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Abstract: Mice and rats are rodent specimens commonly used in multidisciplinary research. Specifi-
cally, vasculature imaging of rodents has been widely performed in preclinical studies using various
techniques, such as computed tomography, magnetic resonance imaging, and ultrasound imaging.
Photoacoustic CT (PACT) is a noninvasive, nonionizing optical imaging technique derived from
photoacoustic tomography and benefits from using intrinsic endogenous contrast agents to produce
three-dimensional volumetric data from images. In this study, a commercial PACT device was
employed to assess the cervicothoracic vasculature of mouse and rat specimens, which has rarely
been examined using PACT, under two conditions with depilation and skin incision. Various blood
vessels, including the common carotid artery, internal/external jugular veins, cranial vena cava,
internal thoracic vein, and mammary, were identified in the acquired PACT images. The difference
between the depilated and skin-incised specimens also revealed the presence of branches from certain
blood vessels and specific anatomical features such as the manubrium of the sternum. This study
presents detailed PACT images observing the cervicothoracic vasculature of rodent specimens and is
expected to be used as a reference for various preclinical experiments on mice and rats.

Keywords: rodent; small animal; vascular imaging; angiography; photoacoustic imaging;
photoacoustic computed tomography; cervicothoracic vasculature

1. Introduction

In scientific research, rodents (also called murine) have been widely used for animal
tests and experiments. Specifically, mice and rats are the most commonly used species
owing to their easy handling, high reproduction rate, and low cost [1]. Studies and ap-
plications using mice or rats are abundantly available and vary between academic fields,
such as biology [2–4], medicine [5–8], psychology [9–11], and other disciplines [12–14]. The
morphologies of rodents from anatomical information, including osteology, arthrology, my-
ology, and various organs and systems, have been fundamental references for experiments
using rodent specimens [15]. In particular, rodents have been utilized in preclinical research
and studies in biomedical engineering because of their similarities and analogous features
with humans in terms of not only molecular mechanisms but also systemic physiology to
disease pathogenesis based on metabolic homogeneities [16,17].

Although the basic physiological structures and forms of murine are similar to those
of humans, several morphological differences occur in the sizes and volumes of the organs
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depending on their functions [18,19]. One of the examples of morphological differences
between humans and rodents is in the vasculature. In humans, the blood vessels to the
central nervous system are thicker because of the high demand for oxygen and nutrients,
whereas rodents have thicker blood vessels connected to other sensory sites such as the
facial area. This difference is evident in the thicknesses of the external and internal jugular
veins (EJVs and IJVs); in humans, the IJVs are thicker than the EJVs, whereas this is opposite
in rodents [4]. Therefore, the availability of rodent vascular images for reference can help
prevent errors during preclinical experiments where the hypotheses and goals of the studies
are based on the human vascular structure. In addition, certain intricate branches of the
blood vessels can be identified by in vivo vascular imaging, which is hard to preserve
during dissections for visual inspection. Hence, in vivo vascular imaging of rodents can
guide multidisciplinary research when using rodent specimens.

Conventional imaging techniques for small-animal vascular imaging (angiography)
include computed tomography (CT), magnetic resonance imaging (MRI), and ultrasonic
(US) imaging. Through CT angiography procedures, such as the micro-CT angiogram, the
vasculatures of small-animal samples can be imaged as volumetric data with high spatial
resolutions of the order of 30 µm to 100 µm by in vivo micro-CT imaging and from 1 µm to
30 µm by ex vivo imaging [20]. However, radiopaque compounds, such as silicon rubber
compound, need to be injected into the blood vessels for high-resolution imaging [21], with
unavoidable radiation exposure thereafter [22]. On the other hand, contrast-enhanced mag-
netic resonance angiography (CE-MRA), which is derived from MRI, has the advantages of
imaging via the intrinsic magnetic properties of the blood and tissues and does not involve
ionizing radiation [23]. CE-MRA can provide spatial resolutions of the order of 1 mm to 4
mm with acquisition times of around 30 s [24]. Although CE-MRA has the advantages of
low cost and reduced imaging time compared to conventional catheter angiography, the use
of gadolinium-based contrast agents, which can cause allergic reactions, and insufficient
resolution for small-vascular imaging are significant limitations [25]. High-frequency color
Doppler US imaging has been shown to compensate for the limitations of using contrast
agents and ionizing radiation in CT angiography and CE-MRA, with axial resolutions of
up to 90 µm [21,26,27]. Nonetheless, this technique has the disadvantage of a restricted
ability to produce tomographic images; the inclination to interpret the obtained images
based on subjective analyses by the operators is another limitation [28]. Thus, vascular
imaging techniques with noninvasive and nonionizing volumetric imaging capabilities
free of contrast materials are in demand.

Optical imaging techniques, such as optical coherence tomography (OCT) and pho-
toacoustic tomography (PAT), have attracted attention due to their noninvasive and non-
ionizing tomographic and volumetric imaging capabilities. OCT is an interferometric
optical imaging technique that uses a broadband light source to generate micrometer-
scaled tomography [29]. Among OCT techniques, OCT-Angiography (OCTA) can produce
high-resolution vascular images without contrast agents [30,31]. However, OCTA has a
limitation of less than 2 mm of penetration depth [32].

PAT is another noninvasive optical imaging technique using a pulsed laser and US
transducer with a penetration depth of up to several centimeters [33,34]. The basic principle
of PAT imaging involves capturing acoustic signals generated by the intrinsic endogenous
contrast materials of specimens, which can be induced by thermoelastic expansion after
light absorption. PAT imaging can be used to examine the vasculature of a specimen
through volumetric and tomographic images with penetration depths in the order of several
millimeters and resolution ranging from several micrometers to millimeters, depending on
the system configuration [35,36]. PAT has been actively utilized to image the vasculature
of small animals, including rodents. However, most of the previous studies using PAT
have involved intensive imaging of specific sites, such as tumors, cancer cell lesions, and
the brain, or observing the changes in photoacoustic (PA) signal amplitudes from various
regions of interest (ROIs) after injecting exogenous contrast agents [37–40]. Whole-body
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PAT imaging has also been studied over the past few years, but the acquired vascular
images were at the macroscopic level [41,42].

Photoacoustic computed tomography (PACT) is one of the PAT methods that use
multiple US transducers or ring-type transducer arrays rather than a single transducer
with point scanning [43,44]. Recently, various PACT devices have been developed and
commercially introduced [45]. In the present study, a commercial PACT instrument was
used to image the vasculatures of mouse and rat specimens from the cervicothoracic region,
which has been infrequently investigated using PACT. For each of the commonly used
rodent specimens (mouse and rat), the various blood vessels in the thorax, such as the
common carotid artery (CCA), EJV/IJV, subclavian vein (SV), and cranial vena cava (CVC),
were identified from the acquired PACT volumetric images without any contrast agents.
In addition, the differences in the PACT images of the thoracic regions between depilated
and skin-incised conditions of each of the specimens were presented. Thus, the methods
and results of this study can be utilized as references for the cervicothoracic vasculatures
of mice and rats in various preclinical experiments.

2. Materials and Methods
2.1. Photoacoustic Computed Tomography Scanner

The PACT scanner used in this study is a commercial instrument, having a total
of 128 US transducers to record acoustic signals from the specimens when induced by
an Nd:YAG nanosecond pulsed laser (Nexus 128, Endra Life Science Inc., Ann Arbor,
MI, USA) [46]. A schematic of the scanner part of the instrument is presented, along
with photographs of the device, in Figure 1. The physical dimensions of the device are
0.9 × 0.7 × 1.1 m (W × D × H). The light input used for PACT imaging was generated
using an Nd:YAG pulsed laser of wavelength 532 nm and transmitted to a tunable optical
parametric oscillator (OPO), which is a coherent light source based on parametric amplifi-
cation through a nonlinear crystal and generate multiple light fields due to variances in
the crystal’s refractive index [47]. The tuning range for the wavelength of output light is
680–950 nm. The light output energy was approximately 6 mJ/pulse, which adheres to
the American National Standards Institute (ANSI) limits. The repetition rate of the laser
was 20 Hz, and the single laser shot in every 1.5◦ step was recorded during the scanner
rotated at the speed of 30◦/s. The total scanning time for 360◦ took 12 s in the continuous
rotation acquisition mode. A total of 128 unfocused US transducers with center frequencies
of 5 MHz and diameters of 3 mm were embedded in a round bowl-shaped rotating mount.
This instrument provided a spatial resolution of <280 µm and a field of view (FOV) exceed-
ing 20 mm. Deionized (DI) water was filled in the rotating mount, and the temperature of
the DI water was maintained at 37 ± 0.5 ◦C consistently using a temperature controller.
This temperature setting was followed by the guideline of the PACT device manual and the
previous study by Hu et al. for photoacoustic imaging of small animals [48]. Between the
rodent specimen and the tray floor, US gel was applied as a medium for transmitting the
acoustic signals. The top lid had a small hole for the anesthetic gas tube (yellow line) and a
vision camera to check the respiratory status of the specimen during PACT imaging. The
PACT data were acquired and reconstructed by a multi-core processor personal computer
(PC), and viewing and analysis of the three-dimensional (3D) anatomical volume data
were accomplished through digital imaging and communications in medicine (DICOM)
image processing application (OsiriX Lite, Pixmeo SARL, Switzerland) [49]. The PC for
data acquisition and the DICOM image processing application were provided by Endra
Life Science Inc. when purchasing the PACT device.

Although the PACT device offers various wavelengths of the laser with a tuning range
of 680–950 nm, in this study, the wavelength of the laser light from the OPO was fixed at
800 nm to acquire cervicothoracic vasculature images of both the arteries and veins because
the molar extinction coefficients of both oxyhemoglobin (HbO2) and deoxyhemoglobin
(Hb) are 0.20 mM−1·cm−1 at 800 nm [50].
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pure oxygen). Then, a depilatory cream was gently applied to the thorax for 2 min and 
carefully wiped using wet gauze for hair removal (Nair®, Church and Dwight Co., Inc., 
Ewing, NJ, USA). Prior to positioning the specimen on the tray, the temperature of the DI 
water inside the rotating mount was set to a sufficient temperature (37 °C). The US gel 
was spread in a layer of thickness 20 mm, and adequate space was secured to ensure the 
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After PACT imaging of the depilated specimen, the pelt on the area over the thorax 
was carefully incised to confirm the observed vasculature. Prior to incision, the thoracic 

Figure 1. Photographs and schematic of the PACT device. Photographs include (a) overall system, (b) scanner part before
installing the animal tray, and (c) scanner part with the animal tray. (d) Diagram of the PACT scanner; the mechanical parts,
including the motor system of the rotating mount, are not shown; The photograph of the monitoring camera displays the
external output from the vision camera and shows a rat specimen in the dorsal view.

2.2. Rodent Specimen Imaging

The animal experiments in this study were performed in compliance with the pro-
tocols and guidelines approved by the Institutional Animal Care and Use Committee of
Kyungpook National University (permission number of KNU-2018-100). The two rodent
specimens used in this study were a female BALB/c mouse (age: 5–6 weeks; body weight:
20–25 g) and a female Sprague–Dawley rat (age: 4–5 weeks; body weight: 200–250 g). For
the PACT imaging, the specimens were placed in a nose cone with a tube for inhalation
of isoflurane gas as the anesthetic agent (3% for induction and 1.5% for maintenance in
pure oxygen). Then, a depilatory cream was gently applied to the thorax for 2 min and
carefully wiped using wet gauze for hair removal (Nair®, Church and Dwight Co., Inc.,
Ewing, NJ, USA). Prior to positioning the specimen on the tray, the temperature of the DI
water inside the rotating mount was set to a sufficient temperature (37 ◦C). The US gel
was spread in a layer of thickness 20 mm, and adequate space was secured to ensure the
respiratory requirements of the specimen.

After PACT imaging of the depilated specimen, the pelt on the area over the thorax
was carefully incised to confirm the observed vasculature. Prior to incision, the thoracic
area was gently wiped with a gauze doused in 70% ethanol to prevent contamination.
Using forceps, the external skin layer and fur were pinched and held. The anesthetic
status of the specimen was continuously monitored, while a ventral incision was cautiously
made using fine straight and curved scissors. Then, PACT imaging was repeated for
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the specimens in the skin-incised cervicothoracic region. Finally, the specimens were
euthanized by cervical dislocation, and the rib cages of the specimens were cut using bone
scissors to verify specific blood vessels such as the internal thoracic vein. Unnecessary
incision or abuse of dissection was avoided during the entire experimental process.

3. Results

During the experiment, the anesthetized and depilated specimens were carefully
placed on the imaging window located at the middle bottom of the animal tray. PACT
images for each specimen were then acquired using only the endogenous intrinsic contrast
at a single wavelength (800 nm) with a FOV of 25.4 mm × 25.4 mm. The scanning mode
was a step-and-shoot rotation acquisition (Number of Angles: 360; Number of Pulses per
Angle: 10), which took a total of 4 min for 360◦ scan and data processing.

3.1. PACT Images of Rodent Specimens after Depilation

The upper thorax of the rat specimen around the clavicle was imaged using the instru-
ment. Figure 2 shows the imaging area indicated by the red box for the ventral view (a) and
the acquired PACT images from three different directions (b–d). Through the PACT images,
specific arteries and veins, such as the CCA, IJV and EJV, SV, and CVC, were observed, and
several branches beneath the skin surface were displayed. In particular, the junction (brachio-
cephalic vein) connecting the right EJV, SV, and CVC was obviously seen, and the CCA and
IJV were distinguished well (yellow-dashed ellipse). On the lateral view image in Figure 2d,
the superficial branches (green arrows) were identified, and the depth of the aforementioned
junction was estimated as 4.58 mm from the skin surface (yellow double-headed arrow). The
3D volumetric video clip of the PACT image for Figure 2 is shown in Video S1.
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Figure 2. Photograph of the depilated rat specimen and its PACT images. (a) Photograph of the 
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Figure 2. Photograph of the depilated rat specimen and its PACT images. (a) Photograph of the specimen
showing the imaging region (red box). (b) Ventral view of the PACT image; the yellow-dashed ellipse shows
the CCA and IJV distinctly. (c) Right ventral view of the PACT image. (d) Right lateral view of the PACT
image; the yellow double-headed arrow indicates the depth of the junction (4.58 mm), and the green arrows
indicate the superficial branches. A: anterior, CCA: common carotid artery, D: dorsal, EJV: external jugular
vein, L: left, LV: left ventral, P: posterior, R: right, RCVC: right cranial vena cava, RD: right dorsal, REJV: right
external jugular vein, RIJV: right internal jugular vein, RSV: right subclavian vein, V: ventral. Scale bar: 2 mm.
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During PACT imaging of the mouse specimen, the thorax from the clavicle to xiphoid carti-
lage, which is located at the end of the sternebrae, was included in the FOV (25.4 mm × 25.4 mm).
Figure 3 shows the ventral view of the specimen with the imaging region (a) and acquired
PACT images (b–d). In addition to the EJV, CVC, and SV, more blood vessels, such as the
right and left mammary (RM and LM) vessels, superficial thoracic vein (STV), internal
thoracic vein (ITV), and superior epigastric vein (SEV), are visible from the PACT images.
In Figure 3b, which is the ventral view, the RM and LM vessels are observed to extend
from the top to the bottom on both sides, and the two ITVs on the left and right sides of
the sternebrae are clearly identified with high intensity. On the lateral view PACT image
(Figure 3d), the location of ITV, which is just below the costal cartilage, was confirmed. The
volumetric image of Figure 3 is shown in Video S2.

Photonics 2021, 8, x FOR PEER REVIEW 6 of 12 
 

 

dashed ellipse shows the CCA and IJV distinctly. (c) Right ventral view of the PACT image. (d) 
Right lateral view of the PACT image; the yellow double-headed arrow indicates the depth of the 
junction (4.58 mm), and the green arrows indicate the superficial branches. A: anterior, CCA: com-
mon carotid artery, D: dorsal, EJV: external jugular vein, L: left, LV: left ventral, P: posterior, R: right, 
RCVC: right cranial vena cava, RD: right dorsal, REJV: right external jugular vein, RIJV: right inter-
nal jugular vein, RSV: right subclavian vein, V: ventral. Scale bar: 2 mm. 

During PACT imaging of the mouse specimen, the thorax from the clavicle to xiphoid 
cartilage, which is located at the end of the sternebrae, was included in the FOV (25.4 mm 
× 25.4 mm). Figure 3 shows the ventral view of the specimen with the imaging region (a) 
and acquired PACT images (b‒d). In addition to the EJV, CVC, and SV, more blood ves-
sels, such as the right and left mammary (RM and LM) vessels, superficial thoracic vein 
(STV), internal thoracic vein (ITV), and superior epigastric vein (SEV), are visible from the 
PACT images. In Figure 3b, which is the ventral view, the RM and LM vessels are ob-
served to extend from the top to the bottom on both sides, and the two ITVs on the left 
and right sides of the sternebrae are clearly identified with high intensity. On the lateral 
view PACT image (Figure 3d), the location of ITV, which is just below the costal cartilage, 
was confirmed. The volumetric image of Figure 3 is shown in Video S2. 

 
Figure 3. Photograph of the depilated mouse specimen and its PACT images. (a) Photograph of the 
specimen showing the imaging region (red box). (b) Ventral view PACT image. (c) Right ventral 
view PACT image. (d) Right lateral view PACT image. A: anterior, D: dorsal, ITV: internal thoracic 
vein, L: left, LEJV: left external jugular vein, LITV: left internal thoracic vein, LM: left mammary, 
LSEV: left superior epigastric vein, LSV: left subclavian vein, LV: left ventral, P: posterior, R: right, 
RCVC: right cranial vena cava, RD: right dorsal, REJV: right external jugular vein, RM: right mam-
mary, RSTV: right superficial thoracic vein, RSV: right subclavian vein, V: ventral. Scale bar: 2 mm. 

To confirm the locations of the blood vessels seen on the acquired PACT images, an 
incision was made on the thoracic skin of the mouse specimen. Figure 4 shows the repre-
sentative ventral view PACT image of the specimen (a), photographs taken after skin in-
cision (b and c), and a photograph showing the backside of a rib after euthanasia (d). The 
EJV and SEV were well matched with those on the PACT image, and the RM was located 
beneath the skin in an identical shape to that on the PACT image. On the backside of the 
rib, the left and right ITVs were observed next to the sternebrae. The remaining arteries 

Figure 3. Photograph of the depilated mouse specimen and its PACT images. (a) Photograph of the
specimen showing the imaging region (red box). (b) Ventral view PACT image. (c) Right ventral view
PACT image. (d) Right lateral view PACT image. A: anterior, D: dorsal, ITV: internal thoracic vein, L:
left, LEJV: left external jugular vein, LITV: left internal thoracic vein, LM: left mammary, LSEV: left
superior epigastric vein, LSV: left subclavian vein, LV: left ventral, P: posterior, R: right, RCVC: right
cranial vena cava, RD: right dorsal, REJV: right external jugular vein, RM: right mammary, RSTV:
right superficial thoracic vein, RSV: right subclavian vein, V: ventral. Scale bar: 2 mm.

To confirm the locations of the blood vessels seen on the acquired PACT images,
an incision was made on the thoracic skin of the mouse specimen. Figure 4 shows the
representative ventral view PACT image of the specimen (a), photographs taken after skin
incision (b and c), and a photograph showing the backside of a rib after euthanasia (d). The
EJV and SEV were well matched with those on the PACT image, and the RM was located
beneath the skin in an identical shape to that on the PACT image. On the backside of the
rib, the left and right ITVs were observed next to the sternebrae. The remaining arteries
and veins observed on the PACT images, such as the CCA, IJV, SV, and CVC, were difficult
to confirm owing to hemorrhage during the dissection.
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the mouse specimen after skin incision. (d) Photograph of the backside of the rib. A: anterior, EJV:
external jugular vein, L: left, LITV: left internal thoracic vein, LSEV: left superior epigastric vein, P:
posterior, R: right, RM: right mammary, ST: sternebrae.

3.2. PACT Images after Skin Incision

After performing the skin incision, each rodent specimen was imaged again in the
cervicothoracic region. The FOV, scanning mode, and wavelength of light were maintained
the same as before, i.e., 25.4 mm × 25.4 mm, step-and-shoot rotation acquisition, and
800 nm, respectively.

Figure 5 shows the PACT images of the rat specimen. The imaged region was the neck
area from the chin to the clavicle. Because of the skin incision, the branches of the blood
vessels around the EJV and CCA, which were seen in the PACT image after depilation
(Figure 1), disappeared noticeably. Therefore, differentiation between the CCA and IJV
was more apparent, and the EJV was clearly displayed. One of the branches (yellow arrow)
next to the right CCA remained, and its location was confirmed as the topmost surface in
the lateral view image (Figure 5c). The unwanted signal in the image is blood clots in the
US gel, which detached during positioning of the specimen. The 3D video clip of Figure 5
is shown in Video S3.

The procedures and settings detailed above were used to acquire the PACT images
of the skin-incised mouse specimen. Figure 6 shows the PACT image of the specimen in
three views. The imaged region included the thorax from the chin to ribs. Although the
photoacoustic signal amplitude at the center of the thorax was saturated, the Y-shaped
manubrium of the sternum (MoS) and blood vessels, including the EJV, CCA, and ITV,
could be identified. The saturated signals in the middle of the figure are handled as noted
later in the discussion. From the lateral view image (Figure 6c), the depth positions of the
MoS and ITV were confirmed to correspond to the region below the surface of the fascia.
The video for this volumetric image is shown in Video S4.
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4. Discussion

This study uses a commercial noninvasive and nonionizing optical imaging instrument
called PACT to obtain the cervicothoracic vasculature images of mouse and rat specimens,
which are some of the most commonly used experimental animals in academic research.
The acquired PACT images of each of the specimens revealed various blood vessels of the
cervicothoracic region and thorax (in the case of the mouse specimen), such as the common
carotid artery, external/internal jugular vein, cranial vena cava, subclavian vein, superficial
thoracic vein, internal thoracic vein, right/left mammary, and superior epigastric vein.
The PACT images obtained after skin incisions showed that several branches of the blood
vessels had collapsed. Specific blood vessels, including the external jugular, mammary,
and internal thoracic veins, were confirmed via dissection. Previous works reported in
the literature for rodent anatomy were also referred to identify the blood vessels from the
obtained PACT images [15,51].
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The results of this study confirm the vascular information from the upper thoracic
parts (cervicothoracic regions) of mice and rats, which have been infrequently observed
through PACT imaging. Moreover, the different conditions of the specimens after depilation
and skin incision implemented in this study have not been considered much to date.
Therefore, this study is expected to guide PACT imaging of mouse and rat specimens for
the thoracic region and be utilized as a reference for the cervicothoracic vasculature in
various preclinical experiments using mice and rats.

The commercial PACT instrument employed in this study (Nexus 128, Endra Life
Science Inc., Ann Arbor, MI, USA) was easy to use and produced sufficiently clear PACT
images to identify the significant blood vessels. The components for animal handling,
including the animal tray, CCD monitoring camera, and hole in the top lid for the anesthetic
gas tube, are convenient to handle small animal specimens, compared to conventional
laboratory-based PACT systems that require the effort to mount small animals to an animal
holder and to fix the anesthetic gas tube to the nasal part of the specimen. Nexus 128 also
has the practical advantage of obtaining data through the provided software that performs
from image acquisition to image processing and displaying. However, several limitations
are noted. Because the scanning area (i.e., FOV) was fixed (>20 mm), the range covering the
thoracic region of each specimen in the PACT images was different. Further, the animal tray
used to position the specimens was a little small to mount a four-week-old rat. Another
limitation of the instrument was that the output laser was slightly focused on a certain
depth in the middle of the animal tray, causing unwanted strong acoustic signals (Figure 6).
Hence, improvements to the system are required for the abovementioned shortcomings,
and modifications of the configuration related to the pulsed laser and US transducers can
help achieve better spatial resolution.

While this study proposes the anatomical vascular information according to the two
commonly used small animals (mice and rats) and different dissection statuses, the capa-
bilities of the device for quantitative analyses, such as parametric maps of hemoglobin
concentration (CHbt), line measurement, and image statistics, can be utilized for various
future preclinical studies. Blood oxygen saturation (SaO2), which can be calculated by
PACT data acquired at multiple wavelengths, is also helpful for versatile biomedical ap-
plications [52]. In addition, the PACT images can be improved and used as functional
imaging when using exogenous contrast agents such as dye and nanoparticles. Hu et al.
developed lysosome-targeting BODIPY nanoparticles for enhancing lysosomal photoacous-
tic imaging (PAI) [53], and Temma et al. utilized a novel cyanine dye IC7-1-Bu as a PAI
contrast agent for in vivo tumor imaging [54]. Along with the system improvements and
the use of contrast agents, several future studies are proposed as follows: observing and
analyzing the vasculature of other representative rodents such as guinea pigs using PACT,
imaging different body parts, and investigating differences in PACT images according to
the dissection stages or anatomical conditions.

5. Conclusions

In this study, a commercial PACT device (Nexus 128, Endra Life Science Inc., Ann
Arbor, MI, USA) was used to acquire the cervicothoracic vasculature images of commonly
used small animals (mouse and rat) noninvasively. A wavelength of 800 nm and a field of
view (FOV) of 25.4 mm × 25.4 mm were applied during the experiment. The total amount
of time consumed to acquire PACT data and image processing was 4 min. The presented
PACT images from the cervicothoracic region of mouse and rat specimen show anatomical
features of various blood vessels, including the common carotid artery, cranial vena cava,
subclavian vein, external/internal jugular vein, superficial thoracic vein, internal thoracic
vein, superior epigastric vein, and right/left mammary. According to the two statuses of
depilation and skin incision, the branches of the blood vessels and structural differences in
PACT images are also revealed. This study is expected to guide the PACT imaging of small
animals for the thoracic region and be utilized to reference the cervicothoracic vasculature
in various preclinical experiments using mice and rats.
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image of the skin-incised rat specimen. Video S4: PACT volumetric image of the skin-incised
mouse specimen.
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