarizability, σsc =
8π2|α|2

3λ4 (i.e., with the sixth power of its radius), making direct micro-
scopic observations of small molecules by measuring the intensity of the scattered optical
fields impossible.

On the other hand, the scattered field amplitude scales linearly with the molecule po-
larizability, and an absorption cross-section of a molecule scales linearly with the imaginary
part of its polarizability (σabs = 2πIm(α)/λ). With this in mind, a majority of sensitive
photonic biosensing schemes either measure the absorption-mediated changes in the signal
intensity or make use of the optical interference effects by superimposing the reference
excitation signal with the phase-shifted scattered signal and measuring the associated
changes in the system optical response.

The simplest interference-type photonic biosensor is a planar vertically interrogated
Fabry–Perot interferometer (Figure 2a), which creates an interference pattern by combining
the phase-shifted light reflected from different surfaces within the structure [31,32]. The
spectral shifts and the periodicity changes of the interferometric pattern caused by the target
molecules adsorption are evaluated during the detection process. Materials permeable
to the target molecules (e.g., porous silicon or polymers) allow for a larger optical phase
accumulation and thus exhibit more pronounced optical spectral shifts, but only if the
concentration of target molecules or the volume of the analyte is large enough (or both),
allowing for the capture of many molecules. This is not a situation observed in the early
decrease diagnostics efforts, where only limited-volume samples containing femtomolar
(fM) or sub-fM concentrations of target molecules are available for the analysis.

The detection of small amounts of surface-adsorbed molecules can be achieved via
ellipsometric techniques, when not only the scattered light intensity but also the phase
is measured (Figure 2b) [33–35]. However, this detection technique requires bulky and
expensive ellipsometry equipment. It may also not provide a reliable detection mechanism
in the case when only a few copies of target molecules are present in the sample, which
greatly reduces the sensor surface coverage.

However, since molecule polarization depends not only on its polarizability but also
on the strength of the excitation electric field, optical amplification techniques can improve
the detection sensitivity. The optical amplification step is typically achieved in photonic
biosensors via the transducer’s optical design [28]. The local electric field intensity can
be increased by engineering the photonic transducer to trap light, localizing it to a micro-
or nano-scale volume, and recycling the optical energy in the form of either a volumetric
resonant mode or a surface polariton mode. Light trapping and guiding in high-contrast
dielectric or metal structures enables both sensing volume miniaturization and optical
amplification [36–38]. Guided-mode sensors can be realized with structures, such as
metal–dielectric interfaces, supporting surface plasmon polariton modes or integrated
Si waveguides. These sensing structures can be implemented in prism configurations
or in waveguides, such as optical fibers (Figure 2c). Optical fiber-based sensors have
been implemented for a variety of applications, including antibody [39], bacteria [40],
and environmental sensing [41,42]. Fiber optic sensors offer many potential advantages
over conventional planar structures, including their simplicity, low cost, and potential for
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multiplexing [43]. However, additional optical signal amplification is often required, which
can be achieved via fiber-integrated structures supporting surface plasmon modes.

These on-chip sensors can also make use of the interferometric techniques, e.g., in the
integrated Mach–Zehnder interferometer configuration shown in Figure 2d [44,45].

Even larger optical energy accumulation and electric field intensity enhancement
is enabled by light trapping in optical microcavities, such as whispering gallery mode
(WGM) disk, ring, toroidal, or spherical resonators [46–50] or photonic-crystal micro- and
nano-cavities (Figure 2e) [51–53]. Photonic crystals (PhCs) are structures made of materials
with differing dielectric constants in periodic arrangements [54]. PhCs can be designed to
exhibit photonic band gaps with band edge and defect modes, whose spectral positions
are sensitive to environmental stimulus, such as the 1-dimension PhC structure shown
in Figure 2e, in which the middle defect layer acts as an optical microcavity [51,55]. PhC
structures with resonant features can be constructed in 1, 2, and 3-dimensional systems
and are an emerging player in developing low-cost point-of-care (POC) biosensors [51].

PhC cavities and other optical microcavity structures exhibit sharp resonant features
in their transmission spectra as a result of the light interference between the reference signal
propagating through the bus waveguide and the light trapped in the resonator optical
mode [56]. These resonant spectral features are characterized by high-quality (Q) factors,
defined as the ratio of the resonant frequency to resonance bandwidth [57,58], and shift in
response to the resonator surface chemistry changes [46,56], providing a sensitive optical
transduction mechanism.

The LOD of biomolecules by a microcavity-type biosensor operating at wavelength
λ is defined as a ratio of the sensor resolution Rm to the sensitivity of the biomolecular

detection Sm: LOD = Rm
Sm

, Sm = 2π · ρmαm
ε0λ ·

√
n2

r − n2
h ·

nr
n2

h
· S, where ρm is the density of

attached molecules on the sensor surface, αm is the molecule polarizability, nr and nh are the
refractive indices of the resonator material and the host medium, respectively, (nr =

√
εr,

nh =
√

εh), and S is the sensitivity of the resonator mode to the bulk RI changes [59,60].

The sensor resolution Rm = 3
√

σ2
a + σ2

T + σ2
s is defined as three standard deviations of the

sensor measurement caused by the limited device spectral resolution (σs) as well as by
the amplitude (σa) and thermal noise level (σT) [59]. For the optical microcavity sensors,
the standard deviation caused by the amplitude noise depends on the mode linewidth as
σa = ∆λ

4.5(SNR)0.25 , where SNR is the signal-to-noise ratio of the system, and ∆λ is the full
width at half maximum (FWHM) of the ring resonator mode amplitude, which is related to
the mode Q-factor as ∆λ = λ

Q .
To decrease LOD, either the sensor sensitivity or the sensor resolution need to be

increased, or ideally, both. The increase in the resolution can be achieved by engineering
high-Q (i.e., small FWHM) resonant photonic elements. For example, in a system with
temperature stabilization with σs = 10 fm, the sensor resolution will be limited by the
mode FWHM if σa ≥ σs. For SNR = 60 dB and a moderate spectral resolution of 1 pm
(σs = 0.29 pm), the FWHM ∆λ > 41.3 pm becomes the dominant contribution to the sensor
resolution Rm, which is a typical situation for integrated Si microresonator-based sensors
with Q ∼ 104 (∆λ ∼ 155 pm). Microtoroidal and microsphere WGM biosensors typically
demonstrate larger Q-factors and higher sensitivity than integrated planar microcavities
but have not yet been adapted for the point-of-care applications due to the challenge of
achieving portable system packaging and integration with microfluidics while maintaining
system stability and reliability [46].
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Figure 2. Examples of affinity-type refractometric optical biosensors. (a) In planar interferometers, target molecules are
captured either by surface-anchored receptors (above) or are absorbed into a permeable layer (below). In both cases, the
presence of target molecules shifts the interferometric reflectance pattern, which is a result of the interference of reflected
light from the front and back interface of the layer. (b) In ellipsometric measurements, both the intensity and phase of
reflected light is monitored for s- and p-polarized excitation, enabling higher detection sensitivity at the expense of detector
cost and complexity. (c) In guided-wave sensors, such as surface plasmon polariton resonance sensors, light is trapped and
guided along the surface or within a thin layer, increasing the local electric field near captured target molecules. Light can
couple to the guided mode via a prism or, in an optical fiber, light is coupled to the guided mode via a tilted fiber Bragg
grating [43]. (d) In integrated interferometers, light is split between the sensing arm (above) and a reference arm (below) and
recombined to create a transmitted interference spectrum, which shifts due to the target capture. (e) Microcavity resonators
provide optical amplification by re-circulating optical energy in the form of high-quality trapped modes, such as whispering
gallery modes. Light traveling through the bus waveguide interferes constructively or destructively with the microcavity
resonant modes, creating narrow transmittance dips in the transmission spectrum whose spectral positions can be monitored
for detection. Here, a microring resonator is shown. Defects in photonic crystals can also form resonators, such as the
illustrated 1-dimensional photonic crystal structure with a defect layer in the middle. The defect layer creates a resonance in
the reflectance spectrum of the structure, which can track with target concentration [55]. Here, the transmittance spectrum is
shown for the microring cavity, while the transmittance of the photonic crystal would depend upon the number of resonant
modes supported in the defect layer. (f) In diffractive-type sensors, incident light is diffracted in certain angles depending
on the surface coverage of target molecules. The angle-specific intensity of reflectance can be monitored to measure the
concentration of target molecules.

On the other hand, surface plasmon resonance (SPR) and localized surface plasmon
resonance (LSPR) biosensors have been highly utilized for viral detection [61,62] despite the
large FWHM values of the surface plasmon resonance modes caused by dissipative losses
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in metals [28,63]. It should be noted that plasmonic nanomaterials synthesized with special
approaches can greatly reduce dissipative losses, as the geometric arrangement of nanopar-
ticles determines the broadening of the plasmon resonance [64,65]. The low Q-factors of
SPR and LSPR sensor modes are compensated by their high sensitivity values, stemming
from the dramatically enhanced local electric field in the vicinity of the metal surfaces.
Surface plasmon mode excitation can be utilized in both the affinity-type label-free sensing
and for the enhancement of Raman signals in the surface-enhanced Raman scattering
(SERS) techniques described in the following sections [38,65–67]. Finally, high sensitivity
and high resolution can be simultaneously achieved in photonic-plasmonic sensors, which
take advantage of hybrid integration of low-loss high-Q dielectric microresonators with
metal elements supporting surface plasmon resonances [68–72].

All types of label-free photonic biosensors discussed above typically require either
broadband sources paired with the high-resolution spectrometers or light sources whose
wavelengths can be tuned fast enough to follow the kinetics of the molecule adsorption
processes. Repeatable fabrication and the integration of high-Q optical microcavities is also
challenging. These requirements increase the photonic sensor systems complexity and cost,
often making them prohibitive for point-of-care bio-sensing applications. Some of these
challenges can be overcome either in the interferometric photonic biosensors engineered to
operate in the intensity readout mode or by using the diffractive-type biosensors (Figure 2f)
that measure the reflected intensity changes at fixed wavelengths and angles [73–78]. The
diffractive sensors illustrated in Figure 2f are 2-dimensional PhC stuctures [54]. In these
configurations, only a single-frequency (or a narrow-band) light source and a photodetector
are required, which eliminates the need for complicated broadband high-spectral-resolution
signal processing, offering promise for the development of simple real-time point-of-care
sensing systems. However, low-concentration low-volume samples containing only a few
target molecules typically cannot generate strong enough changes in the diffraction grating
environment to enable detectable changes in the sensor diffracted patterns.

Finally, all the label-free biosensors with optical signal amplification require chemical
surface functionalization to immobilize target-specific receptors [28] and are vulnerable to
non-specific binding [79–81]. This greatly decreases the sensor performance and reliability,
as non-specific binding increases background signals and the sensor limit of detection.
Although self-referencing techniques can somewhat improve the sensor performance
by reducing the effect of the non-specific binding [82–85], incorporating self-referencing
schemes in the sensor design increases the sensor cost and complexity. Another way to
reduce the effect of non-specific binding and the LOD is by increasing the signal-to-noise
ratio via adding labels that selectively bind to the target molecules, thus increasing the
optical signal associated with the target capture event. Just like the surface receptors
for the molecular target capture, these labels need to be custom-engineered to provide
target selectivity and added to the assay together with the sample [86–91]. This further
complicates the process and increases the initial development time of the sensor technology.
Generally, SPR and LSPR can show real-time detection [92]; however, adding labels to
reduce the LOD will increase the detection time because more time will be needed for
particle diffusion [93].

SPR [94], interferometer [95], and microcavity [96] chips, as well as PhC [97,98] and
fiber optic-type sensors [99], have all been integrated with microfluidic cells or other
systems to create POC devices. The realization of these techniques into integrated, POC-
type devices is mostly limited to research lab development, though some techniques
have been commercialized [100]. Chen et al. (2020) argue that these types of integrated
biosensors will act as key players in the future market of miniaturized, POC technology as
their sensitivities, accuracy, and fabrication processes improve [100].

Plasmonic nanostructures, photonic crystal, and fiber optic biosensors have been
developed to detect Ebola virus antigens [101], SARS-CoV-2 proteins [102], HIV [103],
and other antigens [104] at femtomolar concentrations, which are low enough to enable
detection without any amplification of the target molecule’s concentration. A table compar-
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ing the reported sensitivities and LODs of affinity-type photonic biosensors for detecting
viral pathogens using different mechanisms of light trapping and amplification can be
found in a recent review article (see Table 2 in [7]).

3. Label-Free Spectroscopic Sensors with Digital and Optical Amplification

Some of the limitations of affinity-type refractometric optical biosensors can be over-
come using vibrational spectroscopic techniques, such as infrared (IR) [105,106] and Raman
spectroscopy (Figure 3) [10,107]. These techniques measure the nonlinear interactions of
the atoms and molecules present in the sample with incident electromagnetic radiation.
The outcome is a spectral ’fingerprint’ of the sample that contains the information about its
content, which is, most often, a vibrational spectrum of the biological molecule. While these
direct ’fingerprinting’ methods can be combined with the use of IR-active or Raman-active
labels, they typically are used to directly detect the native biological targets present in the
sample [108,109]. This not only eliminates the need for multiple complex reagents, but also
the physics involved in these processes are inherently faster than the ones requiring elec-
trochemical reactions, and the sample preparation can be minimal. Furthermore, no prior
knowledge of the composition of the sample is required in principle, as the target recogni-
tion step is performed digitally, by analyzing the acquired vibrational spectra. Therefore,
vibration spectroscopy has the potential for fast, non-invasive, multiplexed, and reagent-
and label-free detection.

Figure 3. An example of the detection process for a spectroscopy-based detector. After sample
collection, the sample is prepared to be analyzed. This preparation, which can be minimal, depends
on the spectroscopic technique, type of sample, and probing mechanism. The prepared sample
is measured, and its spectrum is obtained. The spectrum is then classified as positive or negative
depending on the pre-build classification model. Oftentimes, pre-processing (e.g., background
subtraction) of the raw spectrum is necessary. The final outcome is a decision (i.e., positive/negative),
which depends on an pre-established threshold.

In IR spectroscopy, an absorption spectrum is measured from the fraction of the
incident electromagnetic radiation absorbed by the sample as a function of the wavenumber.
There are two regions of particular interest for biological analysis. The first is the optical
window in the near-infrared (NIR) region: ∼650–1100 nm (≈15,000–9000 cm−1) [110]. The
spectral results in this region are particularly valuable due to the low absorption (and
therefore, low false information gained) from water and hemoglobin. The second region
of interest is the biofingerprint region in the mid-infrared (MIR) region: (∼900–1800 cm−1)
[111,112]. Spectral results in this region contain information about the presence of DNA and
RNA, as well as biologically relevant lipids, carbohydrates, and proteins. However, MIR
spectral information often contains interference from water and CO2 absorption, as well as
spectral overlap from cellular and pathogenic vibrational responses.

The most common technique in the MIR region is Fourier-Transform Infrared (FTIR)
spectroscopy, which allows the rapid collection of broadband, high-resolution MIR/NIR
spectra [113]. The sample can be probed in transmission, reflection, or by attenuated
total reflection (ATR) [114]. In the latter, the sample is probed by the evanescent wave
that is generated by the total internal reflection between the sample and the ATR crystal
(typically diamond or ZnSe). This method requires the least sample preparation, and,
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oftentimes, the sample is placed onto the ATR crystal for direct measurement. Due to its
simplicity in operation and compactness, the combination of FTIR with ATR sampling
(ATR-FTIR) has great potential for the development of user-friendly, cost-effective, point-
of-care mass screening detectors. Moreover, the minimal amount of waste generated makes
this technique particularly sustainable, especially when considering large-scale deployment.
ATR-FTIR has already been used to detect a variety of pathogens and diseases, such as
hepatitis [115,116], dengue [117], or cancer [118], to name a few. Since NIR relies on
overtones and combination bands, which are not strong absorbers, ATR is not typically
used in the NIR region.

On the other hand, Raman spectroscopy offers the possibility of sample analysis [119]
and exhibits higher molecular specificity and no O-H stretching interference from water.
This is due to the fact that Raman active transitions are characterized by a change in
polarizability of the molecule in the vibration, which is not the case for IR, where the change
must be in the dipole moment. In particular, the region of interest for biological studies is
∼550–1750 cm−1 [111]. However, the Raman signal is based on the non-linear process of
inelastic scattering, which has a low efficiency and is typically orders of magnitude weaker
than the linear elastic scattering process. Therefore, the spontaneous Raman signal is often
masked by background fluorescence, compromising the sensitivity of the instrument.

Similar to the case of affinity-type refractometric biosensors, a primary limitation
to the widespread use of spectroscopic biosensors is their limit of detection. Generally,
the limit of detection of these techniques depends on the intensity of the signal generated
by the interaction of the analyte and the incoming radiation and the SNR of the instrument.
For IR, Beer–Lambert’s law establishes that the absorptance of an analyte at a specific
band (Aν) depends on its absorptivity at that band (εν), the optical path length (l), and the
molecular number density (n): Aν = log

(
Iν

I0,ν

)
εν l n, where I0,ν and IIR,ν are the source and

transmitted intensities, respectively, [120]. For spontaneous Raman processes, the intensity
of the Raman-shifted light can be written as IRaman,ν = σRaman,ν l n I0,ν, where σRaman,ν is
the Raman cross-section of the analyte [121]. Thus, the performance of these detectors
is concentration-dependent, which has obvious disadvantages. However, in practice,
its consequences could be less harmful if there is a correlation between the viral load
of a patient and their contagiousness or disease severity, which appears to be the case,
for example, for SARS-CoV-2 virus [122,123].

Regarding the SNR, its value is completely dependent on the experimental setup, and a
large variety of spectrometers exist with different levels of SNR, making the determination
of an overall “technique limit of detection” particularly challenging. However, some studies
have been done to estimate and test these limits for certain analytes and under specific
conditions [124–126]. However, since the spectrum used for detection contains information
about all the IR/Raman-active biological components in the sample, imbalances in the
content of the sample caused by disease-induced metabolic changes can be detected,
enhancing the overall detection performance. Nevertheless, while the individual spectra of
IR absorption and Raman scattering show greater variation between different biological
species than their corresponding optical spectra, they may be hard to resolve since some
of the vibrational bands might be common to other compounds of the sample. Thus,
the ultimate performance of vibration spectroscopy-based detectors is not only determined
by the limit of detection for the molecules of the pathogen. Given the aforementioned
intricacies, experimental determination remains the best approach to assess the potential of
these techniques for diagnosis. Table 1 contains a non-extensive selection of experimental
results highlighting the state-of-the-art performance of vibrational spectroscopy detectors.

The results presented in Table 1 show that sensitivity and specificity > 90% have
been achieved in a variety of practical experiments. This performance, along with the
aforementioned intrinsic advantages of these techniques, demonstrates their potential
as a tool for point-of-care mass screening detection, where a reduction in sensitivity can
be traded-off.
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Table 1. The reported performance of a selection of vibrational-spectroscopy-based detectors for the detection of several
pathogens. Due to the slight differences in metric definitions and computations among groups, the reported performances
are not directly comparable among techniques and diseases. Thus, the information contained in this table is not to compare
the different methodologies but rather to provide an overall figure of merit of the potential and capabilities of these
techniques for the detection of a variety pathogens.

Pathogen/Disease Sample Type Spectroscopic Technique Sensitivity Specificity Accuracy Population (Prevalence) Ref.

Alzheimer’s Disease Blood (plasma) NIR 87.5% 96.1% 92.8% 277 (39%) 1 [127]

Alzheimer’s Disease-DLB Blood (plasma) Raman 81–90% 77–93% - 56 (-) 2 [128]

Cancer (various) Blood (whole) MIR - - 90% 43 (40%) [118]

Cancer (brain) Blood (serum) MIR 95.5% 94.9% - 183 (52%) 1 [129]

Cancer (breast) Blood (serum) MIR 92.3% 87.1% 89.3% 146 (45%) [130]

Cancer (breast) Blood (serum) Raman 97% 78% - 23 (48%) 1 [131]

Cancer (breast) Tissue Raman 94% 96% - 130 (-) 2 [132]

Cancer (breast) Blood (serum) MIR >85% 1 1 - 223 (49%) 1 [133]

Cancer (cervical) Blood (serum) Raman 100% 97.1% - 42 (53%) 1 [134]

Cancer (colorectal) Tissue MIR 81.4% 92.7% - 88 (54%) [134]

Cancer (endometrial) Blood (serum) MIR - - 82.0% 60 (50%) 1 [135]

Cancer (Glioma) Blood (serum) MIR 98.5% 95.1% 96.8% 265 (33%) 1 [136]

Cancer (Glioma) Blood (serum) MIR 87.5% 100% - 74 (66%) 1 [137]

Cancer (lung) Tissue MIR 78–99% 2 65–99% 2 - 38 (-) 2 [138]

Cancer (lung) Sputum MIR 100% 3 92.0 3 - 50 (50%) [139]

Cancer (oral) Tissue Raman 90.9% 83.3% 87.5% 80 (55%) 1 [140]

Cancer (ovarian) Blood (serum) MIR 76% 98% 94% 378 (19%) 1 [141]

Cancer (ovarian) Blood (serum) MIR - - 95% 60 (50.5%) 3 [135]

Cancer (ovarian) Blood (serum) Raman 94 96 95% 55 (49%) [142]

Cancer (ovarian) Blood (plasma) MIR 71% 84% 81% 378 (19%) 1 [141]

Cancer (prostate) 4 Tissue MIR 92.3% 1 99.4% 1 - 40 (-) 1 [143]

Dengue, Zika, Chikungunya Blood (whole) MIR 98% 2 0.98% 2 0.98% 2 130 (65%) 2 [117]

Dengue Blood (serum) MIR 87.5% 95.0% 90.5% 77 (74%) 1 [144]

Dengue Blood (plasma) Raman 97.38–97.95% 86.18–95.40% - 34 (50%) [145]

Dengue-Malaria Blood (serum) Raman 83.3% 2 100% - 44 (-) 2 [145]

Hepatitis (B-C) Blood (serum) MIR 77.3–79.6% 2 85.1–76.2% 2 - 497 (62%) [115]

Hepatitis (B) Blood (serum) MIR 84.3% 91.3% - 333 (44%) [115]

Hepatitis (B) Blood (serum) Raman 100% 88.0% 93.1 1000 (50%) [146]

Hepatitis (B) Blood (plasma) Raman 98.9% 98.8% 98.8 34 (29%) [147]

Hepatitis (C) Blood (serum) MIR 77.2% 92.3% - 345 (48%) [115]

Hepatitis (C) Blood (serum) Raman 92% 3 88% 3 - 29 (41%) [148]

Hepatic fibrosis Blood (serum) MIR 95.2% 100% 97.5% 23 (52%) 1 [149]

HIV-HCV 2 Blood (plasma) MIR - 100% 93.7% 2 72 (73%) [150]

HIV 5 Blood (serum) MIR 83% 92% - 120 (33%) [151]

GDM Blood (serum) MIR 100% 100% 100% 100 (50%) [152]

Influenza Nasal aspirate NIR 97% 100% - 67 (49%) 1 [153]

Kidney disease Blood (serum) NIR 90–100% 100% - 64 (25%) [154]

SARS-CoV-2 Pharyngeal Swab MIR 95% 89% - 181 (39%) [155]

SARS-CoV-2 Saliva Raman 83.7–97.5% 2 92.2–98.5% 2 - 101 (-) 2 [156]
1 Multiple spectra per sample—see reference for details. 2 Study performed on multiple pathogens/diseases, severity, or groups—see
reference for details. 3 In-sample performance. 4 Estimation of Gleason grade. 5 In pregnant women.

Another potential disadvantage could be a limited capability to distinguish between
closely-related pathogens that exhibit similar symptomatology and metabolic changes. This
is the case in Roy et al. [115], where a modest decrease in performance in the classification
of Hepatitis B vs. Hepatitis C samples is observed when compared with the performance
of classifying each of them separately vs. the control. However, Santos et al. [117] demon-
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strate outstanding classification performance even with a virus within the same family
and genus (Zika and Dengue). This is an area of active investigation, and future experi-
ments performed on larger, more heterogeneous populations could provide an answer and
determine the real potential of these techniques.

While the sensitivity and specificity of spectroscopic detection methods can be in-
creased by using the same target-specific receptors as those used in label-free affinity-type
sensors, this would increase the sensor complexity, limit its use as a multiple pathogen
detection platform, and may introduce additional noise from receptor-generated spectro-
scopic signatures. A potential alternative is to implement a two-step detection scheme
where patients are first screened using fast spectroscopic techniques to identify likely positive
candidates. This preliminary diagnosis could then be confirmed by a second more sensitive,
slower, and resource-intensive detection method (e.g., PCR). This scheme could increase
the overall number of tests and optimize the allocation of resources, which is essential
during pandemics and in regions with limited resources. The advantage of less-sensitive,
mass-deployable detection techniques for pandemic management has been explored in re-
cent years [157,158]. Furthermore, chemometric techniques are often leveraged to facilitate
the spectral analysis and classification [159]. Over the last several years, the combination
of vibrational spectroscopy and chemometrics has been successfully demonstrated for the
detection of various pathogens [160,161]. Spectroscopic techniques could also be used in
combination with biological amplification for increased performance at the expense of
detection time.

Finally, optical and digital amplification techniques have been successfully imple-
mented to enhance sensitivity and decrease the LOD of spectroscopic detection techniques.
For example, several stimulated Raman techniques, such as coherent anti-Stokes Raman
scattering [162] or stimulated Raman scattering [163], have been developed, and the po-
tential of Raman spectroscopy for pathogen detection has been studied and demonstrated
in recent decades [119,161,164,165]. Similar to the case of affinity-type biosensors, both
the Raman signal and the infrared absorption efficiency can be enhanced by the excitation
of the surface plasmon polariton modes on the sensing surfaces. Since the signal scales
with the product of the optical field intensities at the excitation and the Raman scattering
wavelengths, plasmon-enhanced local field amplification can yield orders-of-magnitude
signal enhancement. In particular, two techniques have emerged as particularly promising
for bioanalysis, which are surface-enhanced Raman spectroscopy (SERS) [142,166–168]
and tip-enhanced Raman spectroscopy (TERS) [169]. These techniques have already been
proven effective for pathogen detection [165,170,171]. Overall, one of the greatest advan-
tages of vibrational spectroscopy is its potential use for the multiplexed detection of a
variety of pathogens, in combination with affinity-type optical detection techniques.

4. Cleavage-Based Sensing

Despite recent developments in the photonic biosensor techniques aimed at enhancing
the optical amplification mechanisms, the techniques combining biological amplification,
optical labels, and molecular cleavage techniques—exemplified by the RT-PCR method—
remain the most reliable and scalable approaches to mass screening for harmful pathogens.
Another recently introduced cleavage-based approach to biosensing makes use of enzymes
that can cleave RNA or DNA strands (either selectively or indiscriminately) to modify the
target molecules or to release optical labels. Especially interesting cleaving agents belong to
the CRISPR family of DNA sequences found in the genomes of prokaryotic organisms such
as bacteria [25–27,172,173]. CRISPR can be derived from DNA fragments of bacteriophages
that had previously infected the prokaryote and are capable of detecting and destroying
DNA from similar bacteriophages during subsequent infections.

CRISPR-associated (Cas) nucleases (proteins that cleave DNA) are effectively RNA-
guided adaptive immune systems that protect prokaryotes from invading nucleic acids [174],
with some CRISPR–Cas complexes being especially useful for biosensing application ow-
ing to their ability to achieve collateral RNA/DNA cleavage. In particular, target RNA
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binding induces conformational changes in these complexes, activating the agent, and then
the activated CRISPR–Cas nuclease cleaves both the target RNA and any other RNA or
single-stranded DNA sequences it encounters. As a result, CRISPR–Cas-mediated sensors
offer several key advantages over the current cleavage-based techniques: they are capa-
ble of achieving incredibly high selectivity, potentially down to a single nucleotide; they
can bypass the long wait times associated with RT-PCR thermal cycling; and they can be
rapidly and easily modified to track the spread of novel viral strains. This enables rapid
point-of-care diagnostic testing, with highly accurate results acquired in less than an half
an hour [27,175].

The list of CRISPR-associated nucleases increasingly being explored for viral detection
applications typically includes Cas12/a, Cas13, or Cas14 complexes. The better known
Cas9 protein is commonly used in gene knockout due to its low quantity of cleaved base
pairs and the single shot nature of its binding-cleavage interaction, as well as the fact that
the cleaved site is highly proximal to the binding site [176]. However, it is sub-optimal for
biosensing applications due to its inability to achieve collateral cleavage. On the other hand,
the Cas12/13/14 enzymes are capable of cleaving many more base pairs, creating staggered
cuts far from the site of binding. They induce significant (up to 104) nonspecific collateral
cleavage of nearby DNA or RNA strands in the presence of DNA or RNA containing the
target sequence [27].

Though the CRISPR cleavage process itself is non-optical, collateral cleavage can serve
as a transduction mechanism to produce an optical signal readout and to achieve optical
signal amplification. This often takes the form of fluorophore-quencher (FQ) pairs that
are separated through collateral cleavage in the presence of target viral DNA or RNA,
creating a strong fluorescent signal in the presence of target viral sequences (Figure 4,
left). A non-fluorescent alternative reporting mechanism following a similar principle uses
FAM–biotin reporter molecules that are run on a lateral strip (Figure 4, right). In order to
generate a strong enough visual output to be read with the unaided eye, amplification is
often required, using either RT-PCR, RT-LAMP, or RPA to produce additional copies of
viral genetic material to be cleaved.

Figure 4. Cleavage-based detection utilizing the biological recognition and collateral cleavage
amplification capabilities of CRISPR–Cas complexes. The signal readout can be either fluorescence-
based (left) or a lateral flow readout of molecular weight, often with reporter complexes, such as
FAM–biotin (right).

Numerous systems have been developed that integrate optical readouts with CRISPR–
Cas12a or Cas13 for the detection of SARS-CoV-2: among them are SherLOCK, CARMEN,
DETECTR, and AIOD-CRISPR, discussed briefly below. To enable greater utility for point-
of-care applications, several of these systems incorporate the amplification step within the
sensor housing itself.

The DETECTR method combines RT-LAMP (Loop-mediated AMPlification) and
CRISPR–Cas12a for a rapid, highly sensitive sensor for SARS-CoV-2 [26]. In this sensor, fol-
lowing the typical RT-LAMP process, the sample swab is isothermally amplified, and then
undergoes a Cas12 cleavage reaction. If the target sequences are present, the makeup of the
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relative molecule sizes should have changed. A visual output is created when the proteins
are run on a lateral strip, with FAM–biotin as a fluorescent reporter molecule. With the
given amplification method, the DETECTR sensor has a limit of detection of 10 copies of
target RNA per microliter of the sample, and the process takes about 30–40 min. However,
the system requires substantial heating control and a multiple-stage, multiple-temperature
process in order to give an output.

The AIOD-CRISPR (“all-in-one-dual CRISPR”) [177] addresses some issues that were
present with DETECTR by replacing the RT-LAMP stage with an innovative method
of heat activation, producing results in only 20 min. Instead of RT-LAMP, a low-cost
hand warmer is used to achieve the target temperature for CRISPR activity of 37 °C.
The continual amplification from the DNA polymerase allows for continuously triggered
cleavage as more and more binding sites are available, increasing the fluorescent signal.
Small concentrations of the target analyte are thus made visible upon blue/UV illumination;
larger concentrations are visible to the unaided eye. The researchers were able to reliably
detect positive results with only five copies of target RNA in a sample. Of particular
note with this sensor development is the fact that the sensor detection, amplification,
and readout all can occur isothermally, reducing the time to readout and the complexity of
the overall sensor architecture.

An attractive feature of CRISPR-based sensors is the ability to rapidly modify the
crRNA (CRISPR RNA) complexes in the biosensor to accommodate detection of even
single-nucleotide mutations, allowing for both epidemiological strain tracking and rapid
adjustment to test for strains as they are discovered and sequenced. As an example,
CARMEN (Combinatorial Arrayed Reactions for Multiplexed Evaluation of Nucleic acids)
was not originally designed as a SARS-CoV-2 specific sensor; rather, it is a generalized
method for mass testing of a sample against many different possible pathogens [178].
CARMEN uses Cas13 matching sequences to various target analytes in its microwell arrays.
This was used to create testing chips that would enable rapid and scalable testing of many
viruses at once. To achieve an optical readout, CARMEN mixed various combinations of
a variety of off-the-shelf fluorophores to produce unique color signatures for each well,
minimizing the effect of “optical bleeding” from neighboring cells when a particular array
entry lights up positive.

This platform allows for a simplified integration of novel viruses into the microwell
array as they are discovered. CARMEN was under development months before the
COVID-19 pandemic; however, the team was able to rapidly incorporate a crRNA matching
sequence for SARS-CoV-2. This flexibility may be key to monitoring the spread of variant
strains of SARS-CoV-2, as crRNA for the detection wells can be used to distinguish even
single-nucleotide differences in the genetic makeup. The ability to distinguish variants with
this method was demonstrated with CARMEN in an array that allowed for simultaneous
testing of all H(1–16) and N(1–9) influenza A common viral mutation combinations.

Likewise, the specific high-sensitivity enzymatic reporter unlocking (SHERLOCK)
allows for multiplexed, portable, and ultra-sensitive detection of RNA or DNA from clinical
samples, uses fluorescence and colorimetric readouts, and provides results in less than an
hour with a setup time of less than 15 min [179]. It has been developed in 2019 and was
quickly adapted for SARS-CoV-2 RNA detection in 2020 [180]. As global pandemic allevia-
tion efforts depend on a combination of mass testing, mutation tracking, and vaccination
programs, a flexible platform in which one can rapidly identify the particular strand of
virus that a patient is infected with will be crucial. A detailed comparative summary of
recently developed CRISPR-based biosensors can be found in a recent topical review article
(see Tables 2 and 3 in [181]).

Further Avenues for Cleavage-Based Photonic Sensors

As cleavage-based sensing is still a relatively new approach, there are numerous novel
applications being developed that make use of the unique combination of the biological
recognition and amplification mechanisms provided by the CRISPR technology with the
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optical signal amplification techniques provided by photonic and plasmonic biosensing
platforms. Nonspecific collateral cleavages activated by precise crRNA target matching
to viral RNA and DNA are being investigated as a transduction mechanism in photonic
biosensors of various configurations, including planar porous biosensors with Fabry–Perot
spectra and out-of-plane readout (Figure 5a) [182], integrated microresonator sensors
with in-plane readout [183,184], and diffractive biosensors inverse-designed for cleavage-
enabled sensing with simple single-frequency readout (Figure 5b) [185].

Figure 5. High-Q [184] (a) and low-Q [185] (b) photonic biosensors designed to operate in the
cleavage-based detection regime, which can combine optical signal amplification with the biological
recognition and collateral cleavage amplification capabilities of CRISPR–Cas complexes. (a) Cleavage
and removal of multiple nanoparticle probes from the sensor surface per each target molecule
may result in a large spectral shift. Multiple probes attached to a resonant elements, such as the
microresonator, can degrade its quality factor and need to be chosen properly. (b) Photonic biosensors
utilizing low-Q structures, such as a diffractive biosensor shown here, can be engineered to exhibit
switchable behavior activated by the probe cleavage event. The diffracted field patterns illustrate the
system switching from the second-order diffraction to the zeroth-order diffraction regime as as result
of the cleavage.

The new approach makes use of the biosensor surface pre-test functionalization
with high-index nanoscale reporters (e.g., quantum dots, semiconductor or noble-metal
nanoparticles), which are then cleaved from the surface by a cleaving agent (e.g., a CRISPR
complex) activated by a target biomolecule in the sample. Surface functionalization can
be done by using known chemistry and does not require re-designing for every new
type of pathogen or a variant. This approach can also provide dramatic optical signal
amplification, which results from the collateral cleavages of large numbers (up to 104) of
high-contrast nanoparticle probes instead of the adsorption of few low-index biological
molecules. We estimate the reduction of LOD caused by replacing the molecule capture
event with the collateral probes cleavage event as: LODpr

LODm
=

Rpr
Rm
· αm

M·αpr
, where M is the

cleavage multiplication factor (i.e., the number of probes cleaved collaterally upon the
enzyme activation by a single target molecule), and αpr is the polarizability of the probe.
Rpr is the sensor resolution under the probe-cleavage detection scenario, while Rm is the
sensor resolution in the affinity mode operation.

It can be easily seen that the sensor LOD value can be reduced by choosing the probes
with larger polarizability values αpr than that of the target molecule αm. For comparison,
at λ = 1.55 µm, the ratios of polarizabilities of an Au (εAu = −115.13 + i11.26), Si (εSi =
12.16 + i7 · 10−13) and Ge (εGe = 17.8 + i0.002) nanoparticle probes to the polarizability
of a biological particle (εm = 2.25) of the same size in water are as follows: αAu

αm
= 11.7,
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αSi
αm

= 7.4, and αGe
αm

= 8.4. The choice of the probe size offers an even larger degree of control
over LOD as the polarizability scales linearly with the particle volume: αpr

αm
∼ (

apr
am

)3.
On the other hand, the standard deviation caused by the amplitude noise may be

increased by the presence of high-contrast probes, which will decrease the sensor resolution
Rpr and, in turn, increase the LOD, reducing the effect of the larger probe polarizability.
However, as long as the probe-to-molecule polarizability ratio exceeds the correspond-
ing FWHM ratio, the probe-cleavage-based approach reduces the sensor LOD over the
molecule-capture-based approach. As an example, a recent study predicts that high-index
semiconductor nanoparticles used as probes with an integrated silicon microring resonator
are expected to provide dramatic signal amplification without causing significant degrada-
tion of the resonant mode quality factors [184]. The cleavage multiplication factor M has an
even stronger effect on the LOD reduction than the large polarizability of the probes since
a single CRISPR complex, activated by the hybridization of viral RNA/DNA to CRISPR
RNA/DNA, can produce thousands of non-specific collateral cleavages. Furthermore,
the probes can be chosen such that they either produce an additional optical signal, e.g., flu-
orescence and Raman scattering [186] or strongly modify the electrical conductivity of the
sensor [173,187], allowing for the development of a multiplexed sensor platform design.

5. Conclusions and Outlook

To provide resiliency against pandemics, new types of universal biosensors that can
be rapidly adapted and deployed on a large scale for the detection of new pathogens and
new variants of known pathogens and exhibit real-time detection with LOD as low as a few
target molecules need to be developed. Photonic biosensors, which provide optical signal
amplification and can be mass-produced by existing semiconductor foundries, offer a
promising platform, which is in principle amenable to multiplexing with spectroscopic and
electrochemical detection techniques. However, to reach sub-fM detection levels, photonic
biosensors typically have had to be engineered to support ultra-high-Q trapped modes.
On the other hand, the plasmonic field enhancement required for SERS, infrared and
fluorescent signal enhancement is accompanied by the inevitable Q-factor reduction due
to Ohmic losses in metals, hindering multiplexing opportunities. Hybrid optoplasmonic
biosensors offer a partial solution to this dilemma [68–72] but have not been adopted on
larger scale owing to their complexity in fabrication and operation. Finally, even ’label-
free’ photonic sensors typically rely on target-specific receptors to achieve specificity and
increase sensitivity and need to be re-designed for detection of new pathogens.

The recently introduced concept of the probe-cleavage detection makes the rapid
development of new highly sensitive real-time photonic biosensor platforms possible for
emergent pathogens and new variants of known pathogens because it no longer requires
the development of target-specific receptors and offers low detection limits (down to few
molecules) owing to the high collateral cleavage counts exhibited by the commercially
available programmable CRISPR–Cas complexes [26,177–180].

Interestingly, both low- and high-quality-factor photonic biosensors can be re-engineered
to work efficiently under the probe-cleavage detection scenario owing to the dramatic signal
amplification provided by the high-contrast probes and collateral cleavage multiplication
factors [182,184,185]. This offers opportunities for multiplexing photonic biosensors with
spectroscopic techniques and making use of the surface-plasmon signal enhancement. Fur-
thermore, low- and moderate-Q photonic biosensor platforms can be engineered to operate
with the single-frequency fixed-angle intensity vertical readout, reducing their cost and
complexity and enabling integration with portable smartphone-based systems [188–190].
We expect that many previously developed photonic biosensing platforms can be re-
designed to operate in the probe-cleavage detection regime and provide multiplexed
capabilities. The recently developed toolbox of the inverse design and machine-learning
techniques [185,191–195] can be utilized to find the optimum sensor configuration (i.e.,
a photonic device platform, readout mechanism, type and surface coverage of the nanopar-
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ticle probes, etc.) that balances the sensor ease of use, detection time, LOD, and the dynamic
range requirements.
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Cas CRISPR-associated
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crRNA CRISPR RNA
DNase Deoxyribonuclease
DLB Dementia with Lewy bodies
fM Femtomolar
FQ Fluorophore-Quencher
FTIR Fourier-Transform Infrared
FWHM Full Width at Half Maximum
GDM Gestational Diabetes Mellitus
HCV Hepatitis C Virus
HIV Human Immunodeficiency Virus
IR Infrared
LAMP Loop-mediated AMPlification
LOD Limit of Detection
LSPR Localized Surface Plasmon Resonance
MIR Mid-Infrared
NIR Near-Infrared
POC Point-of-care
PhC Photonic crystal
RI Refractive Index
RNA Ribonucleic Acid
RT-PCR Reverse Transcription Polymerase Chain Reaction
SARS-CoV-2 Severe Acute Respiratory Syndrome CoronaVirus 2
SERS Surface-Enhanced Raman Spectroscopy
SHERLOCK Specific High-Sensitivity Enzymatic Reporter UnLOCKing
SNR Signal-to-Noise Ratio
SPR Surface Plasmon Resonance
TERS Tip-Enhanced Raman Spectroscopy
Q Quality
WGM Whispering Gallery Mode
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