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Abstract: Through a computational model, we study the coherence converting capabilities of an array
of holes in a surface plasmon-supporting metal plate, with an eye towards the creation of controlled
coherence plasmonic light sources. We evaluate how the average coherence and transmission of
the hole array depends on the parameters of the array, such as the array geometry, lattice constant,
and hole size. We show that the location of coherence bandgaps and resonances can be estimated
through a simple formula and that increases in coherence are strongly correlated with increases
in transmission.

Keywords: plasmonics; coherence; structured light

1. Introduction

In recent years, the properties of propagating surface charge density waves on some
metals, known as surface plasmon polaritons (SPPs), have proven useful in a wide array of
applications. They are very sensitive to the local refractive index and have been used for the
detection of individual living cells [1], the development of lab-on-a-chip devices [2], and
disease detection [3]. SPPs also have a wavelength shorter than the free-space wavelength,
and they strongly confine light near the surface of the metal, making them useful for
focusing beyond the diffraction limit [4]. SPPs generated on metal films perforated by
arrays of sub-wavelength diameter holes have been used in a number of applications,
including in the design of a form of e-paper [5] and in enhancing the photon-to-electron
conversion efficiency of semiconductors [6].

The recent explosion of interest in SPPs can be traced to studies of their effects in such
subwavelength hole arrays. In 1998, Ebbesen et al. demonstrated [7] that much more light
can be transmitted through such arrays than conventional diffraction theory predicts, a
phenomenon connected with SPPs. A theoretical and computational analysis several years
later showed that SPPs can enhance or suppress the transmission of light, depending on the
properties of the array and the illuminating light [8]. This extraordinary optical transmission
has been studied extensively and has found many uses [9].

When the field illuminating a hole array is partially coherent, SPPs can not only
improve the transmission of light through the array but also modify the spatial coherence
of light on transmission. This was first shown by Gan et al. [10] and was experimentally
demonstrated soon afterward [11]. It has long been known that many important properties
of a light field, such as the directionality [12], spectrum [13], degree of polarization [14,15],
and state of polarization [16], can be strongly influenced by the spatial coherence properties
of light, making devices that can manipulate the spatial coherence of great interest. The
coherence modulation ability of plasmonic arrays led to a proposal [17] to use such an
array to convert the coherence of a transmitted beam to a desired state.

Such a device could be extremely beneficial in designing structured light beams [18],
i.e., light beams that have had their amplitude, phase, polarization, and coherence character-
istics tailored for a particular application. Structured light has been proposed as a method
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to improve the robustness and channel capacity of free-space optical communication [19],
where atmospheric turbulence has a strong effect. In particular, partially coherent fields in
the atmosphere have been shown to have reduced fluctuations of intensity, reducing the
bit-error rate of data transfer accordingly [20]. However, standard methods for adjusting
spatial coherence, such as spatial light modulators or rotating ground glass plates, are
either too slow to be effective for free-space communication or do not have an adjustable
degree of coherence; the latter ability is necessary because the optimal spatial coherence
depends on the turbulence channel.

The coherence converting plasmonic array proposed in Reference [17] could poten-
tially overcome these limitations: its speed would come from the inherent fluctuations
of the illuminating field, and its wavelength sensitivity allows tunable coherence over a
small range of wavelengths. However, the previous work left many practical questions
unanswered, such as how the output coherence depends on the system parameters and
how the transmission is related to the output coherence. Some of these questions were
examined in Reference [21] but only for one-dimensional hole arrays.

In this paper, we perform a detailed study of the coherence converting capabilities
of plasmonic hole arrays, looking at the transmission of the arrays as well as their global
coherence and determining the effect of the system parameters on the output coherence.
By introducing a global coherence parameter, we show that the resonance and bandgap
locations of such two-dimensional plasmonic hole arrays can be predicted with relatively
simple equations. Furthermore, we show that increases in coherence are strongly correlated
with the increase in transmission. This work, and the model used to generate our results,
provides guidelines and possible future steps in designing controlled coherence plasmonic
sources for structured light applications.

2. Review of the Model

To simulate the controlled coherence plasmonic source, we employ the scalar model
first introduced in Reference [17], with the modifications that were introduced in Refer-
ence [21]. We consider a free-standing gold film of subwavelength thickness suspended in
free space perforated by a periodic array of holes of subwavelength diameter; the holes are
typically separated by a distance of several wavelengths, as depicted in Figure 1. We take
the film to lie in the z = 0 plane.

Plasmon-mediated coupling

z = 0

Output field with spectral
degree of coherence µf

Input field with spectral
degree of coherence µ0

x

y

Figure 1. Cut-away view of a gold film in the z = 0 plane demonstrating the plasmon coherence
conversion process. Note that the field in the input plane is the same throughout the plane; the
different colors on the arrows indicate which hole they are incident upon. From Reference [22]. Used
with permission.
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A partially coherent light field with spectral degree of coherence µ0(r1, r2) between
pairs of points r1 and r2 is incident on the film from the z < 0 side. Upon contact with
the film, light striking a hole will partially transmit directly through the hole to the z > 0
side of the film, but it will also create a surface plamon polariton (SPP) wave, which will
propagate away from the hole. As each SPP strikes another hole, it can either scatter
into another SPP or decouple from the surface and be transmitted through the hole to
the z > 0 side as a light wave. A study of a three-slit Young-style experiment with SPPs,
applying an exact solution of Maxwell’s equations, demonstrated that the middle slit does
not prevent SPPs from propagating between the outer holes [23], so we do not expect that
the holes in our two-dimensional array will significantly obstruct SPPs. The end result is
that the light being emitted from any given hole on the z > 0 side will be a combination
of light originally incident upon that hole and light incident upon the other holes in the
array. This transmitted light will have new correlations introduced during the plasmon-
mediated coupling process and so will have a new spectral degree of coherence µ f (r1, r2)
at the output.

This model may be broadly broken into two parts: the mathematical description of a
partially coherent Schell-model wave as an incoherent superposition of plane waves, and
the exact scattering and transmission model for a coherent plane wave illuminating the
hole array. We describe each of these in turn.

2.1. Coherence Model

We take our input field to be a quasi-monochromatic scalar field with central wave-
length λ0 and with Gaussian-Schell model coherence. A Gaussian-Schell model field will
have a spectral degree of coherence µ0(ρn, ρm) between two points ρn and ρm that depends
only on their separation |ρm − ρn| in the form

µ0(ρn, ρm) = exp

(
−|ρm − ρn|

2

2δ2

)
, (1)

where δ is the transverse correlation length. Taking the field to have a uniform spectral
density S0 in the z = 0 plane, the cross-spectral density of the field may be written as

W0(ρn, ρm) = S0µ0(|ρm − ρn|). (2)

This cross-spectral density can expressed in a helpful form by writing the spectral
degree of coherence µ0(ρn, ρm) in terms of its Fourier transform µ0(|ρm − ρn|), i.e.,

µ̃0(k) =
1

2πδ2
k

exp

(
−|k|

2

2δ2
k

)
, (3)

with δk := 1/δ.
The cross-spectral density then becomes

W0(ρn, ρm) =
∫∫ ∞

−∞
µ̃0(k)S0eik·(ρm−ρn)d2k. (4)

It is to be noted that Equation (4) describes the cross-spectral density as an incoherent
superposition of plane waves φk(ρ), defined as

φk(ρ) :=
√

S0eik·ρ . (5)

With this definition, we may write

W0(ρn, ρm) =
∫∫ ∞

−∞
µ̃0(k)φ∗k(ρn)φk(ρm)d

2k. (6)
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Equation (6) is analogous to a coherent-mode representation [24] of the cross-spectral
density of the field on the illuminated side of the film. In a formal coherent-mode expansion,
the field is expanded into an incoherent superposition of square-integrable modes that are
orthogonal over the domain of interest. In this case, it represents the illuminating field
as an incoherent superposition of plane waves that are orthogonal over the z = 0 plane.
Each of these plane waves acts as a coherent monochromatic wave and may be propagated
individually through our plasmonic system. On the dark side of the metal plate, the modes
will remain incoherent, so the cross-spectral density can be written as

W f(ρn, ρm) =
∫∫ ∞

−∞
µ̃0(k)ψ∗k(ρn)ψk(ρm)d

2k, (7)

where ψk(ρ) is the field of the kth mode on the dark side of the film. The output spectral
degree of coherence is therefore obtained from the expression,

µ f(ρn, ρm) =
W f(ρn, ρm)√
S f(ρn)S f(ρm)

, (8)

with S f(ρm) = W f(ρm, ρm) being the spectral density at the position ρm.
To find the output coherence of the field, we therefore propagate the individual plane

wave modes φk(ρm) through our system to produce the output modes ψk(ρm); we then
combine those modes using Equations (7) and (8). The modes ψk(ρm) are determined by a
multiple scattering model, which we consider next.

2.2. Plasmon Scattering Model

To study the interactions of light and SPPs with an array of subwavelength-size holes,
we employ a Foldy–Lax model [25,26] of SPP scattering on the metal surface, which takes
into account multiple scattering of SPPs by holes. In this model, the Green’s function for
two-dimensional wave propagation is used to describe the propagation between holes;
asymptotic boundary conditions are automatically included in the Green’s function. This
model may be arranged as follows.

Upon striking a hole at position ρn, light may be reflected, directly transmitted through
the hole, or converted into an SPP. We neglect the reflected light and imagine that the output
mode ψk(ρn) consists of some fraction α of the mode φk(ρn) that has propagated directly
through the hole, and contributions from surface plasmons that have propagated from all
other holes. The output mode at ρn is thus

ψk(ρn) = αφk(ρn) + Ψ(ρn), (9)

where Ψ(ρn) is the SPP field from the other holes, written as

Ψ(ρn) := β(a, λ0)
N

∑
m=1,m 6=n

G(ρn, ρm)ψk(ρm). (10)

Here, β(a, λ0) is an electromagnetic scattering parameter and G(ρn, ρm) is the 2D
Green’s function representing the plasmon wave propagating from ρm to ρn,

G(ρn, ρm) :=
i
4

H(1)
0
(
ksp|ρm − ρn|

)
, (11)

where H(1)
0 is the zeroth-order Hankel function of the first kind. The quantity ksp is the

surface plasmon wavenumber,

ksp(λ0) = k0

√
ε0εm(λ0)

ε0 + εm(λ0)
, (12)
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ε0 is the dielectric constant of free space, εm(λ0) is the dielectric constant of the metal, and
k0 = 2π/λ0.

The scattering parameter β(a, λ0) represents the strength of SPP scattering by a hole,
and it depends on the hole radius a and the center wavelength λ0. The derivation of β(a, λ0)
is somewhat lengthy; full details can be found in Reference [17]. In that reference, the
cylindrical holes in the film are modeled as spherical holes in a metal background, resulting
in a scattering strength of

β(a, λ0) ≈
(

2πa
λ0

)3∣∣∣∣ 1− εm(λ0)/ε0

1 + 2εm(λ0)/ε0

∣∣∣∣. (13)

Because the holes are taken to be subwavelength in size, it is expected that there will
be little quantitative difference in modeling cylindrical holes as spherical cavities.

We note that the assumptions in the derivation of β(a, λ0) mean that our film is
assumed to be about as thick as the hole diameter. Additionally, we note that we are
treating the holes as point scatterers since they are assumed to be of sub-wavelength size
and to be separated by multiple wavelengths. We restrict ourselves to the case when the
distance between neighboring holes is less than the SPP propagation length to ensure that
SPPs actually provide an interaction between holes.

To model the wavelength dependence of εm(λ0), we use the critical points model
described in References [27,28], which describes the metal’s dielectric function as

εm(λ0) =ε∞ −
1

λ2
p(1/λ2

0 + i/γpλ0)

+
2

∑
n=1

An

λn

[
eiφn

(1/λn − 1/λ0 − i/γn)
+

e−iφn

(1/λn + 1/λ0 + i/γn)

]
,

(14)

where λp is the plasma wavelength, λn is the interband transition wavelength, γp and γn
are damping terms, and An is an amplitude. Values used in Equation (14) for gold can be
found in Table 1.

Table 1. Values for gold for Equation (14).

Parameter Value [28]

ε∞ 1.54
λp 143 nm
γp 14,500 nm
A1 1.27
φ1 −π/4 rad
λ1 470 nm
γ1 1900 nm
A2 1.1
φ2 −π/4 rad
λ2 325 nm
γ2 1060 nm

The final expression for the output modes is

ψk(ρn) = αφk(ρn) + β(a, λ0)
N

∑
m=1,m 6=n

G(ρn, ρm)ψk(ρm). (15)

This represents a system of N equations in N unknowns,

U = αU(0) + β(a, λ0)GU , (16)
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where

U(0) := [φk(ρ1), φk(ρ2), . . . , φk(ρN)]
T, (17)

U := [ψk(ρ1), ψk(ρ2), . . . , ψk(ρN)]
T, (18)

where the superscript T denotes matrix transposition, and

G :=


0 G(ρ1, ρ2) . . . G(ρ1, ρN)

G(ρ2, ρ1) 0 . . . G(ρ2, ρN)
...

...
. . .

...
G(ρN , ρ1) G(ρN , ρ2) . . . 0

. (19)

We note that the diagonal elements of G are set to 0 since the plasmon waves do not
self-interact. Formally, we can obtain the output modes ψk(ρ) using matrix inversion,

U = α[I − β(a, λ0)G]−1U(0), (20)

or we may determine U from Equation (16) using any technique for solving a linear system
of equations.

2.3. Average Coherence and Transmittance

Quantifying the transmittance of a plasmonic hole array and the output coherence of
such an array presents significant challenges. Though the input spectral density is constant
and the input spectral degree of coherence is homogeneous and can be characterized by
a single parameter δ, neither of these properties hold for the transmitted field. Both the
transmission and the spectral degree of coherence of the output depend on the hole or holes
they are measured at, and so we must introduce quantities that characterize the behavior
of the output as a whole.

The normalized transmission of light T(ρ) through a single hole can be defined as

T(ρ) =
S f(ρ)

S0(ρ)
. (21)

In defining an averaged transmittance, we first note that the transmittance, as defined
in Equation (21), will always be scaled by α2 in the numerator; this can be seen from
Equation (20). However, α is expected to be a slow function of λ0, whereas transmittance
is a fast function of λ0, so we do not expect the value of α to make any significant change
to the transmittance value. Since we want to compare how transmittance and coherence
change together as a function of wavelength, we can focus on the qualitative changes to
these quantities. Therefore, we elect to scale out α by defining a scaled transmittance Ts:

Ts(ρ) :=
T(ρ)

α2 . (22)

We then define the averaged transmittance Tavg
s across all holes in the array as

Tavg
s :=

1
N

N

∑
n=1

Ts(ρn). (23)

Since coherence is defined in terms of pairs of holes, we define the averaged coherence
across all pairs of holes in the array, M f , as

M f :=
1
N

N

∑
n=1

1
N − 1

N

∑
m=1,m 6=n

∣∣∣µ f(ρn, ρm)
∣∣∣. (24)
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We use M0 to represent the average coherence of the field illuminating the holes right
before the gold film. In general, µ f is a complex number; in Equation (24), we use |µ f |
to avoid misleading low averages due to terms that are out of phase. We do not sum
over m = n because |µ f | = 1 for m = n by definition. The value of α does not affect the
spectral degree of coherence, since α is present in both the numerator and denominator of
Equation (8).

3. Results and Discussion

As has been shown in previous work [17,21] and will be seen in the results to come,
spatial coherence is typically enhanced over very narrow wavelength ranges that corre-
spond to plasmon resonances in the period hole array. We envision designing a controlled
coherence plasmonic light source such that the operating wavelength is near one of these
resonances, allowing the spatial coherence to be dramatically changed with a small change
in the center wavelength. With this in mind, we examine the effect of array shape, hole
spacing, hole diameter, and number of holes on the average transmittance and coherence
of the device.

We consider two kinds of arrays, as shown in Figure 2: square arrays and triangular
arrays. Both are periodic with lattice constant d. We define both arrays in terms of the
number of holes along the vertical axis, Ns. A square array is simply defined as an array
with Ns holes on each side. For the triangular array, we define the array to have Ns
horizontal rows of holes, where the bottom row has Ns holes and the row above has Ns − 1
holes. The rows then alternate up the array between having Ns holes and Ns − 1 holes.
Defined this way, both kinds of arrays will have approximately N2

s holes; specifically, the
number of holes in a triangular array is

Ntriangular =

⌈
Ns

2

⌉
Ns +

⌊
Ns

2

⌋
(Ns − 1), (25)

where de and bc are the ceiling and floor operators, respectively.

Figure 2. Example geometries of periodic square and triangular arrays of holes of radius a, with
lattice constant d, with Ns = 6.

For these periodic arrays, there are three physical parameters we vary: the lattice
constant d, the hole radius a, and the array size Ns. For all simulations, we set δ = 1000 nm.
Unless stated otherwise, the values for the other parameters when held fixed are Ns = 6,
d = 1000 nm, and a = 200 nm.
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3.1. Changing Lattice Constant d

The lattice constant will determine the wavelengths at which the spatial coherence
has resonances and at which it has coherence bandgaps, broad spectral regions where
M f ≈ M0, as the point of this proposed device to cause significant coherence changes over a
small variation in wavelength. The work in Reference [21] explored coherence bandgaps in
one-dimensional linear arrays; the authors showed that bandgaps and resonances depend
on λ0 and d and that they could occur when

R
{

ksp
}

d = ν2π, (26)

where ksp is the surface plasmon wavenumber given by Equation (12),R{·} denotes the
real part, and ν2 is an integer. Bandgaps (resonances) can occur at wavelengths with odd
(even) values of ν2. This simple relation worked well for the 1D linear arrays considered
in Reference [21], but may not hold as well when considering 2D arrays, where distances
between holes are not all integer multiples of d.

In Figure 3, we plot the averaged coherence and transmittance of arrays with varying
d from 850 nm to 2000 nm. Looking at the coherence of both arrays in Figure 3a,b, we can
see that there are “bands” of high coherence and of low coherence that approximately
follow the lines of constant ν2. For both arrays, the ν2 = 3 and ν2 = 5 lines are local minima
of fairly low value and are therefore likely to be bandgaps. It is not clear if the ν2 = 4 line is
a maximum or minimum; we will plot some cross-sections shortly to examine this in more
detail. Interestingly, the ν2 = 6 line is a local maximum (though a low-valued one) for the
square array, but it is a local minimum for the triangular array.

In Figure 3b,d, we can see that the transmittance follows the coherence closely; in fact,
the logarithm of the transmittance has almost exactly the same shape as the coherence.
This agrees with our argument that the increase of spatial coherence is an SPP resonance
effect connected to the extraordinary transmission of light.
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Figure 3. Averaged coherence and transmittance of square and triangular hole arrays, varying lattice
constant d. Here, Ns = 6, a = 200 nm, and δ = 1000 nm. Note the logarithmic scale for transmittance.
(a,b) are results for the square array, while (c,d) are the results for the triangular array.

In Figure 4, we show the averaged input and output coherence for both array types
for several characteristic values of d. In Figure 4a,b, where ν2 = 3, we can see that M f
has coherence bandgap behavior for the triangular array: it is flat and approximately the
value of M0. This is not quite the case for the square array, which has low M f near ν2 = 3,
but not flat or near M0. Figure 4c,d shows that both arrays have resonances near ν2 = 4,
especially the square array, which has a broader series of peaks about that wavelength.
We can see the ν2 = 5 line in Figure 4e,f. For both arrays, we have low coherence around
ν2 = 5, though it is not quite clear whether either is a bandgap. Figure 4g,h shows the
ν2 = 6 line, and we can see that the spatial coherence is low there.

It is to be noted that the global changes in coherence can be very large, even over a
relatively small range of wavelengths. In Figure 4c,d, for example, the average output
coherence is nearly unity at λ0 = 620 nm, even though the input coherence is low. It is to
be stressed again that this is a global change in coherence, averaged over the whole array.
In Figure 4d, we can see that the output coherence is almost unity over a peak centered on
λ0 = 720 nm with a peak width of only 10 nm. These results illustrate that it should be
possible to make a device that can have large changes in global spatial coherence over a
very short range of wavelengths.

Taken together, Figure 4 illustrates that 2D arrays have a richer and more complicated
coherence structure than 1D arrays. However, the results indicate that Equation (26) gives
a good qualitative description of key coherence features, and could be used as a first step
in designing a coherence converting device.

It should further be noted from Figure 4 that the output coherence never drops below
the input coherence. This is in stark contrast to the two slit case considered in Reference [10],
where the output coherence could be greater or less than the input. Evidently, it is not
typical for a suppression of spatial coherence via SPPs when a large number of holes
are involved.
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Figure 4. Averaged output and input coherence of square and triangular arrays for a few values of d.
Here, Ns = 6, a = 200 nm, and δ = 1000 nm. (a), (c), (e) and (g) are for the square array, while (b),
(d), (f) and (h) are for the triangular array.

3.2. Changing Array Size Ns

To create a global change of the state of coherence of a light beam, a controlled coher-
ence plasmonic source must have holes over the entire cross-section of the illuminating
beam, which would suggest dozens or even hundreds of holes. We next examine the effect
of increasing Ns to get a sense of the limiting behavior as the array grows.

In Figure 5, we plot M f and M0 for several values of Ns. There are two key observa-
tions. First, it is noteworthy that, when ν2 = 3, the triangular arrays have the expected
bandgap, while the square arrays do not. The larger square arrays have regions at about
λ0 = 650 nm and λ0 = 760 nm, where the coherence rapidly drops to a low value; these
regions do not correspond to any value of Equation (26), but may be bandgaps associated
with propagation lengths between non-nearest neighbor holes in the array. Second, while
the output coherence changes drastically as Ns increases from Ns = 6 to Ns = 14, it does
not change significantly from Ns = 16 to Ns = 20. Because the SPPs have a finite prop-
agation distance, there is a limit to how far they can create interactions between distant
holes. Figure 5 suggests that increasing the array size beyond a certain threshold does not
qualitatively change the resonance behavior.
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Figure 5. Averaged output and input coherence of square and triangular hole arrays, varying Ns.
(a–j) Here, d = 1000 nm, a = 200 nm, and δ = 1000 nm.

3.3. Changing Hole Radius a

The hole radius affects the electromagnetic scattering parameter β, as shown in
Equation (13), which in turn determines the overall strength of the light-plasmon coupling.
Increasing a, at least within the limits of our small hole approximation, should therefore
increase the coupling and thus cause greater changes in the output coherence.

In Figure 6, we show the average coherence and transmittance of arrays upon varying
a from 80 nm to 250 nm. We can see in Figure 6a,c that, M f is relatively low for a < 150 nm.
After that threshold, resonance features appear and become increasingly more common.
This matches our expectation that increasing a results in stronger light–plasmon coupling,
which causes the output coherence to differ significantly from M0. In this configuration,
we have M0 ≈ 0.110 for the square array and M0 ≈ 0.135 for the triangular array. It is
noteworthy that none of the coherence peaks are on the ν2 = 3 line; this is consistent
with bandgap behavior. Figure 6b,d show that again that the coherence and transmittance
coincide well.
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Figure 6. Averaged coherence and transmittance of square and triangular hole arrays, varying hole
radius a. Here, d = 1000 nm, Ns = 6, and δ = 1000 nm. Note the logarithmic scale for transmittance.
Here (a,b) are for the square array, while (c,d) are for the triangular array.

3.4. Correlation Between Coherence and Transmittance

Finally, as we noted in Figures 3 and 6, there is a strong correlation between the
averaged coherence and transmittance. We quantify this relationship by introducing a
correlation coefficient between them,

r =

∫
λ0

(
M f −M f

)(
Γ− Γ

)
dλ0[∫

λ0

(
M f −M f

)2
dλ0

]1/2[∫
λ0

(
Γ− Γ

)2dλ0

]1/2
, (27)

where
Γ := log10

(
Tavg

s

)
. (28)

We use the logarithm of Tavg
s instead of using Tavg

s directly, both because of the wide
range of values involved and because we have been plotting Tavg

s on a logarithmic scale
anyway, so this calculation of r can correspond to what we have been observing in plots.
In Figure 7, we plot r as a function of Ns, d, and a for both array types. We can see that
this calculation confirms our observation that coherence tends to correspond well with
transmittance.

The correlation between these quantities represents a limitation of such a controlled
coherence light source, as it suggests that a low coherence state will have a lower through-
put than a high coherence state; an ideal source will have the same intensity for every
state of coherence. It is to be noted that the correlation is lower for a square array than a
triangular array, which may make the former a better choice for a device.
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Figure 7. Correlation between averaged output coherence, M f , and the logarithm of the averaged
transmittance, Γ. (a) Correlation versus number of holes, (b) correlation versus lattice constant d, and
(c) correlation versus radius a.

4. Concluding Remarks

In this work, we have used simulations to study the effect of array size, lattice constant,
and hole radius on the output coherence and transmittance of square and triangular
plasmon-supporting hole arrays. These simulations have shown that it is possible to create
very large changes in spatial coherence over a small range of wavelengths and that the
field can be made almost fully coherent in some cases, even though the incident field has
very low spatial coherence. This suggests that it is feasible to design controlled coherence
plasmonic light sources. It is to be noted that the output coherence is never lower than
the input coherence, suggesting that the most versatile source will be one where the hole
array is illuminated by a low coherence field, and the coherence is tuned upwards using
plasmonic effects.

We have restricted ourselves to periodic arrays in this paper for simplicity, which
allows us to use Equation (26) to roughly predict the position of resonances and bandgaps.
However, one expects even richer behavior if more complicated patterns of holes are used.
It is also to be noted that the choice of hole positions could be used to change the average
intensity and phase of the output field, to create structured light beams.

In this paper, we have used a scalar model to describe plasmonic waves, which
neglects polarization effects that could be used as another method for controlling the spatial
coherence. It is worth noting that there have been several studies of the physics of partially
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coherent surface plasmons that could be helpful in developing a full electromagnetic model;
see, for instance, References [29–31].

The correlation between coherence and intensity is a significant limitation of the
current hole arrays. This could be partially solved by using a hole array in a reflection
geometry instead of a transmission geometry. Then, the plasmons generated on the
illuminated side of the plate would contribute to modifying the coherence of the reflected
light beam. This approach would likely result in less extreme changes in spatial coherence
but also smaller variations in the intensity of the source.

In this paper, we have focused on the changes in coherence for a gold film. It is clear,
however, that analogous effects will arise for other plasmonic metals. The plasmon wave-
length of the metal will determine the locations of the special features, as in Equation (26),
while the propagation length will affect the strength of the resonances. Plasmons that can
propagate several lattice constants will produce stronger resonance and bandgap effects
than those that decay after propagating a distance of a single lattice constant.
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