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Abstract: In this paper, we simulate the focusing of a cylindrical vector beam (CVB) of second order,
using the Richards–Wolf formula. Many papers have been published on focusing CVB, but they did
not report on forming of the toroidal vortices of energy (TVE) near the focus. TVE are fluxes of light
energy in longitudinal planes along closed paths around some critical points at which the flux of
energy is zero. In the 3D case, such longitudinal energy fluxes form a toroidal surface, and the critical
points around which the energy rotates form a circle lying in the transverse plane. TVE are formed
in pairs with different directions of rotation (similar to optical vortices with topological charges of
different signs). We show that when light with a wavelength of 532 nm is focused by a lens with
numerical aperture NA = 0.95, toroidal vortices periodically appear at a distance of about 0.45 µm
(0.85 λ) from the axis (with a period along the z-axis of 0.8 µm (1.5 λ)). The vortices arise in pairs: the
vortex nearest to the focal plane is twisted clockwise, and the next vortex is twisted counterclockwise.
These vortices are accompanied by saddle points. At higher distances from the z-axis, this pattern
of toroidal vortices is repeated, and at a distance of about 0.7 µm (1.3 λ), a region in which toroidal
vortices are repeated along the z-axis is observed. When the beam is focused and limited by a narrow
annular aperture, these toroidal vortices are not observed.

Keywords: tight focusing; Richards–Wolf formula; cylindrical vector beam; energy backflow; toroidal
vortices; V-points

1. Introduction

Recently, the tight focusing of light with inhomogeneous polarization has attracted
attention from researchers, due to the wide variety of focal spot shapes that can be ob-
tained in this polarization state. For example, in previous work, compact foci have been
obtained with sizes smaller than the diffraction limit [1], as well as optical needles [2], light
tunnels [3,4], chains of foci [5,6], and foci with a flat apex [7,8].

Predominantly, the behavior of the intensity at the focus is investigated in the papers,
for instance, in [1–8], while the behavior of the energy flux (Poynting vector) of focused
beams with inhomogeneous polarization is considered much less often [9–19]. For example,
the authors of [9] explored the tight focusing of a vector beam with a polarization that
periodically changed from linear to circular along the radial or azimuthal axis. It was shown
that there are points in the focus plane of these beams around which the Poynting vector
rotates. The behavior of the Poynting vector in a tightly focused optical vortex with radial
and azimuthal polarization was investigated in [10] and [11], respectively. The influence of
the sector aperture on the energy flux at the tight focus of an azimuthally polarized beam
was studied in [12], and in the same way as in [9], rotation of the Poynting vector around
several points located along a certain circle was observed in the focal plane. The authors
of [13] investigated the energy flux arising at the tight focus of a beam with polarization
close to azimuthal, but with an additional periodically changing radial component of
insignificant size (a kaleidoscope-structured vector optical beam). In [14], the self-healing
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properties of Bessel–Gauss beams were studied, and in particular, the transverse component
of the Poynting vector in beam sections was analyzed.

It has previously been shown that in tightly focused beams with a polarization sin-
gularity, there are regions in which the direction of the Poynting vector is opposite to
the direction of the beam propagation [15,16]. The existence of such regions was noted
quite a long time ago in the classical work of Richards and Wolf [20], and even earlier in
the study of Ignatovsky [21]. However, the regions of negative values of the Poynting
vector projection on the optical axis observed by them were small. The same areas are
observed in the case of the light field diffraction at the edges [22] and with total internal
reflection [23,24]. However, it is possible to make such regions sufficiently large only while
sharp focusing of beams with a phase or polarization singularity [15,16]. The study in [17]
showed that in the Weber modes, the projection of the Poynting vector onto the optical
axis takes negative values. The energy flux is the sum of two fluxes: the spin flux and the
orbital energy flux [25,26]. Thus, the presence of areas in which the total energy flux is
directed towards the radiation source can be explained by the fact that the spin flux directed
towards the source exceeds in absolute value the orbital energy flux [27]. A negative orbital
energy flux was observed in [26]. In an earlier paper [18], we found that regions of reverse
energy flux arise not only in the focus plane, but also in planes close to it. It should be
also noted that the reverse energy flow allows to control some types of microparticles in
tasks of optical manipulation [25]. A microparticle placed in the backflow area will move
towards the direction of light propagation. This phenomenon is called a tractor beam [28].

In this paper, using the Richards–Wolf formula we simulate the focusing of a cylin-
drical vector beam (CVB) of second order. It is shown that toroidal vortices periodically
appear at a distance of about 0.45 µm from the axis (with a period along the z-axis of
0.8 µm) when the light is focused by a lens with numerical aperture NA = 0.95. These
vortices arise in pairs: the nearest to the focal plane vortex rotates clockwise, while the
neighboring vortex rotates counterclockwise. The vortices are also accompanied by saddle
points. The pattern of toroidal vortices is repeated at further distances from the z-axis.
We observe a region in which toroidal vortices are repeated along the z-axis at a distance
of about 0.7 µm. These toroidal vortices are not observed when the beam is focused and
limited by a narrow annular aperture.

2. Methods

Our analysis relies on the Richards–Wolf integral [20], as

U(ρ, ψ, z) = − i f
λ

αmax∫
αmin

2π∫
0

B(θ, ϕ)T(θ)P(θ, ϕ)×

exp{ik[ρ sin θ cos(ϕ− ψ) + z cos θ]} sin θ dθ dϕ,
(1)

where U(ρ, ψ, z) is the electrical or magnetic field in the focal spot; B(θ, ϕ) is the incident
electrical or magnetic field (where θ is the polar angle and ϕ is the azimuthal angle); T(θ)
is the apodization function (the apodization function is equal to T(θ) = cos1/2θ for an
aplanatic lens, whereas it is equal to T(θ) = cos−3/2θ for a flat diffractive lens); k = 2π/λ is
the wavenumber; λ is the wavelength; αmax is the maximal polar angle determined by the
numerical aperture of the lens (NA = sinαmax); and P(θ,ϕ) is the polarization matrix for
the electric and magnetic fields as

P(θ, ϕ) =

 1 + cos2 ϕ(cos θ − 1)
sin ϕ cos ϕ(cos θ − 1)
− sin θ cos ϕ

a(θ, ϕ) +

 sin ϕ cos ϕ(cos θ − 1)
1 + sin2 ϕ(cos θ − 1)
− sin θ sin ϕ

b(θ, ϕ), (2)

where a(θ,ϕ) and b(θ,ϕ) are the polarization functions for the x- and y-components of the
incident beam, respectively.
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For a light field with cylindrical polarization of the mth order, the Jones vectors are

E(θ, φ) =

(
a(θ, φ)
b(θ, φ)

)
=

(
− sin(mφ)
cos(mφ)

)
, (3)

for the electric field, and

H(θ, φ) =

(
a(θ, φ)
b(θ, φ)

)
=

(
− cos(mφ)
− sin(mφ)

)
, (4)

for the magnetic field.
In [20], it was shown that combining Equation (1) with Equations (2)–(4) gives

Ex = im+1[sin mϕI0,m + sin(m− 2)ϕI2,m−2],
Ey = im+1[− cos mϕI0,m + cos(m− 2)ϕI2,m−2],
Ez = −2im sin(m− 1)ϕI1,m−1,
Hx = im+1[cos mϕI0,m + cos(m− 2)ϕI2,m−2],
Hy = im+1[sin mϕI0,m − sin(m− 2)ϕI2,m−2],
Hy = −2im cos(m− 1)ϕI1,m−1,

(5)

where

I0,m = A
αmax∫
αmin

sin θT(θ)(1 + cos θ)Am(θ)eikz cos θ Jm(x)dθ ,

I2,m−2 = A
αmax∫
αmin

sin θT(θ)(1− cos θ)Am(θ)eikz cos θ Jm−2(x)dθ ,

I1,m−1 = A
αmax∫
αmin

sin2 θT(θ)Am(θ)eikz cos θ Jm(x)dθ .

(6)

The longitudinal projection of the Poynting vector S = (Sx, Sy, Sz,), Sz = Re(ExHy* −
EyHx*) can be written as

Sz = [sin mϕI0,m + sin(m− 2)ϕI2,m−2]× [sin mϕI0,m − sin(m− 2)ϕI2,m−2]−
[− cos mϕI0,m + cos(m− 2)ϕI2,m−2]× [cos mϕI0,m + cos(m− 2)ϕI2,m−2] .

(7)

For an angle ϕ = 0, this is equal to

Sz = I2
0,m − I2

2,m−2, (8)

We now consider the case where

α = π/2, A(θ) = δ(θ − π/2). (9)

This corresponds to a high numerical aperture lens (NA = 1) limited by a narrow
annular aperture. We have previously shown [29] that the area of energy backflow can
be enhanced in this case due to enlarging of the energy backflow depth, and the width is
slightly decreased.

Taking into account Equation (9), Equation (6) for I0,m and I2,m−2 can be rewritten as

I0,m = AT
(
θ → π

2
)

Jm(kρ) ,
I2,m−2 = AT

(
θ → π

2
)

Jm−2(kρ) .
(10)

The longitudinal component Sz for m = 2 is equal to

Sz = AT
(

θ → π

2

)[
J2
2 (kρ)− J2

0 (kρ)
]

(11)

The above equation shows that when the condition in Equation (9) is valid, the areas
in which Sz takes on negative values do not depend on the z-coordinate. Note that the
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apodization function is always positive and does not affect the sign change in Equation (11).
Figure 1 shows a plot of the function J2

2(kρ) − J0
2(kρ) for λ = 0.532 µm.
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four plane waves. The areas containing negative values acquire an axisymmetric char-
acter and they are also periodically repeated. 
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Figure 1. Plot of the function J2
2(kρ) − J0

2(kρ).

Figure 1 shows that the longitudinal projection of the Poynting vector can take negative
values. Areas of negative values also arise periodically at further distances from the axis.
Figure 1 shows a maximum possible ratio of 5:1 between the reverse energy flow and the
forward energy flow in free space.

The distribution shown in Figure 1 for the case described by Equation (9) can be
considered as a continuation of the study in [19], which shown that regions with negative
values of the Poynting vector arise periodically for interference between four plane waves
converging at a large angle. In the present case, there is interference between an infinite
number of spherical waves with continuous changes in polarization instead of four plane
waves. The areas containing negative values acquire an axisymmetric character and they
are also periodically repeated.

Figure 2 shows the results of a simulation based on Equation (1), in which CVB acquire
of second order is focused with a lens with numerical aperture NA = 0.99, limited by a
narrow annular aperture with αmin = 0.9 × αmax = 0.9 × asin(NA), m = 2.
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Figure 2 shows that the areas where the direction of the Poynting vector is reversed
approximately coincide with similar areas in Figure 1. There are no toroidal energy vortices
in this case.

3. Results

Based on the Richards–Wolf formula in (1), we then simulated the focusing of a CVB
of second order (m = 2) with a wavelength of 532 nm, using a wide-aperture lens without
an annular aperture. In this simulation, we used a lens with numerical aperture NA = 0.95.

Figure 3 shows the results of focusing a cylindrical second-order vector beam using a
lens with numerical aperture NA = 0.95 in the region 0.5 µm < z < 3 µm, 0.3 µm < r < 1 µm.

Photonics 2021, 8, x FOR PEER REVIEW 5 of 10 
 

 

 
Figure 2. Intensity and direction of the Poynting vectors in the YZ-plane of the focused CVB of 
second order using a lens with numerical aperture NA = 0.99, limited by a narrow annular aperture 
with αmin = 0.9 × αmax. 

Figure 2 shows that the areas where the direction of the Poynting vector is reversed 
approximately coincide with similar areas in Figure 1. There are no toroidal energy vor-
tices in this case. 

3. Results 
Based on the Richards–Wolf formula in (1), we then simulated the focusing of a CVB 

of second order (m = 2) with a wavelength of 532 nm, using a wide-aperture lens without 
an annular aperture. In this simulation, we used a lens with numerical aperture NA = 
0.95. 

Figure 3 shows the results of focusing a cylindrical second-order vector beam using 
a lens with numerical aperture NA = 0.95 in the region 0.5 μm < z < 3 μm, 0.3 μm < r < 1 
μm. 

 

  
(a) (b) 

Photonics 2021, 8, x FOR PEER REVIEW 6 of 10 
 

 

 
(c) 

Figure 3. (a) Intensity distribution (color) and directions of the Poynting vector (arrows) in the YZ plane and (b) positions 
of the points at which the Poynting vector is zero (squares-vortex with clockwise rotation, triangles-vortex with counter-
clockwise rotation arrows, circles-saddle points). The numbers indicate the individual areas shown in the figures below. 
(с) Schematic representation of a toroidal vortex of energy. 

It can be seen from Figure 3 that there are regions in the longitudinal plane YZ 
around which the Poynting vector rotates. This area will have the form of a circle (‘dark 
ring’) in the transverse XY plane. The Poynting vector is equal to zero in it. The Poynting 
vector will rotate around this circle in the YZ plane (or any other longitudinal plane 
containing the optical axis) and the surface formed by the Poynting vector trajectories in 
different longitudinal planes will have the form of a torus (longitudinal cross-section of 
which can be either a circle or an ellipse). Figure 3c schematically shows such a toroidal 
vortex. 

From Figure 3b, it can be seen that toroidal vortices appear periodically at a distance 
of approximately 0.45 μm from the axis (with a period along the z-axis of 0.8 μm). These 
vortices arise in pairs: the nearest to the focal plane vortex rotates clockwise (Figure 4), 
while the neighboring vortex rotates counterclockwise (Figure 5) and is located at a dis-
tance of approximately 0.3 μm from the clockwise vortex. The clockwise vortices are lo-
cated slightly farther (about 0.05 μm) from the z-axis (r = 0) than the counterclockwise 
ones. The vortices are accompanied by saddle points (Figure 6), the closest of which are 
located at a distance of 0.4 μm from the axis. Note that the distance at which the toroidal 
vortices appear (the center of the vortices) approximately corresponds to the third zero of 
the function J22(kρ) − J02(kρ) in Figure 1. Such saddle points as well as toroidal vortices 
form a dark ring in the XY plane. However, in the longitudinal section YZ the Poynting 
vector behaves differently near such points: the vector trajectories have the form of hy-
perbolas (Figure 6). 

At further distances from the z-axis, the pattern of toroidal vortices is repeated: a 
region of repeating toroidal vortices along the z-axis is also observed at a distance of ap-
proximately 0.7 μm. This distance approximately corresponds to the fifth zero of the 
function J22(kρ) − J02(kρ) in Figure 1. 
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of the points at which the Poynting vector is zero (squares-vortex with clockwise rotation, triangles-vortex with counter-
clockwise rotation arrows, circles-saddle points). The numbers indicate the individual areas shown in the figures below.
(c) Schematic representation of a toroidal vortex of energy.
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It can be seen from Figure 3 that there are regions in the longitudinal plane YZ around
which the Poynting vector rotates. This area will have the form of a circle (‘dark ring’) in
the transverse XY plane. The Poynting vector is equal to zero in it. The Poynting vector
will rotate around this circle in the YZ plane (or any other longitudinal plane containing
the optical axis) and the surface formed by the Poynting vector trajectories in different
longitudinal planes will have the form of a torus (longitudinal cross-section of which can
be either a circle or an ellipse). Figure 3c schematically shows such a toroidal vortex.

From Figure 3b, it can be seen that toroidal vortices appear periodically at a distance
of approximately 0.45 µm from the axis (with a period along the z-axis of 0.8 µm). These
vortices arise in pairs: the nearest to the focal plane vortex rotates clockwise (Figure 4),
while the neighboring vortex rotates counterclockwise (Figure 5) and is located at a distance
of approximately 0.3 µm from the clockwise vortex. The clockwise vortices are located
slightly farther (about 0.05 µm) from the z-axis (r = 0) than the counterclockwise ones. The
vortices are accompanied by saddle points (Figure 6), the closest of which are located at
a distance of 0.4 µm from the axis. Note that the distance at which the toroidal vortices
appear (the center of the vortices) approximately corresponds to the third zero of the
function J2

2(kρ) − J0
2(kρ) in Figure 1. Such saddle points as well as toroidal vortices form a

dark ring in the XY plane. However, in the longitudinal section YZ the Poynting vector
behaves differently near such points: the vector trajectories have the form of hyperbolas
(Figure 6).
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At further distances from the z-axis, the pattern of toroidal vortices is repeated: a
region of repeating toroidal vortices along the z-axis is also observed at a distance of
approximately 0.7 µm. This distance approximately corresponds to the fifth zero of the
function J2

2(kρ) − J0
2(kρ) in Figure 1.

Figures 4–6 show the points of polarization singularity (V-points) at which the di-
rection of linear polarization is undefined. The Poincaré–Hopf index is equal to η = +1
(Figures 4 and 5) and η = –1 (Figure 6) [30]. In this research, we investigate V-points in
the longitudinal plane, in contrast to the previous study [30], in which these points were
investigated in the transverse plane.

4. Discussion

A lot of papers sharply focused on CVB are known today [1,8,31,32]. However, as
a rule, these studies considered the energy distribution of the energy flux (projections of
the Poynting vector) in the transverse regions near the focus and almost never considered
energy flows in the longitudinal (meridional) planes. In this research, using focusing of the
second-order CVB as example, we have shown that many vortices of energy or toroidal
vortices of energy (TVE) can be formed near the focus in the meridional planes. TVE are
flows of light energy in meridional planes along closed paths around some critical points
at which the flow of energy is zero. In the 3D case, such longitudinal energy fluxes form
the surface of the torus and the critical points around which the energy rotates form a
circle lying in the transverse plane. TVEs are formed by pairs with different directions of
rotation (similar to optical vortices with topological charges of different signs). Figure 7
shows some vortices of different nature (polarization (a), phase (b), and energy (c) vortices).
The topology of such vortex flows is largely the same. The singularity index of V-points
(Figure 7a) and the topological charge of the phase singularity (Figure 7b) are determined
by summation of the number of the linear polarization vector complete revolutions [30]
or the phase jumps by 2π [33] along a closed loop around the critical (singular) point.
Therefore, the energy vortex in Figure 7c can be assigned the topological index −1 since
the direction of the Poynting vector changed by 2π clockwise when going around the point
of the energy flux uncertainty. The vortex energy flow index in Figure 5 is +1 since the
critical point is bypassed counterclockwise.
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show the directions of local linear polarization vectors); (b) phase (from zero to 2π) of an optical vortex with the center of 
a fifth-order phase singularity (topological charge is 5); and (c) the point of uncertainty of the energy flow direction in the 
meridional plane at the focus of the CVB with the order n = 2 (Figure 4). 
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Poynting vector is zero), not only in the focal plane but also in planes near the focus. 
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toroidal vortices periodically appear at a distance of about 0.45 μm from the axis (with a 
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also accompanied by saddle points. At further distances from the z-axis, the pattern of 
toroidal vortices repeats: at a distance of about 0.7 μm, a region in which toroidal vortices 

Figure 7. Examples of critical points (singularity points): (a) V-point at the center of the CVB field with order n = 3 (arrows
show the directions of local linear polarization vectors); (b) phase (from zero to 2π) of an optical vortex with the center of a
fifth-order phase singularity (topological charge is 5); and (c) the point of uncertainty of the energy flow direction in the
meridional plane at the focus of the CVB with the order n = 2 (Figure 4).

5. Conclusions

In this paper, the focusing of second-order CVBs was numerically simulated using
the Richards–Wolf formulas. The goal of the study was to determine the conditions for
the formation of toroidal vortices of energy around the ‘dark rings’ (rings on which the
Poynting vector is zero), not only in the focal plane but also in planes near the focus.

It was shown that when light is focused by a lens with numerical aperture NA = 0.95,
toroidal vortices periodically appear at a distance of about 0.45 µm from the axis (with a
period along the z-axis of 0.8 µm). These vortices arise in pairs: the one nearest to the focal
plane rotates clockwise, and the neighboring one rotates counterclockwise. They are also
accompanied by saddle points. At further distances from the z-axis, the pattern of toroidal
vortices repeats: at a distance of about 0.7 µm, a region in which toroidal vortices repeats
along the z-axis is observed. When the beam is focused and limited by a narrow annular
aperture, toroidal vortices are not observed.

It should be noted that a similar effect can be observed not only for polarization
vortices, but also for phase optical vortices. In particular, this holds for optical vortices with
a topological charge of two and circular polarization; in addition to the beams considered
above, negative values of the longitudinal projection of the Poynting vector are observed
in this case on the optical axis under tight focusing conditions.
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