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Abstract: Computer holography is a technology that use a mathematical model of optical holography
to generate digital holograms. It has wide and promising applications in various areas, especially
holographic display. However, traditional computational algorithms for generation of phase-type
holograms based on iterative optimization have a built-in tradeoff between the calculating speed
and accuracy, which severely limits the performance of computational holograms in advanced
applications. Recently, several deep learning based computational methods for generating holograms
have gained more and more attention. In this paper, a convolutional neural network for generation
of multi-plane holograms and its training strategy is proposed using a multi-plane iterative angular
spectrum algorithm (ASM). The well-trained network indicates an excellent ability to generate phase-
only holograms for multi-plane input images and to reconstruct correct images in the corresponding
depth plane. Numerical simulations and optical reconstructions show that the accuracy of this
method is almost the same with traditional iterative methods but the computational time decreases
dramatically. The result images show a high quality through analysis of the image performance
indicators, e.g., peak signal-to-noise ratio (PSNR), structural similarity (SSIM) and contrast ratio.
Finally, the effectiveness of the proposed method is verified through experimental investigations.

Keywords: Computer-Generated Hologram (CGH); holographic display; convolutional neural
network; deep learning

1. Introduction

Computer-generated holograms (CGHs) are widely used in various fields [1,2], since
computational holography can not only record and reproduce the amplitude and phase
of light waves comprehensively, but also has the advantages of low noise and high repro-
ducibility [3]. It can also generate holograms of virtual objects, compared with traditional
optical holography.

There are many methods to generate CGHs. Phase-only CGH is a better option for
holographic displays in most cases, due to the higher optical efficiency of phase modulation.
Moreover, the reconstruction results by using the phase-only liquid crystal-based SLMs
could have no interference of conjugate image. The iterative methods have significant
advantages in phase retrieval [4–6]. However, for CGH generation, there is an unavoidable
problem with the iterative methods because they require a trade-off between computation
time and image quality caused by the iterative process [7–9]. Non-iterative complex
amplitude encoding methods have also been proposed to achieve fast CGH calculation
with guaranteed imaging quality, such as the error diffusion method [10] and the double
phase encoding method [11,12].

In recent years, deep learning has shown a significant impact in various fields [13]. It
has also become a beneficial tool for computational holography and other optical imag-
ing applications, where machine learning models represented by convolutional neural
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networks (CNNs) shown agreeable performance in modeling and calculating highly non-
linear mapping problems in constant calculation time [14,15]. Therefore, it is an excellent
choice for fast and efficient processing of optical information (including fast CGH gener-
ation). Neural networks have also been successfully applied to digital holography [16],
computational imaging [17–19], hologram generation [20–24], etc.

The currently implemented method, using generative adversarial networks (GAN) in-
stead of the traditional point sources method (LUT) for generation of point cloud CGHs [20],
has successfully reduced the computational load. In addition, a deep neural network based
on the residual network structure [21] was used to generate the phase-only CGHs and the
reconstructed images were of better quality than those generated by Gerchberg–Saxton
(GS) algorithm [4]. However, the proposed residual network has been trained with only a
single input plane and the results are only used for simple images, such as simple hand-
written numbers. More recently, the generation of multi-plane holograms based on deep
learning has been proposed [22]. The network takes multiple images of different planes as
input and calculates complex holograms as output, reconstructing each input image at the
corresponding plane, demonstrating the feasibility of generating multi-plane holograms
based on deep learning. However, this method only shows the imaging quality of network
generated CGH with binary-gray scale image as input of different planes. Therefore, this
study needs further research in processing multi-plane complex images and its imaging
quality.

In this paper, a convolutional neural network-based hologram generation method
is proposed to obtain the phase-only holograms of complex multi-plane images. The
reconstruction quality of holograms generated by a network that undergoes deep learning
is greatly enhanced by a data-set type and combination strategy. Therefore, this network
is able to train faster and more efficient for hologram generation. Thus, the model has
the ability to calculate holograms of target image patterns in a non-iterative mode. This
deep learning method allows for generating holograms of various types of images without
learning specific objects and it can be further extended to generate holograms from single-
plane images to multi-plane images.

In Section 2, the CGH algorithm and the network structure are introduced. In Section 3,
the existing algorithm of CGH is compared with the algorithm of this paper in terms of
calculation speed and imaging accuracy. Simulation results show that the neural network
outperforms iterative ASM and produces holograms faster compared to iterative ASM. The
image quality is also analyzed by calculating PSNR, SSIM and other parameters.

2. Basic Theories
2.1. Optical Principle

Treating the electric vector as a scalar u in the fluctuation equation, the following
equation is obtained [25]

∇2u− 1
v2

∂2u
∂t2 = 0 (1)

where v is the frequency of the light wave.
Let the distance between the diffraction plane and the observation plane be z and

U(x, y, 0) and U(x, y, z) are the complex amplitudes of the light waves on the diffraction
plane and the observation plane, respectively. In the frequency domain, their spectral
functions are G0

(
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)
and Gz

(
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)
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)
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where j is an imaginary unit and U must satisfy the Helmholtz equation at all source-free
points. With direct application of this requirement to Equation (2), after calculation and
collation, we obtain a differential equation that Gz satisfies

d2

d2z
Gz
(

fx, fy
)
+

(
2π

λ

√
1− (λ fx)

2 −
(
λ fy
)2
)2

Gz
(

fx, fy
)
= 0 (3)

where λ is the wavelength and since G0
(

fx, fy
)

is necessarily a special solution of the
equation corresponding to z = 0, according to the theory of differential equations, the
solution of Equation (3) can be written as

Gz
(

fx, fy
)
= G0

(
fx, fy

)
exp

[
j
2π

λ
z
√

1− (λ fx)
2 −

(
λ fy
)2
]

(4)

The relationship for the spectral variation of the light wave field propagating from
the diffraction plane to the observation plane is obtained. This relation shows that the
propagation of the light wave along the z-direction results in the frequency domain as
the spectrum G0

(
fx, fy

)
of the light wave field on the diffraction plane is multiplied by a

z-dependent phase delay factor exp
[

j 2π
λ z
√

1− (λ fx)
2 −

(
λ fy
)2
]

. In the theory of linear

systems, this phase delay factor, called the transfer function of diffraction in the frequency
domain, is noted as H. It indicates that the diffraction problem can be considered as a
transformation process of the optical wavefield through a linear space-invariant system.

According to the angular spectrum theory of light propagation [26], the spectra of
U(x, y, z) can be derived from the spectrum of complex amplitude U(x, y, 0) by Equation (4)
and the complex amplitude of the light wave at any observed position behind the diffraction
plane can be further derived by inverse Fourier transform. The calculation process can be
expressed by the Fourier transform as

U(x, y, z) = F−1
{
F{U(x, y, 0)} exp

[
j
2π

λ
z
√

1− (λ fx)
2 −

(
λ fy
)2
]}

(5)

In further processing of 3D objects, the above equation for single-plane 2D object
surface can be expanded for 3D objects with different depth planes [27].

As shown in Figure 1, the light wave of object planes 1, 2, and 3 are diffracted to the
hologram plane to form a hologram and then the light wave modulated by the resulting
hologram is diffracted back to each object plane and the image can be reconstructed.
With amplitude constraints, the light wave of each depth plane is diffracted again to
hologram plane to obtain the renewed hologram in a cyclically iteration process. The
complex hologram will be gradually converged to phase-only hologram of the multi-plane
3D object.

Figure 1. The propagation diagram of the 3D iterative ASM.
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2.2. Neural Network Algorithm and Its Training Strategy

The algorithm in this paper takes multiple target images as inputs, with each image
corresponding to each plane. The trained network obtains its complex amplitude in the
hologram plane and then propagates it back to the object plane using the Fourier inversion
(Equation (5)) in order to complete the hologram generation and reconstruction.

For simplicity, the number of input planes is set to three and the input planes are
located at a distance of di (i = 1, 2, 3) from the hologram plane. That is, the light wave of
multiple input images is back-propagated to the hologram plane and then the complex
amplitude generated by superposition is divided into real part and imaginary part as
the ground-truth data. The free-space propagation method is the multi-plane iterative
ASM [28–30].

To effectively train a deep learning network, a well-organized training set is con-
structed and a network structure is designed. In order to construct the training set, the
output data of the network and the target data need to be compared. The holograms
with complex wavefront information make it difficult to intuitively find the corresponding
relationships between the target data and the input data. This undoubtedly increases the
training difficulty of the network. If the target data can be converted into more intuitive
data with clearer correspondence, then the training difficulty will be greatly reduced.
Moreover, the ability of the network to generate holograms will be more accurate and
faster. A similar approach of training by intermediate variables instead of its original target
data has been validated by Ketao Yan et al. [31], using convolutional neural networks
in wrapped bit-phase denoising. During the training process, the model can calculate
holograms quickly within a predicable time window which only depends on the model
size (number of convolutional layers, number of kernels, kernel size), the number of model
iterations, the number of depth planes and the size of the hologram.

Figure 2 further describes the type of input data and target data provided for network
training. The input data are three different images with random dots and rectangular
blocks (different size, density and gray scale) and an initial random phase is added to
each input image plane. The images are back-propagated to the hologram plane according
to each plane from d1 to d3 to obtain a superimposed complex hologram. The plane 1 is
closest to the hologram plane at a distance of 98 mm (d1). The plane 3 is farthest from
the hologram plane at a distance of 100 mm (d3) and all planes are spaced at 1 mm. The
multi-plane iterative ASM is used to generate the complex amplitudes on the hologram
plane according to the theory described in Section 2.1 [27,31], which is implemented by
MATLAB. The hologram plane pixel spacing and the wavelength of the light source are
set to 8 µm and 632.8 nm, respectively. The real and imaginary parts of the hologram are
calculated and stored as two different parts of the target data. The size of the input image
as well as the hologram is 512 × 512 pixels. In summary, a group of training data contains
three sets of images as input data and two groups of superimposed (real and imaginary)
holograms as target data. The total training data-set consists of 10,000 groups. A large
sample is trained to optimize the loss function and the Adam optimizer [32] is used to find
a suitable parameter set for the network.
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Figure 2. Diagram of neural network for hologram generation.

2.3. The Structure of Network

Figure 3 illustrates the main components of the network structure proposed in the
paper. Three images in three different depth planes are provided to the network as input
data. The complex hologram calculated by the network possesses the ability to reconstruct
each corresponding input image at the corresponding depth plane. The final output of the
network is a superimposed complex amplitude in hologram plane divided into two parts,
a real part and an imaginary part.
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Figure 3. Network structure and specific components of each module. (a) is the overall structure of the network, consisting
of (b) the downsampling module (D-part), (c) the residual module (R-part), (d) the upsampling module (U-part) and (e) the
convolution layer at the input and output layers. The data dimensions in each module are expressed as (height, width,
channel). A pair of numbers in the convolution layer, e.g., Conv (7, 1) indicates the size and step of the convolution kernel.

The network structure based on the structure of residual network [33]. It consists of
a convolutional layer, a downsampling module, a residual module and an upsampling
module, as shown in Figure 3a. Firstly, the network reduces the spatial dimension of the
cascaded input image by the downsampling module, while increasing the dimensionality
of the channels. After the downsampling module, the processed data immediately pass
through some residual blocks. Then, the original spatial dimensions of the image are recov-
ered by the upsampling module. Finally, the real and imaginary parts of the superimposed
complex hologram are obtained by the last two output branches. The size of the data after
each operation is indicated in brackets and each number in the brackets implies the height,
width and number of channels of the respective data matrix. The size of the input data is
512 × 512 (m × n) pixels, the number of convolution filters in the first layer is 128 (k) and
the number of residual blocks is 9 (P), as shown in Figure 3a.

The downsampling module, which is part D in Figure 3a, consists of a convolutional
layer, a batch normalization layer [34] and a rectified linear unit (ReLU) layer [35], as shown
in Figure 3b. The size and step length of the kernel are indicated by the numbers in the
convolutional layer frame, which means that the size of the convolutional kernel in the
downsampling module is 4 and the step length is 2. The residual module, which is the R
part in Figure 3a, consists of two convolutional layers, two batch normalization layers and
two rectified linear unit (ReLU) layers, as shown in Figure 3c. The residual module contains
a convolutional kernel with size of 3 and step length of 1. After one downsampling module,
the image size becomes half of the previous layer and the number of convolution filters
becomes twice the previous layer, as shown in Figure 3a. The size of the image and the
number of convolution filters do not change before and after the residual module.
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In addition, the network has problems such as unavoidable information loss during
the transfer of information between the convolutional layers, so a bypass branch [36,37]
is added to the residual module to protect the information integrity by transferring the
information from the input to the output and also simplifies the difficulty of the learning
target. The residual block has good effect on solving the problem of the gradient gradually
disappearing as the network goes deeper, which can make the network deeper while
preserving the original data information [33] and help the remaining learning of the
network. The upsampling module is shown in Figure 3d, which is the U part in Figure 3a.
The structure of upsampling module is similar to the downsampling module with an
additional interpolation layer to improve the resolution. In the upsampling module, the
convolution kernel size is 3 and the step length is 1. The image after an upsampling module
becomes twice the size of the previous layer and the number of convolution filters becomes
half of the original. Since the image has gone through two downsampling modules, it goes
through two more upsampling modules to restore the image to the original input size and
output the result.

Finally, a convolution layer (shown in Figure 3e) with a convolution kernel size of
7 and a step length of 1 is added at both the input and output layers that is the S part
in Figure 3a, as shown in Figure 3e, to recover the original size of the image and keep it
consistent with the input data. After the various parts of the network, the final output is
normalized, with a training result of an 8-bit gray-scale phase-only hologram.

2.4. Loss Function

For the loss function, the mean square error (MSE) and the mean absolute error (MAE)
are combined to measure the training effect and the algorithm performance. The MSE can
be used to represent the degree of image distortion and is used as a loss rating in many
images processing related fields with the expression:

EMSE =
1
M

M

∑
i=1

(
Ytrue,i −Ypred,i

)2
(6)

The MAE is used to express the sum of the absolute differences between the target
and predicted data. It can be measured as the average error size of the predicted data,
expressed as:

EMAE =
1
M

M

∑
i=1

∣∣∣Ytrue,i −Ypred,i

∣∣∣ (7)

where M is the total number of data, Ytrue is the target hologram and Ypred is the hologram
predicted by the network, which is the output of the network. In training, for outlier
data, the middle value will have better robustness than the mean value, so it is necessary
to introduce the mean absolute value error based on the mean square error to obtain a
more effective and stable output. When training the model, theoretically both of the above
equations will reach the minimum when the predicted value is exactly equal to the target
value. In all practical training, the ultimate goal is to find the point that minimizes the loss
function.

In summary, the complete loss function is the mean square error plus the average
absolute error after setting the weight, the weight is empirically set to 0.1 and the expres-
sion is:

Loss =
1
M

M

∑
i=1

[(
Ytrue,i −Ypred,i

)2
+ 0.1

∣∣∣Ytrue,i −Ypred,i

∣∣∣] (8)

In fact, no matter how accurate the algorithm is, it is a feasible approximation to
the real image and the approximation will always satisfy Loss > 0 in the real world.
Therefore, the algorithm is suitable to be used as a loss function for network training and
its performance can be quantitatively compared. This loss function is used in both the real
and the imaginary parts of complex hologram training process.
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3. Experiments and Results Analysis

For the holograms produced by the trained network, it is necessary to verify whether
it has the ability to reconstruct different images at the corresponding depths like the recon-
struction results of ground-truth CGHs and it is also necessary to compare whether the
two results are similar, so as to evaluate whether the network has effectively learned the
light propagation process of the iterative ASM. The algorithm is evaluated by actual experi-
mental conditions and the input image size to the network model is set to 512 × 512 pixels
and the depth planes are set to three. Considering various scenes, 10,000 groups of samples
were generated for training the network model and 5000 samples were generated for
testing. The input data are normalized to a range from 0 to 1, which is the basic feasibility
criterion that the target intensity distribution must satisfy to help the feature learning of
the network.

In the data generation, parameters were chosen to match with the optical reconstruc-
tion experiments. That is, the laser wavelength is λ = 632.8 nm and the pixel spacing of
hologram plane is 8 µm. The adjacent depth planes are separated by 1 mm and the number
of depth planes is set as three, that is, d1 = 98 mm, d2 = 99 mm and d3 = 100 mm.

The training results of the proposed method are compared with holograms generated
by other methods [24,30].

In this paper, the desired network is implemented in PyTorch 1.7.1 with CUDA 11.0
deep learning framework [38,39] using the programming language Python and the network
model is trained with an Nvidia GeForce RTX 3090 GPU. The multi-plane iterative ASM
was implemented using MATLAB. All methods are tested on an Nvidia GeForce RTX
3090 GPU.

3.1. Numerical Reconstruction
3.1.1. Single Planar Numerical Reconstruction

For the single planar numerical reconstruction, the images are used as a test set for a
network with one plane of input to obtain the hologram generated by the network. The
network-generated images and the reconstruction results are demonstrated by some simple
numbers, letters and processed handwritten digit data-sets (random handwritten digit
combinations) generated by MATLAB, as shown in Figure 4. The three images shown
in Figure 4a are composed of standard letters, standard numbers and handwritten digit
data-sets. The hologram in Figure 4b is the result calculated by the trained network; the
hologram generated using the network has a high accuracy comparable to existing iterative
ASM algorithm even after a large number of iterations. The numerical reconstruction
results are shown in Figure 4c and it is clearly seen that for simple images, the output
results of the network have a high quality comparable to the existing algorithms after
many iterations. The computational holograms based on the iterative ASM are shown in
Figure 4d and the numerical reconstruction results are shown in Figure 4e. We also use
recent method named holo-encoder [24] to generate and reconstruct the same image and
compare the image quality with our work, shown in Figure 4f,g.

To quantitatively validate the results in Figure 4, a test set of 5000 test samples (consist-
ing of the three types of images in Figure 4) is produced for simulating the average accuracy
of the results as well as their calculation times. These results are compared with the results
of the planar iterative ASM on the same test data-set with 10, 100, and 1000 iterations for
each sample. After calculation, the results of each evaluation index for the network and
the iterative ASM are shown in the following tables. Table 1 shows the average root mean
square error (RMSE), the average coefficient of determination (R2) and the average time
required (T in second) for the holograms generated by the two algorithms. Table 2 indicates
the evaluation parameters (PSNR and SSIM) of their corresponding reconstructed images.
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Figure 4. Hologram generation and reconstruction of planar images. Row (a) is the target image, row
(b) is holograms generated by network, row (c) is the reconstruction result of network, row (d) is
holograms generated by iterative ASM, row (e) is the reconstruction result of iterative ASM, row (f)
is holograms generated by holo-encoder, and row (g) is the reconstruction result of holo-encoder.
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Table 1. Performance evaluation of different methods based on simple images.

ASM (10) ASM (100) ASM (1000) Proposed Network

RMSE 0.3393 0.0996 0.0440 0.0492

R2 0.8637 0.9625 0.9910 0.9893

T (s) 0.1065 0.9326 9.1442 0.1889

Table 2. Performance evaluation of reconstruction results of different methods.

ASM (10) ASM (100) ASM (1000) Proposed Network

PSNR 7.5191 18.1646 25.2519 24.2920

SSIM 0.6591 0.7980 0.8306 0.8091

Table 1 shows the comparison of the results. In the conventional iterative ASM, all
the values of evaluation metrics of the images improve with the increase in the number
of iterations. The RMSE of the network results is slightly inferior to the results of 1000
iterations of the existing algorithm, but it is still much better than the results of 10 and 100
iterations; the coefficient of determination is comparable with the results of 1000 iterations,
but the hologram generation time of the network is in the same level of the time consuming
of using iterative ASM with 10 iterations. Meanwhile, the results from the comparison
of PSNR and SSIM prove that the network has a significant advantage in the quality
of reconstructed images. In summary, for simple planar images, the network generates
holograms that are faster than iterative ASM while ensuring high image quality.

Regardless of the algorithm used to generate the computational hologram, its accuracy
and speed depend on the image size. For the image size of 512 × 512 pixels, the calculating
times of the deep learning-based method and the iterative ASM for calculating a single
hologram with a computer with an Intel Core i9-10980XE processor, a clock frequency
of 3.0 GHz and a memory size of 32 GB are shown in Table 1. The time consuming for
calculating holograms is shorter in the proposed network method, which is about 50 times
faster than the iterative ASM at the same quality level; here, we do not consider that the
training time of the network is about 50 h. We compare with a recent related study (called
as holo-encoder) [24] and calculate the PSNR and RMSE of reconstructed images from the
phase hologram generated using a holo-encoder method. The PSNR is 23.3611 and RMSE
is 0.0548.

In summary, the simulation results show that the proposed network has the ability
to calculate the corresponding hologram with good imaging quality compared with the
iterative ASM and the proposed network can perfectly solve the built-in trade-off between
imaging quality and calculation speed.

3.1.2. Three-Dimensional Numerical Reconstruction

In order to realize the construction of 3D images, we train the network with three
input images located in different depth planes as a test group to obtain the hologram, as
shown in Figure 5a. The images “1”, “2”, and “3” are set in order of depth; that is, “1” is
closest to the hologram plane and “3” is furthest from the hologram plane (d1 = 98 mm,
d2 = 99 mm, d3 = 100 mm). The pixel size of each input image is set as 512 × 512 pixels.
Figure 5b,c shows the real and imaginary parts of the generated numerical 3D hologram.
The pixel size of the hologram is 512 × 512 pixels. The ground-truth 3D holograms with
these three images in the corresponding depths are also generated by using the multi-plane
iterative ASM.
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Figure 5. Diagram of generating holograms from input images using deep learning. (a) trained network, (b) real part of
hologram, (c) imaginary part of hologram.

Three images were reconstructed in three different depth planes from d1 to d3. The
values of wavelength and pixel spacing of hologram are the same as set in single planar
mode. The reconstructed images of the holograms from the multi-plane iterative ASM and
the network are shown in Figure 6. In order to more clearly compare the reconstruction
results of the images in the corresponding depth planes, the reconstruction results of
each image in the corresponding depth planes are enlarged, as shown in the second
column of Figure 6a–f. By comparing these reconstruction results, it can be seen that the
holograms generated by the network can reconstruct correct image in the corresponding
depth plane. The image quality is almost the same as the reconstruction results of the
holograms generated by the multi-plane iterative ASM.

In order to evaluate the reconstruction quality of the images and to compare the
differences between the focus plane and the unfocused plane in a better way, we introduce
contrast ratio (CR) as a parameter, which is calculated by the following formula:

CR = ∑
δ

δ(i, j)2Pδ(i, j) (9)

where δ(i, j) = |i− j| means the grayscale difference between adjacent pixels and Pδ(i, j)
means the pixel distribution probability that the grayscale difference between adjacent
pixels is δ. There are two ways to calculate the value of adjacent pixels: 4-adjacent and
8-adjacent. Here, we take 4-adjacent (each pixel only calculates the difference between the
top, bottom, left and right directions, the location of the border pixel cannot be taken as the
difference value of 0). The results in Figure 6 show that the image quality of the focused
plane is significantly better than the unfocused plane and the reconstructed image quality
of the network is comparable to iterative ASM.
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Figure 6. Comparison of numerical reconstruction results of multi-plane iterative ASM and network. Rows (a,c,e) are the
reconstructed image results of the network and the magnified images corresponding to the details; rows (b,d,f) are the
reconstructed image results of the multi-plane iterative ASM and the magnified details images. Three columns on the right
of Figure 6 are all magnification results corresponding to the individual digits in the reconstructed image.

The above numerical reconstruction results demonstrate that the 3D holograms gener-
ated by the network have the ability to reconstruct input images at different depths. Next,
its ability to recover grayscale images at specific depths is investigated and verified by fur-
ther numerical simulations. Its performance in complex input cases is verified by inputting
complex grayscale images. Figure 7 shows the numerical simulation reconstruction results
of the holograms calculated by the network under the new input data configuration. In
calculating the hologram, the network receives a set of inputs with three different depth
planes and calculates a hologram with multi-depth planes information. Each of these
depth planes has a complex image at a different location. Each row in Figure 7 shows the
reconstruction results based on the same complex image placed at different depth planes
and each column shows the reconstruction results of three different complex images of
different depth plane at the same depth plane. For example, Figure 7a shows the complex
image’s reconstruction results obtained at three different reconstruction distances from
98 mm to 100 mm which located in the d1 plane. Finally, by calculating the PSNR and
CR for all planes, we found that the hologram generated by the network can reconstruct
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the image clearly in the corresponding depth plane, although the reconstructed image is
slightly disturbed by speckle noise. The results also certify that the image quality of the
focused plane is significantly better than the unfocused plane.

Figure 7. Testing the reconstruction of hologram images after inputting complex images. Each of the three input planes
has a complex image at a different location, where the depth plane d1 is closest to the hologram plane and the numerical
reconstruction results are shown in rows (a,b,c) when the focusing plane is located in the depth planes d1, d2 and d3,
respectively. The PSNR and the CR in the corresponding focused depth plane are shown in the corresponding images.

3.2. Optical Reconstruction

To verify that the network-generated holograms have the ability to be reconstructed
optically as effectively as they are numerically, an experimental holographic display device
is built, as shown in Figure 8. A phase-only modulation type spatial light modulator (SLM)
with pixels of 1920× 1080 and pixel pitch of 8 µm is used. In addition, the distance between
the lenses in the optical imaging system is adjusted to precisely match the corresponding
reconstructed positions of the network-generated hologram so that the final hologram
plane can reproduce the reconstructed image with the same parameters as the network
input data. Optical reconstruction of the network-generated hologram and the hologram
generated using the iterative ASM is performed by using the holographic display setup
shown in Figure 8.
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Figure 8. Schematic diagram of the optical path used for optical reconstruction and the actual optical device. (a) shows
the schematic diagram of the optical path used for optical reconstruction; (b) shows the optical path system built with the
actual experimental setup for optical reconstruction.

The optical reconstruction results of the holograms generated by the two methods
for single plane images shown in Figure 4 are compared, as shown in Figure 9. Optical
reconstruction distance is set as 100 mm. The three images in row (a) respectively show
the optical reconstruction results of holograms obtained by the ASM for single standard
letters, numbers and multiple handwritten numbers, while row (b) shows the optical
reconstruction results of holograms obtained by the network for the corresponding images.
Moreover, row (c) shows the optical reconstruction results of holograms obtained by
holo-encoder for the corresponding images. As can be seen in Figure 9, all methods are
able to optically reconstruct the images with similar clarity. The proposed method has
convincing optical reconstruction results compared with the traditional iterative ASM and
the holo-encoder.
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Figure 9. Optical reconstruction results of single-plane simple images. Three images in row (a) are the reconstructed images
of the results obtained by the iterative ASM, row (b) is the reconstructed image of the results obtained by the network for the
corresponding image, and row (c) is the reconstructed image of the results obtained by holo-encoder for the corresponding
image.

Next, we obtain the optically reconstructed images for each depth plane (from d1 to
d3) and compare the results of the multi depths images. The distances of d1, d2, and d3 are
98 mm to 100 mm and the interval of each plane is 1 mm; the iterative ASM results for 1000
iterations and the test results for the network are shown in Figure 10. The columns (a),
(c) and (e) in the figure show the optically reconstructed images of the network and their
corresponding magnified images of the focused plane information; the columns (b), (d) and
(f) show the optically reconstructed images of the iterative ASM and their corresponding
magnified images of the focused plane information. By comparing the results in the first
row of Figure 10, it can be seen that the holograms generated by the network also have the
ability to reconstruct clear images in the corresponding depth planes, as the holograms
generated by the conventional iterative ASM. Furthermore, the results in the second row
of Figure 10 verify that the holograms generated by both methods can obtain similarly
sharp optical reconstruction results in the depth plane of focus. Thus, it is experimentally
confirmed that the holograms generated by the network can be optically reconstructed and
obtain similar results as those generated by the iterative ASM.
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Figure 10. Comparison of optical reconstruction results of iterative ASM and network. Columns (a,c,e) are the optically
reconstructed images of the network and their corresponding magnified images of the focused plane information; columns
(b,d,f) are the optically reconstructed images of the iterative ASM and their corresponding magnified images of the focused
plane information.

3.3. Generalizability Test

A network model is considered generalizable when it does not overfit the data-set in
which it is trained and is able to calculate accurate results that are not from the data-set.
By this definition, if the model trained with random scatters in this paper can calculate
non-scattered and equally high-quality holograms and reconstruction results, it can show
that the network in this paper is generalizable.

Generalizability is a very valuable feature of current neural network algorithms,
especially for real-world experimental needs, where each class of images has its own
unique and distinctive characteristics. Training a specific model for each class of samples is
obviously inefficient and time-consuming.

To evaluate the generalizability of the network, we generate and compare the accuracy
of the model tested on different types of data. In this paper, numbers, letters and complex
images mentioned in Sections 3.1.1 and 3.1.2 are used as test sets. The results for simple
images are shown in Tables 1 and 2, while the performance evaluation of reconstruction
results for 5000 test samples with data types of complex images (such as the effective multi
depth planes images in Figure 7) is shown in Table 3. When testing the model on different
type of test data-sets, the accuracy of the network is slightly reduced, especially for the case
of complex images due to the presence of numerous noise and detail features, which makes
both SSIM and PSNR decrease compared to simple images. However, the accuracy is
still very advantageous compared to conventional algorithms, which further validates the
generalization of the proposed network and perfectly illustrates the generalization of the
mapping that the network learned from the random dots and rectangular blocks (different
size, density and gray scale) data-set for generating high-quality holograms of completely
different nature. The holograms generated by the network as well as the reconstructed
images seem almost the same in image detail with the results obtained with iterative ASM,
the speed of the proposed network has a considerable advantage over iterative algorithms
and it has potential applications in special situation requiring real-time responses.

Moreover, for some specific applications, it is possible to purposefully select suitable
specific data types as training sets and adjust the loss function to output specific results,
thus allowing the network to have performance improvements for specific applications at
the cost of generalizability.
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Table 3. Performance evaluation of reconstruction results based on complex images.

ASM (10) ASM (100) ASM (1000) Network

RMSE 0.3134 0.1239 0.0506 0.0572

R2 0.6081 0.7719 0.8737 0.8413

PSNR 8.2088 16.2694 24.0398 22.9885

SSIM 0.5942 0.6527 0.7209 0.6854

4. Discussion

The problems to be further investigated in this paper focus on the reconstruction of
more complex holograms and the number of depth planes. Since the neural network is
more focused on solving the same kind of problems, the results may deviate more when
the input images are somewhat different from the training set. The results in scenarios such
as image occlusion or scatter reduction are some of the problems that have not yet been
taken into account. However, with the development of network structure and training
strategy as well as the deepening of the degree of knowledge between deep learning and
optical problems, these problems are expected to be solved in the future. As for the depth
plane problem, currently the experimental workstation GPU is almost completely occupied
when the depth plane is three, but it is possible to make the network learn more depth
planes by adjusting the network structure and using hardware with more computational
power. As a result, the network can learn the rules of wavefront propagation in the future,
achieving the ability to generate multi-depth holograms more efficiently than traditional
iterative methods. Even more realistic reconstructed objects can be achieved if enough
depth planes are learned, which will have more advantages in the future.

5. Conclusions

This paper presents a method for computing 3D phase-type holograms based on
deep learning, which can be used to solve the problem of generating accurate planar
or 3D holograms faster compared to traditional iterative ASM. An effective network
training strategy is developed while setting up a network with a structure consisting of a
downsampling module, a residual module, and an upsampling module. Instead of using
a training data-set of random dots, the network combines various types of data-sets to
optimize the reconstructed images simultaneously. In addition, intermediate variables
are used as target data in the training process to make the training more efficient and
to improve the robustness by adding random phases to the input data. The network
is able to reconstruct high-quality images in the corresponding depth plane with some
generalization through numerical simulations and optical reconstruction. However, this
paper is currently limited to discussing the generation of equally spaced holograms with at
most three planes. The problems of hologram occultation ratio, the effect of scattering on
imaging quality during photoelectric reconstruction (loss of image details) and training
holograms of more depth planes have not been studied. However, with the development
of the network structure and further research on the network parameters, all of these
problems are expected to be solved in the future.
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