
photonics
hv

Communication

Geometric Interpretation and General Classification of
Three-Dimensional Polarization States through the Intrinsic
Stokes Parameters

José J. Gil

����������
�������

Citation: Gil, J.J. Geometric

Interpretation and General

Classification of Three-Dimensional

Polarization States through the

Intrinsic Stokes Parameters. Photonics

2021, 8, 315. https://doi.org/

10.3390/photonics8080315

Received: 8 July 2021

Accepted: 29 July 2021

Published: 4 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Applied Physics, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain;
ppgil@unizar.es

Abstract: In contrast with what happens for two-dimensional polarization states, defined as those
whose electric field fluctuates in a fixed plane, which can readily be represented by means of the
Poincaré sphere, the complete description of general three-dimensional polarization states involves
nine measurable parameters, called the generalized Stokes parameters, so that the generalized
Poincaré object takes the complicated form of an eight-dimensional quadric hypersurface. In this
work, the geometric representation of general polarization states, described by means of a simple
polarization object constituted by the combination of an ellipsoid and a vector, is interpreted in
terms of the intrinsic Stokes parameters, which allows for a complete and systematic classification of
polarization states in terms of meaningful rotationally invariant descriptors.

Keywords: polarization optics; light scattering; polarimetry; depolarization; polarization object

1. Introduction

The Poincaré sphere [1] provides a simple and meaningful representation of those
polarization states whose electric field fluctuates in a fixed plane (2D states). Despite the
interest of such a particular type of polarization states, which is commonly applied in
many problems involving paraxial fields and is characterized through the conventional
four Stokes parameters [2], or (equivalently) by means of the 2 × 2 polarization matrix
(or coherency matrix) [3–8], the description of a general polarization state involves nine
generalized Stokes parameters [9–22] instead of the conventional four ones, and there-
fore their geometric representation through a generalized Poincaré sphere is determined
by an eight-dimensional object, which does not admit a simple geometric and physical
interpretation.

The relevance of the pioneering work of Soleilllet [4], who for the first time introduced
a matrix structure that is equivalent to polarization matrices of 3D states has been discussed
and emphasized by Arteaga and Nichols [23].

In the case of Mueller matrices, which represent linear transformations of 2D polariza-
tion states, appropriate geometric representations have been introduced by means character-
istic ellipsoids [24–32], thus avoiding the problem of interpreting the extremely complicated
16-dimensional quadric object defined from the 16 elements of Mueller matrices.

In this work, the geometric representation introduced by Dennis [33] for general
three-dimensional (3D) polarization states is studied and interpreted in terms of the
intrinsic Stokes parameters [21] and other meaningful descriptors that are invariant
under rotations of the reference frame [17–22,33–45]. The classification introduced in
Refs. [20,46] is improved and completed in the light of the recent approaches on nonregu-
larity [39,42,45,47,48], polarimetric dimension [41], spin of a polarization state [43,47,49]
and interpretation of sets of orthogonal 3D polarization states [44].

The intrinsic geometric representation of a polarization state is determined by the
polarization density object, which is constituted by the combination of an ellipsoid (the
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polarization density ellipsoid) and a vector (the spin density vector). Apart from the
scale parameter given by the intensity of the state, the shape of the polarization density
ellipsoid, the magnitude of the spin density vector and its relative orientation with respect
to the symmetry axes of the polarization density ellipsoid describe completely the intrinsic
properties of the polarization state, while the spatial orientation of the polarization density
object involves the three additional angular parameters required for its representation with
respect to the reference frame considered.

That is, the complete information on a polarization state can be parameterized through
the following set of nine parameters (whose definitions are summarized in Section 2): (1)
the intensity, I, which plays the geometric role of a scale factor that determines the size of the
polarization object; (2) the degree of linear polarization, Pl and the degree of directionality,
Pd, which determine the shape of the polarization density ellipsoid; (3) the spin density
vector [n̂ ≡ (n̂O1, n̂O2, n̂O3)

T ] (three real parameters) associated with the polarization
state, whose magnitude and relative orientation with respect to the polarization density
ellipsoid are fixed for each polarization state, and (4) the three orientation angles (φ, θ, ϕ)
of the polarization density ellipsoid with respect to the Cartesian reference frame XYZ
considered [20].

It should be noted that the parameters describing a polarization state are defined for a
given point r in space, and therefore they do not carry direct information on the direction
of propagation of the wave at that point. Thus, the name degree of directionality used
for Pd refers to the stability of the plane containing the polarization ellipse, and not to the
direction of propagation.

Similarly to what happens with other intrinsic quantities in physics (such as, for
instance, the tangential and normal components of the acceleration vector in kinematics)
which give a natural a meaningful view of the physical quantities involved, the polar-
ization object provides direct geometric representation of the intrinsic Stokes parameters
(I, Pl , Pd, n̂O1, n̂O2, n̂O3) [20,21] (note that, even though the definition of the intrinsic Stokes
parameters involves Pd/

√
3 instead of Pd, we omit the coefficient 1/

√
3 for brevity and

simplicity).
The contents of this paper are organized as follows: Section 2 contains a summary of

the concepts and notations that are necessary to make the required developments in further
sections; the definition and discussion of the concept of polarization object is introduced
in Section 3; Section 4 includes a classification of polarization states based on the peculiar
geometric features of the polarization object, and Section 5 is devoted to the conclusions.

2. Materials and Methods

All the second-order polarization properties of an electromagnetic wave, at a given
point r in space, are embodied in the three-dimensional polarization matrix (or coherency
matrix) R, whose mathematical structure is that of a 3 × 3 positive semidefinite Hermitian
matrix determined by the second-order moments of the analytic signals εi(t) (i = 1, 2, 3)
(complex random variables, assumed stationary, at least in wide sense) associated with the
three fluctuating Cartesian components (referenced with respect to a laboratory reference
frame XYZ) of the electric field vector at point r:

R ≡

 〈
ε1 (t) ε∗1(t)

〉
〈ε1 (t) ε∗2 (t)〉

〈
ε1 (t) ε∗3 (t)

〉〈
ε2 (t) ε∗1 (t)

〉
〈ε2 (t) ε∗2 (t)〉

〈
ε2 (t) ε∗3 (t)

〉〈
ε3 (t) ε∗1 (t)

〉
〈ε3 (t) ε∗2 (t)〉

〈
ε3 (t) ε∗3 (t)

〉
, (1)

where the superscript * indicates complex conjugate, while the brackets 〈 〉 stand for
time averaging over the measurement time. The analytic signal vector is defined as
ε (t) = [ε1(t), ε2(t), ε3(t)]

T , so that R can be expressed as R =
〈
ε (t)⊗ ε†(t)

〉
, where ⊗

represents Kronecker product and the superscript † stands for conjugate transpose.
When the fluctuations of εi(t) (i = 1, 2, 3) have Gaussian probability density func-

tions, their second-order moments (the elements of R) characterize completely the statistical
properties, so that the higher-order moments do not add complementary information, and
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R fully characterizes the polarization state. In the most general case, R only characterizes
the second order polarization properties.

The above indicated features are intimately linked to the fact, from its very definition,
R is Hermitian and positive semidefinite, and therefore R has the mathematical structure of
a covariance matrix of the three random complex variables [ε1(t), ε2(t), ε3(t)]. In fact, the
diagonal elements of R are the respective (real and nonnegative) variances

〈
εi (t) ε∗i (t)

〉
of

εi(t), while the off-diagonal elements of R are the (complex-valued) covariances determined
by the respective quantities

〈
εi (t) ε∗j (t)

〉
.

Since subsequent analyses involve a large number of peculiar quantities, vectors and
matrices, these, together with the corresponding references, are summarized in Table A1.

It has been proven that R can always be expressed as [20,21,33]:

R = Q ROQT ,

RO = I

 â1 −i n̂O3/2 i n̂O2/2
i n̂O3/2 â2 −i n̂O1/2
−i n̂O2/2 i n̂O1/2 â2

,

 âi, n̂Oi ∈ R (i = 1, 2, 3)
â1 ≥ â2 ≥ â3 ≥ 0
â1 + â2 + â3 = 1

,
[

QT = Q−1

detQ = +1

]
,

(2)

where I = trR is the intensity and Q is the orthogonal matrix that diagonalizes the
real part of R, so that the polarization matrix of the state under consideration takes the
form R when the field variables are represented with respect to the given reference frame
XYZ, and takes the form RO when represented with respect to the intrinsic reference
frame XOYOZO, which is characterized by the fact that the real part of RO is a diagonal
matrix, ReRO = Idiag (â1, â2, â3) (with â1 + â2 + â3 = 1) and where the convention
â1 ≥ â2 ≥ â3 is taken without loss of generality [note that since R is positive semidefinite,
then necessarily âi ≥ 0 (i = 1, 2, 3)].

From a statistical point of view, the diagonal elements (â1, â2, â3) of the intrinsic
polarization density matrix R̂O ≡ RO/I are dimensionless and represent the intensity-
normalized variances of the field variables (referenced with respect to XOYOZO), while the
off-diagonal components represent the respective intensity-normalized covariances.

The principal variances âi can be expressed as follows in terms of the degree of linear
polarization, Pl = â2 − â1, and the degree of directionality, Pd = 1− 3â3, [20,21]:

â1 =
2 + Pd + 3Pl

6
, â2 =

2 + Pd − 3Pl
6

, â3 =
2(1− Pd)

6
, (3)

so that the intrinsic polarization matrix RO takes the form:

RO =
I
2


2+Pd+3Pl

3 −i n̂O3 i n̂O2

i n̂O3
2+Pd−3Pl

3 −i n̂O1

−i n̂O2 i n̂O1
2(1−Pd)

3

,

[
0 ≤ Pl ≤ Pd ≤ 1

Pc ≡
√

n̂2
O1 + n̂2

O2 + n̂2
O3 ≤ 1

]
, (4)

where the set of six rotationally invariant parameters (I, Pl , Pd, n̂O1, n̂O2, n̂O3) constitute the
intrinsic Stokes parameters of the state R. The intrinsic representation of the spin density
vector of R is given by n̂O ≡ (n̂O1, n̂O2, n̂O3)

T , which can also be parameterized through its
magnitude |n̂O| ≡ Pc and its orientation angles (φn, θn) with respect to the axes XOYOZO
along which lie the principal intensities a1 ≡ Iâ1, a2 ≡ Iâ2 and a3 ≡ Iâ3, respectively
(Figure 1), i.e., n̂O1 = |n̂| sin θn cos φn, n̂O2 = |n̂| sin θn sin φn and n̂O3 = |n̂| cos θn.
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the polarization density object is referenced with respect to an arbitrary coordinate system, the orientation angles 
( , , )φ θ ϕ  of the polarization density ellipsoid should be considered as additional parameters. 
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erence frame XYZ and the azimuth ϕ of the XY axes about the direction Z, all referenced 
with respect to the intrinsic reference frame XOYOZO: 

Figure 1. (a) Leaving aside the intensity, the polarization state is fully characterized by its polarization
density object, composed of the polarization density ellipsoid E (with semiaxes â1 ≥ â2 ≥ â3),
together with the spin density vector n̂O. (b) n̂O is determined by its magnitude |n̂O| ≡ Pc and its
orientation angles φn, θn with respect to the symmetry axes XOYOZO of E. The polarization object
can be expressed in terms of the intrinsic Stokes parameters (Pl , Pd, n̂O1, n̂O2, n̂O3) and therefore
it has tensor character in the sense that it is invariant with respect to changes of the reference
frame. When the polarization density object is referenced with respect to an arbitrary coordinate
system, the orientation angles (φ, θ, ϕ) of the polarization density ellipsoid should be considered as
additional parameters.

Note that even though the spin density vector is dimensionless (and therefore it has
no dimensions of angular momentum) it is a proper descriptor of the spin anisotropy of
the polarization state to which it corresponds [47]. Furthermore, as with R and RO, n̂O is
relative to a specific point r in space and the term density in this context indicates that it
describes the intensity-normalized version n̂O ≡ nO/I of the spin vector nO associated
with the given state [43,47].

The degree of polarimetric purity (or degree of polarization) P3D [40] of R is related
to intrinsic Stokes parameters through the following weighted square average of the
components of purity (Pl , Pc, Pd) of R [38]:

P3D =

√
3
4
(

P2
l + P2

c
)
+

1
4

P2
d , (5)

where the quantity Pe ≡
√

P2
l + P2

c that summarizes the combined contributions of Pl and
Pc to the overall purity P3D is called the degree of elliptical purity [39]. It is also worth
recalling that P3D can also be expressed as the following equivalent weighted quadratic
average [41,43]:

P3D =

√
d2 +

3
4

P2
c ,

[
d ≡ 1

2

√
3P2

l + P2
d

]
, (6)

where d represents the degree of intensity anisotropy [41,43] of the polarization state,
while the degree of circular polarization Pc = |n̂O| gives a measure of the degree of spin
anisotropy [43].

Moreover, the orthogonal matrix Q of the rotation transformation R = Q ROQT

depends on three angular parameters, and can be parameterized as follows in terms of the
overall azimuth and elevation angles, φ and θ, respectively, of the axis Z of the reference
frame XYZ and the azimuth ϕ of the XY axes about the direction Z, all referenced with
respect to the intrinsic reference frame XOYOZO:

QO =

 cφ sφ 0
−sφ cφ 0

0 0 1


 cθ 0 sθ

0 1 0
−sθ 0 cθ


 cϕ sϕ 0
−sϕ cϕ 0

0 0 1

 =

 cθ cφ cϕ − sφ sϕ cθ cφ sϕ + sφ cϕ cφsθ

−cθ sφ cϕ − cφ sϕ −cθ sφ sϕ + cφ cϕ −sφsθ

−sθ cϕ −sθ sϕ cθ


[sx ≡ sin x, cx ≡ cos x]

(7)



Photonics 2021, 8, 315 5 of 14

Another relevant concept that will be used in the classification of polarization states in
Section 4 is the degree of nonregularity [39,42] whose definition relies on the characteristic
decomposition of R [34,35]:

R = P1 I R̂p + (P2 − P1)I R̂m + (1− P2)I R̂u−3D,[
R̂p ≡ Udiag(1, 0, 0)U†, R̂m ≡ 1

2 Udiag(1, 1, 0)U†, R̂u−3D ≡ 1
3 diag(1, 1, 1)

]
,

(8)

where U is the unitary matrix that diagonalizes R, while P1 and P2 are the indices of
polarimetric purity (IPP) defined as [36,37]:

P1 ≡ λ̂2 − λ̂1, P2 ≡ 1− 3λ̂3 ,
(
λ̂1 + λ̂2 + λ̂3 = 1

)
, (9)

(λ̂ 1, λ̂ 2, λ̂ 3) being the eigenvalues of the polarization density matrix R̂ ≡ R/I, taken in
decreasing order (λ̂ 1 ≥ λ̂ 2 ≥ λ̂ 3), so that the IPP satisfy the peculiar nested inequal-
ities 0 ≤ P 1 ≤ P 1 ≤ 1 and fully determine the quantitative structure of polarimetric
randomness of R [39]. Regarding the intensity-normalized components of the charac-
teristic decomposition, R̂p is a pure (totally polarized) state, the discriminating state R̂m
is given by an equiprobable incoherent mixture of the two eigenstates of R with largest
eigenvalues (λ̂ 1, λ̂ 2) and the unpolarized component R̂u−3D lacks both intensity and spin
anisotropies [43]. The pure component R̂p has a well-defined polarization ellipse that
evolves in a fixed plane. Except for the particular case that R̂m is regular (see below), the
electric field of the discriminating component does not fluctuate in a fixed plane. Both po-
larization plane and shape of the polarization ellipse of the unpolarized component R̂u−3D
evolve fully randomly, so that R̂u−3D completely lacks anisotropy and is proportional to
the identity matrix.

Regular states are defined as those for which either P1 = P2 (in which case R̂m does not
take place in the characteristic decomposition) or R̂m is a real-valued matrix, in which case R̂m
lacks spin and takes the form of a 2D-unpolarized state R̂m = R̂u−2D = (1/2) diag (1, 1, 0).
Thus, R̂u−2D is a particular limiting situation of the general case where ImR̂m 6= 0 and
0 ≤ Pc (R̂m) ≤ 1/2 [42,48]. In general, P1 ≤ Pe and P2 ≥ Pd, where the equality P1 = Pe
(which implies P2 = Pd and vice versa) is a characteristic and peculiar property of regular
states. That is to say, R represents a nonregular state if and only if P1 < Pe. The degree of
nonregularity PN of R is defined as follows by any of the following expressions in terms of
the components of purity of R̂m [42]:

PN = 4(P2 − P1)Pl(Rm) = (P2 − P1)

[
1−

√
4P2

c (Rm)

]
= (4/3)(P2 − P1)[1− Pd(Rm)], (10)

PN = 0 if and only if R corresponds to a regular state. States with maximal nonregu-
larity, PN = 1, are called perfect nonregular states, and necessarily satisfy Pc (R̂m) = 1/2
while they are equivalent of an equiprobable incoherent mixture of a circularly polarized
state and a linearly polarized state whose electric field vibrates in a direction orthogonal to
the plane containing the polarization circle of the circular component [42].

3. Results
3.1. The Polarization Object

The nondimensional quantities (â1, â2, â3) can be considered as the semiaxes of the po-
larization density ellipsoid, denoted by E, or inertia ellipsoid [33], associated with R̂O, and
leaving aside the intensity (I), which plays the role of a scale factor, E is determined by the
intrinsic Stokes parameters Pl and Pd related to the intensity anisotropies [43]. The geomet-
ric parameterization is completed with the intrinsic representation n̂O ≡ (n̂O1, n̂O2, n̂O3)

T

of the spin density vector of the state.
Therefore, from Equations (2) and (4) it follows that a general three-dimensional polar-

ization state admits a simple geometric representation through its associated polarization
density object, constituted by the combination of E and n̂O, in such a manner that the



Photonics 2021, 8, 315 6 of 14

center of E and the origin of n̂O coincide with the point r to which the polarization state
corresponds. Thus, both the magnitude |n̂O| = Pc of n̂O and its relative orientation
with respect to E (determined by the intrinsic components n̂O1, n̂O2 and n̂O3) are fixed, in
such a manner that the polarization density object has a fixed shape, while its orientation
with respect to a given reference frame XYZ involves the three angles associated with the
rotation from the intrinsic axes XOYOZO to XYZ.

As with the Poincaré sphere, the polarization density object has been defined through
intensity-normalized quantities and therefore, it is the intensity-normalized version of the
polarization object composed of the intensity ellipsoid EI , with semiaxes (a1, a2, a3), and
the spin vector nO ≡ I n̂O.

The polarization density object is represented in Figure 1 for a single point r and
referenced with respect to XOYOZO.

The expressions of the semiaxes of the polarization density ellipsoid in terms of Pl
and Pd, allows for a direct analysis of certain important features of the polarization density
object. When Pd = 1, the electric field of the state fluctuates in a fixed plane Π (2D state)
and the polarization density ellipsoid becomes an ellipse, while n̂O is orthogonal to Π.
Moreover, Pd = 1 implies PN = 1, which means that all 2D states are regular states. A
subclass of 2D states is that constituted by pure states (Figure 2), which are characterized by
P3D = 1, or equivalently 1 = Pd = P2 = P1 = Pe), and include the limiting particular
cases of linearly polarized states (Pl = 1, E degenerates into a simple straight segment,
and therefore Pc = 0), and circularly polarized states (Pc = 1 and E takes the form of a
circle). It should be stressed that pure states as well as any kind of 2D states (characterized
by Pd = 1), constitute a particular subclass of 3D states.
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Figure 2. Polarization density object of a pure state (Pe = 1): linearly polarized state (Pl = 1) (a); elliptically polarized
state (0 < Pc < 1) (b), and circularly polarized state (Pc = 1) (c). The spin density vector of pure states is orthogonal to the
variance ellipse and is zero in the case of linearly polarized states.

Thus, despite the obvious fact that polarization states are realized in the three-
dimensional physical space, states with Pd < 1 are called genuine 3D states (which may be
regular or not) and are characterized by the fact that the three semiaxes of the associated
polarization density ellipsoid are nonzero.

3.2. Classification of Three-Dimensional Polarization States Based on the Polarization Object

The concept of polarization object, together with other polarization descriptors such as
the CP, the IPP, P3D and PN allows for a meaningful classification of both 2D states and gen-
uine 3D states, where each category can also be interpreted in terms of the corresponding
characteristic decomposition.

For the sake of clarity, the classification is performed through a pair of tables that
correspond to 2D states (Table 1), and genuine 3D states (Table 2).
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Table 1. Classification of 2D states (Pd = 1).

Pd = 1 (2D states) ⇒ P2 = 1, P1 = Pe, PN = 0, P3D ≥ 1/2

Pe = 1 (pure states) Pe < 1 (2D mixed states)

R = Rp R = P1 Rp + (1− P1 )Ru−2D

Pl = 1
m

Pc = 0

0 < Pl < 1
m

0 < Pc < 1

Pl = 0
m

Pc = 1

0 ≤ Pe < 1 P1 = 0
R = Ru−2D

Linear Elliptical Circular Partially polarized Unpolarized

Indep. parameters:
I, φ, θ, ϕ

Indep. parameters:
I, Pc, φ, θ, ϕ

Indep. parameters:
I, φ, θ

Indep. parameters:
I, Pc, Pl , φ, θ, ϕ

Indep. parameters:
I, φ, θ

Principal variances:
0 = â3 = â2, â1 = 1

Principal variances:
0 = â3, 4 â1 â2 < P2

c

Principal variances:
0 = â3, â2 = â1 = 1/2

Principal variances:
0 = â3 < â2 < â1

Principal variances:
0 = â3, â2 = â1 = 1/2

Spin density vector:
n̂O = 0

Spin density vector:
0 6= n̂O, n̂O ⊥Π

Spin density vector:
|n̂O| = 1, n̂O ⊥Π

Spin density vector:
|n̂O| < 1, n̂O ⊥Π

Spin density vector:
|n̂O| = 0, n̂O ⊥Π

Polarization object:
Figure 2a

Polarization object:
Figure 2b

Polarization object:
Figure 2c

Polarization object:
Figure 3a

Polarization object:
Figure 3b

Characteristic decomposition:
R = Rp

Characteristic decomp.:
R = P1 Rp +
(1− P1 )Ru−2D

(P1 > 0) Figure 4a

Characteristic decomp.:
R = Ru−2D

(P1 = 0) Figure 4b
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Figure 4. Intrinsic representation of the characteristic decomposition of a mixed 2D state
(Pd = 1, Pe = P1 < 1). (a) In general, RO it is given by the incoherent superposition of a
pure state RpO = I R̂pO and a 2D unpolarized state Ru−2D = I R̂u−2D whose polarization planes
coincide [Gil 2014a]. (b) When Pe = 0, then the pure component vanishes and the state is itself 2D
unpolarized state (the electric field fluctuates fully randomly in a fixed plane. XOYO).
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Table 2. Classification of genuine 3D states Pd < 1.

Pd < 1 (genuine 3D states)

Regular 3D mixed states (PN = 0) Nonregular 3D mixed states
PN = 0⇔ P1 < Pe ⇔ P2 > Pd 0 < PN ≤ 1⇔ P1 < Pe ⇔ P2 > Pd

Independent parameters: I, Pl , Pc, Pd, φ, θ, ϕ Independent parameters: I, Pl , Pd, Pc, φn, θn, φ, θ, ϕ
Principal variances: 0 < â3 ≤ â2 ≤ â1 Principal variances: 0 < â3 ≤ â2 ≤ â1

Spin density vector: 0 ≤ |n̂O| (n̂O‖ZO)
Spin density vector:

0 < |n̂O|, 0 < Pc (Rm) ≤ 1/2, |n̂O3| 6= Pc
Polarization object: Figure 5a Polarization object: Figure 5b

Characteristic decomposition: Figure 6
R = P1 Rp + (P2 − P1 )Ru−2D + (1− P2)Ru−3D

Characteristic decomposition: Figure 7
R = P1 Rp + (P2 − P1 )Rm + (1− P2)Ru−3D (Rm 6= Ru−2D)
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Figure 5. Polarization density object of genuine 3D states (Pd < 1 ). (a) The 3D state is regular when the spin density vector
n̂O is orthogonal to the plane XOYO. (b) the state it is nonregular if and only if n̂O is not orthogonal to XOYO.
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Figure 6. Characteristic decomposition of a regular genuine 3D state. The discriminating component
is a 2D unpolarized state R̂u−2D whose polarization plane coincides with that of the pure component
R̂pO and the 3D unpolarized state has nonzero contribution (Pd = P2 < 1 ) [20].
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Figure 7. Characteristic decomposition of a nonregular 3D state. The discriminating component R̂m

is itself nonregular.

2D mixed states (or 2D partially polarized states) are characterized by 1 = Pd = P2
and P1 = Pe < 1. The characteristic decomposition of a 2D mixed state consists of a
combination of a pure state Rp and a 2D partially polarized state Ru−2D, both compo-
nents sharing a common polarization plane. The case of a regular discriminating state
(P2 = Pd = 1, P1 = 0) corresponds precisely to Ru−2D (Figure 3b).

The types of genuine 3D states are summarized in Table 2, whose columns, from
left to right, are devoted to the cases of (a) regular genuine 3D states (Pd < 1, PN = 0),
whose discriminating component is a 2D unpolarized state, and (b) nonregular states
(PN > 0). The polarization planes of the eigenstates û1 and û2 associated with the
respective eigenvalues λ̂1 and λ̂2 of R̂ (which coincide with those of R̂O, and are taken
so as to satisfy λ̂1 ≥ λ̂2 ≥ λ̂3) are denoted by Π1 and Π2, and they only coincide for
regular states.
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Due to the critical role played by the discriminating states for the interpretation of
polarization states [47,48], Table 3 summarizes the main features of (from left to right) (a)
regular discriminating states; (b) partially nonregular discriminating states, and (c) perfect
nonregular states.

Table 3. Classification of discriminating states (P2 = 1, P1 = 0).

P2 = 1, P1 = 0 (discriminating states, R = Rm)

PN = 0
m

Pd = P2 = 1
(Pc = Pl = 0, Pd = 1)

0 < PN < 1
m

P1 < Pe ⇔ P2 > Pd
(0 < Pc < 1/2, 0 < Pl < 1/4, Pd > 1/4)

PN = 1
m

P1 = 0, P2 = 1
Pl = Pd = 1/4, Pc = 1/2

2D unpolarized state Nonregular discriminating state Perfect nonregular state

Independent parameters: I, φ, θ Independent parameters: I, φ, θ, ϕ, Pc Independent parameters: I, φ, θ

Principal variances:
â3 = 0, â2 = â1 = 1/2

Principal variances:
0 < â3 < â2 <

â1 = 1/2, â2 + â3 = 1/2

Principal variances:
â3 = â2 = 1/4, â1 = 1/2

Spin density vector:
n̂ = 0

Spin density vector:
0 < |n̂O| < 1/2

Spin density vector:
|n̂O| = 1/2 (n̂O‖XO)

Polarization object: Figure 8a Polarization object: Figure 8b Polarization object: Figure 8c
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Figure 8. Polarization density object of a discriminating state Rm(P1 = 0, P2 = 1): (a) zero spin corresponds uniquely
to the regular case Pc (Rm) = 0⇔ Rm = Ru−2D ; (b) Rm is nonregular if and only if Pc (Rm) > 0, and (c) Rm is perfect
nonregular if and only if Pc (Rm) = 1/2.

Regular discriminating states have the simple form Ru−2D and are built by equiproba-
ble incoherent compositions of arbitrary pairs of mutually orthogonal states with a common
polarization plane, as for instance two linearly polarized states whose electric fields vibrate
along two orthogonal directions embedded in the polarization plane.

Nonregular discriminating states and are built by equiprobable incoherent compo-
sitions of certain pairs of mutually orthogonal states with different polarization planes,
including the combination of a linearly polarized state and an elliptically polarized state
whose polarization planes are mutually orthogonal.

The case of perfect nonregular states corresponds to the limiting situation equivalent to
an equiprobable incoherent mixture of a linearly polarized state and a circularly polarized
state whose polarization planes are orthogonal.

4. Discussion

The mere qualitative properties of the polarization density object are sufficient to
identify certain properties of the polarization state, while other features are linked to
quantitative aspects. For instance, R corresponds to a 2D state if and only if at least one of
the semiaxes of E is zero (Pd = 1); R corresponds to a nonregular state if and only if n̂O is
not parallel to ZO. Moreover, R corresponds to a pure state if and only if the (quantitative)
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condition Pe = 1 is satisfied (recall that and P2
e ≡ P2

l + P2
c and P2

c ≡ |n̂O|2). From the sole
inspection of the polarization density object, the classification presented in Tables 1–3 can
be synthesized as follows:

 Pd = 1 (â3 = 0)⇔ R is a 2D state⇔ the polarization density ellipsoid is an ellipse.

# Pe = 0⇔ R is a 2D mixed state.

� Pe < 1 ⇔ R is a 2D unpolarized state (i.e., R is a 2D discriminating
state), R = Ru−2D (â2 = â1 and n̂O = 0).

# Pe = 1⇔ R is a pure state, â1 â2 = P2
c /4.

� Pl = 1⇔ R is a linearly polarized pure state, â1 = 1 (⇒ Pc = 0) .
� 0 < Pl < 1⇔ R is an elliptically polarized pure state, 0 < â2 < â1, with

0 < P2
c = 1− P2

l < 1.
� Pl = 0⇔ R is a circularly polarized pure state, â2 = â1 = 1/2 with

Pc = 1.

 Pd < 1 (â3 > 0)⇔ R is a genuine 3D state.

# n̂O = 0 or n̂O ‖ ZO ⇔ R is a regular genuine 3D state.
# n̂O 6= 0 and n̂O not parallel to ZO ⇔ R is a nonregular state.
# Pl = Pd = 0 ⇔ The polarization density ellipsoid E of R is a sphere

(â3 = â2 = â1, full intensity isotropy, d = 0)

� Pc > 0⇔ n̂O 6= 0 (full intensity isotropy, d = 0, with nonzero spin).
� Pc = 0⇔ R is a 3D unpolarized state, R = Ru−3D (full intensity and

spin isotropy).

# Pd + 3Pl = 1⇔R is a 3D discriminating state, R = Rm (â2 + â3 = â1 = 1/2,
0 < Pc ≤ 1/2 and n̂O not parallel to ZO).

� Pc = 1/2⇔R is a perfect nonregular state (n̂O ‖ XO, Pl = Pd = 1/4)

5. Conclusions

Given a polarization matrix R, its associated intrinsic form RO is obtained through
the rotation transformation (in the real space) that diagonalizes the real part of R. The
three (real) diagonal elements of RO, together with the three (pure imaginary) off-diagonal
elements determine biunivocally the six intrinsic Stokes parameters (I, Pl , Pd, n̂O1, n̂O2, n̂O3)
of the state, which have a direct physical interpretation, namely the intensity, I, the degree
of linear polarization, Pl , the degree of directionality, Pd (which is an objective measure
of the degree of stability of the fluctuating polarization plane containing the polarization
ellipse) and the three intrinsic components (n̂O1, n̂O2, n̂O3) of the spin density vector n̂O of
the state.

Consequently, any polarization state is fully characterized through its associated
intrinsic Stokes parameters, which are invariant under rotation transformations of the
laboratory reference frame XYZ, together with a three-dimensional rotation (determined
by three angular parameters, φ, θ, ϕ, that depend on the specific spatial orientation of XYZ).
As with the conventional four Stokes parameters characterizing 2D states, these quantities
have phenomenological nature, and therefore, are always measurable.

The diagonal elements (â1, â2, â3) of the intrinsic polarization density matrix R̂O = RO/I,
(with the convention â1 ≥ â2 ≥ â3, taken without loss of generality) are called the principal
variances (because of their statistical nature) and constitute the semiaxes of an ellipsoid
(polarization density ellipsoid, denoted by E), which in turn determines the directions of
the respective axes XOYOZO of the intrinsic reference frame of the state.

Furthermore, the principal variances can be readily expressed in terms of the pair
of intrinsic Stokes parameters Pl and Pd [see Equation (3)]. Leaving aside the intensity, I,
which plays the geometric role a scale factor, the polarization density object is defined as
the composition of the polarization density ellipsoid (which depends on Pl and Pd) and
n̂O, so that the relative orientation of n̂O with respect to XOYOZO is fixed and therefore the
shape and features of the polarization density object are rotationally invariant.
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The approach presented solves the problem of representing geometrically, in a simple
and meaningful manner, all polarization states (three-dimensional, in general). The geo-
metric features of the polarization density object are determined by the intrinsic Stokes
parameters, which allows for a complete and systematic classification of polarization states.
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Appendix A

Table A1. Quantities and structures relative to three-dimensional polarization states.

Structure or
Quantity Definition Properties Physical Meaning

Intensity I = trR =
3
∑

i = 1
〈ε i (t) ε∗i (t)〉

Invariant under rotation and
under the action of birefringent

devices

Averaged power of the
electromagnetic wave at point r

Polarization matrix R Hermitian positive semidefinite Provides complete information on
second-order polarization properties

Polarization density matrix R̂ = R/I
Hermitian positive semidefinite,

with trR̂ = 1

Intensity-normalized polarization
matrix. Formally equivalent to a

density matrix

Eigenvalues of R̂ λ̂1, λ̂2, λ̂3
λ̂1 + λ̂2 + λ̂3 = 1

λ̂3 ≤ λ̂2 ≤ λ̂2

Relative weights of the spectral
incoherent components of R̂ [20]

R̂ = λ̂1R̂p1 + λ̂2R̂p2 + λ̂3R̂p3

R̂pi ≡ ûi ⊗ û†
i
(
ûi : eigenvectors of R̂)

Indices of polarimetric purity
(IPP) P1 ≡ λ̂2 − λ̂1, P2 ≡ 1− 3λ̂3 0 ≤ P1 ≤ P2 ≤ 1

The IPP provide a complete
quantitative characterization of the

structure of polarimetric purity [36,37]

Intrinsic polarization matrix
RO = I

 â1 −i n̂O3/2 i n̂O2/2
i n̂O3/2 â2 −i n̂O1/2
−i n̂O2/2 i n̂O1/2 â3


Intrinsic representation of the

polarization state.
Principal variances: â1, â2, â3

Spin density vector:
n̂O ≡ nO/I ≡ (n̂O1, n̂O2, n̂O3)

T

Represents the same state as R, but
referenced with respect to the

corresponding intrinsic reference
frame.

The off-diagonal elements are pure
imaginary because RO is defined

through the diagonalization of the real
part of R [20,33].

Principal variances of R̂O â1, â2, â3

[
â1 ≥ â2 ≥ â3 ≥ 1
â1 + â2 + â3 = 1

] Semiaxes of the polarization density
ellipsoid [20,33].

Spin vector nO ≡ (nO1, nO2, nO3)
T

1 ≥ n2
O1

4a2 a3
+

n2
O2

4a1 a3
+

n2
O3

4a1 a2

Spin vector of the state, with
dimensions of intensity [33,47]

Spin density vector n̂O ≡ nO/I ≡ (n̂O1, n̂O2, n̂O3)
T

1 ≥ n̂2
O1

4â2 â3
+

n̂2
O2

4â1 â3
+

n̂2
O3

4â1 â2

Spin density vector of the state
(nondimensional) [20,33]

Spin density |n̂O | = |nO |/I |n̂O | = Pc

Absolute value of the spin density
vector. Is a measure of the degree of
circular polarization Pc of the state

Polarization object Intensity ellipsoid EI , with semiaxes a1, a2, a3
and spin vector nO

Rigid composition of EI and nO
The orientation angles (φn , θn) of
nO with respect to the symmetry
axes XOYOZO of EI are fixed and

invariant

Determines geometrically all intrinsic
properties of the state.

Polarization density object

polarization density ellipsoid E, with semiaxes

â1, â2, â3
â1 =

2+Pd+3Pl
6 , â2 =

2+Pd−3Pl
6

â3 =
2(1−Pd)

6
and spin density vector n̂O

Rigid composition of E and n̂O
The orientation angles (φn , θn) of
n̂O with respect to the symmetry
axes XOYOZO of EI are fixed and

invariant

Determines geometrically all intrinsic
properties of the state, but I, as with

the Poincaré sphere of 2D polarization
states
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Table A1. Cont.

Structure or
Quantity Definition Properties Physical Meaning

Orientation angles of the
polarization object φ, θ, ϕ

φ, θ, ϕ determine the rotation from
the intrinsic reference frame axes

XOYOZO to an arbitrary one.

The angles that allow for
representing the polarization object

with respect to a given reference
frame

Degree of linear polarization Pl = â2 − â1 0 ≤ Pl ≤ Pd ≤ 1
An objective measure of how close

to a linearly polarized state the state
is [20,21]

Degree of circular polarization Pc = |n̂O | P2
c + P2

l ≤ 1
An objective of how close to a

circularly polarized state the state is
[20,21]

Degree of directionality Pd = 1− 3â3 0 ≤ Pl ≤ Pd ≤ 1

An objective measure of the degree
of stability of the plane containing
the fluctuating polarization ellipse.

Equivalently, a measure of the
closeness of the 3D state to a 2D one

[20,21]

Intrinsic Stokes parameters I, Pl , Pd/
√

3, n̂O1, n̂O2, n̂O3
3
4

(
P2

l + P2
c
)
+ 1

4 P2
d ≤ 1(

P2
c = n̂2

O1 + n̂2
O2 + n̂2

O3

)
Intrinsic measurable quantities.
Have phenomenological nature:
They are always well defined,
regardless of the underlying

microscopic model considered
[20,21]

Dimensionality index, d and
polarimetric dimension, DI . d ≡

√
3P2

l +P2
d

2 , DI ≡ 3− 2d 0 ≤ d ≤ 1, 1 ≤ DI ≤ 3

Determine the effective dimensions
taking place in the state. DI = 1:

linearly polarized; DI ≤ 2, 2D state;
2 < DI ≤ 3, 3D state [41]

Degree of polarimetric purity P3D =
√

3
4

(
P2

l + P2
c
)
+ 1

4 P2
d

P3D =
√

3
4 P2

1 + 1
4 P2

2 =
√

d2 + 3
4 P2

c

0 ≤ P3D ≤ 1

An objective measure of how close
to a pure state R is. It is determined

by: (1) IPP contributions; (2) CP
contributions and (3) Intensity and

spin anisotropies [38,43]

Complete parameterization of
R (I, Pl , Pd , n̂O1, n̂O2, n̂O3, ϕ, θ, φ)

Determine completely the
polarization object and its spatial

orientation with respect to the
laboratory reference frame

Complete information carried by R
in terms of nine meaningful

quantities: the six intrinsic Stokes
parameters and the three
orientation angles of the

polarization density object [20,21]

Characteristic decomposition R = P1 I R̂p
+(P2 − P1)I R̂m + (1− P2)I R̂u−3D

R is polarimetrically equivalent to
an incoherent composition of pure
state Rp , a discriminating state Rm

and a unpolarized state Ru−3D

In the case of 2D states becomes the
well known decomposition into an
incoherent combination of a pure
state and a 2D unpolarized state

Ru−2D [39]

Discriminating component
(in its own intrinsic

representation) R̂mO = 1
2

 1 0 0
0 cos2 χ i cos χ sin χ
0 −i cos χ sin χ sin2 χ


This is the general form of a
discriminating state, when

referenced with respect to its own
intrinsic reference frame [42]

In general, the discriminating
component is different from Ru−2D .
When Rm 6= Ru−2D , then Rm is a 3D

state (Pd < 1)
and is said to be nonregular

Nonregular discriminating states
exhibit nonzero spin, nonzero

degree of linear polarization [42]

Degree of
nonregularity PN = (P2 − P1)

[
1−

√
4P2

c (Rm)
]

0 ≤ PN ≤ 1
An objective measure of the

distance of the state to a regular
state [42]
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