
Correction Correction: Zia, H. Enhanced Pulse Compression within Sign-Alternating Dispersion Waveguides. *Photonics* 2021, 8, 50

Haider Zia D

Laser Physics and Nonlinear Optics Group, Department Science & Technology, MESA+ Research Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands; h.zia@utwente.nl

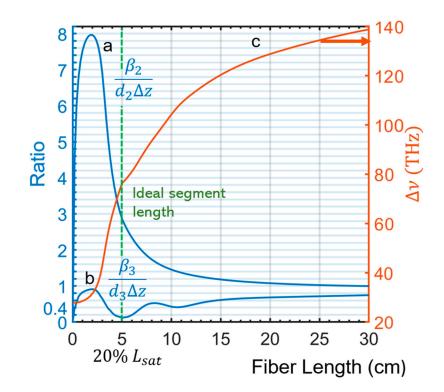
Error in Figure 2

In the original article [1], there was a mistake in Figure 2 as published. The figure was not shown over the complete range of interest. The corrected Figure 2 appears below. The authors apologize for any inconvenience caused and state that the scientific discussion and conclusions are unaffected. The original article has been updated.

Figure 2. Group velocity dispersion in fs^2/mm plotted with respect to envelope angular frequencies, across the bandwidth range of interest in an example normal dispersion fiber (Corning hi1060flex).

Error in Figure 4

In the original article [1], there was a mistake in Figure 4 as published. The numbers on the right y-axis were missing the last digit. The corrected Figure 4 appears below. The authors apologize for any inconvenience caused and state that the scientific discussion and conclusions are unaffected. The original article has been updated.


Citation: Zia, H. Correction: Zia, H. Enhanced Pulse Compression within Sign-Alternating Dispersion Waveguides. *Photonics* 2021, *8*, 50. *Photonics* 2021, *8*, 322. https:// doi.org/10.3390/photonics8080322

Received: 23 June 2021 Accepted: 21 July 2021 Published: 10 August 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Figure 4. GNLSE simulation results. Curve a is the 1/e angular frequency bandwidth of the spectral energy density (in THz) versus propagation distance up to the normal dispersion fiber's saturation length. Curve b is the plot of the ratio of the second-order spectral phase coefficient, β_2 , of the SCG pulse to that when there is no nonlinear effect ($d_2\Delta z$, versus propagation in the normal dispersion fiber. Curve c is the plot of the ratio of the third-order spectral phase coefficient, β_3 , of the SCG pulse to the third-order spectral phase coefficient, β_3 , of the SCG pulse to the third-order spectral phase coefficient in the absence of any nonlinear effect ($d_3\Delta z$) versus the propagation in the normal dispersion fiber.

Text Correction

There was an error in the original article [1]. The 1/e pulse duration for the simulations in Section 3.1 was listed as 72 fs. However, this is the half duration, and not the full 1/e pulse duration. Thus, a correction to 144 fs was made in the corresponding place in the paper.

A correction was made to Section 2.2, Paragraph 2 (shown in bold letters):

For input, in Section 3.1, a transform-limited Gaussian pulse (1/e power duration, τ , of **144 fs**), with a pulse energy of 2 nJ is used. The peak power and duration of this input pulse renders that SCG here is in the SPM-dominated regime of the ND fiber. We find that the typical characteristic spectral phase evolution of the SCG pulse in the SPM-dominated regime is shown with these parameters.

The authors apologize for any inconvenience caused and state that the scientific discussion and conclusions are unaffected. The original article has been updated.

Reference

1. Zia, H. Enhanced Pulse Compression within Sign-Alternating Dispersion Waveguides. *Photonics* 2021, 8, 50. [CrossRef]