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Abstract: Optical generation of high-order harmonics is a prototypical example of nonlinear light–matter
interactions in the high-field regime. Quantum optical effects have recently been demonstrated to have
a significant influence on this phenomenon. These findings underline the importance of understanding
the dynamics of the quantized electromagnetic field during high-order harmonic generation. In the
following, we discuss the challenges that are related to the theoretical description of this process and
summarize the results that were obtained using the high-field, multimode generalization of well-known
quantum optical models that are based on the concept of the two-level atom.

Keywords: high-order harmonic generation; quantum optics; high-field phenomena

1. Introduction

High-intensity electromagnetic radiation is effectively described via time-dependent
classical fields, i.e., using a model without the concept of photons. The reason for the valid-
ity of this approximation is related to the number of photons: While, e.g., for fundamental
cavity QED experiments, the average photon numbers can be close to unity [1], a strong
laser pulse can correspond to 1015 photons. Clearly, in this case, the absorption or scattering
of a few photons is relatively negligible. When the initial laser pulse is considerably attenu-
ated as a consequence of an interaction with matter, the usual rule of thumb also applies
for the large number of the ”missing photons” calling again for a classical description.

On the other hand, the intensity of the exciting field can induce strongly nonlinear
processes, like the generation of high-order harmonics (HHG) [2–6]. This is a phenomenon
that is important not only from a fundamental point of view, but also has practical applica-
tions, e.g., in the generation of ultrashort pulses [7]. However, the efficiency of the HHG
process is very low, resulting in low photon numbers in the harmonic modes. This implies
that the quantum optical description (photon picture) can be relevant for these modes.
This picture—once completed—would allow a deeper understanding of the underlying
physical processes and eventually lead to more efficient applications.

Considering the quantum optical description of high-field processes, the first fully-
quantized, non-perturbative treatment of HHG in the nonlinear Compton process has been
given in [8]. Nonrelativistic description of a charged particle interacting with a quantized
mode was also discussed in the early 1980s [9]. Quantum mechanical transitions between
quantized Volkov states were shown to lead to HHG in atoms [10,11]. More recently, an
interesting relation between the photon number distribution of a laser pulse after the
interaction with matter and the HH spectrum has been pointed out in [12]. Fingerprints
of the HH process in the statistics of the ”missing photons” have already been identified
using both gaseous [13] and solid state targets [14]. Reference [15] introduces the concept
of measurement (post-selection) and claims that the process of HHG changes the initially
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coherent state of the exciting field into a Schrödinger-cat-type state. In Reference [16], a
general perturbative approach was presented.

Realistic theoretical models should reproduce the well-established experimental find-
ings, such as the qualitative properties of the HHG spectra, which means the appearance
of well-defined peaks at integer multiples of the central frequency of the excitation. The
heights of these peaks decrease suddenly with increasing frequency (HH order), then a
plateau region with comparable peak heights follows, and finally, an intensity-dependent
cutoff (when the HH peaks vanish) is observed. Besides this elementary requirement, there
are also numerous interesting questions a theoretical model can answer. These include (in
increasing order of difficulty to answer):

• Photon statistics of the HHG modes: photon number expectation values and higher
momenta as well. This allows the characterization of the modes, the determination of
their bunching/antibunching properties and possible nonclassicality.

• Back-action of the HHG process on the photon statistics of the exciting mode(s). This
would allow investigating the statistics of the HHG-related ”missing” photons.

• Photon number cross-correlations between different HH modes.
• Entanglement between different HH modes. At the time being, there is no experimen-

tal evidence for the existence of such strong, purely quantum mechanical correlations.
However, since entanglement can be a potential resource for state preparation, it is
important to clarify this question.

• Possible quantum mechanical entanglement between the state of the material system,
the HH modes and the exciting mode(s) have similar relevance.

• Correlations between different emitters in a multiatomic sample; propagation effects
on the quantized level.

Clearly, knowing the time evolution of the complete system, all these questions can
be answered. However, the related numerical problem is computationally very expensive.
First of all, short, few-cycle pulses (e.g., with a duration in the femtosecond domain) mean
wideband excitation and would require a large number of modes to be taken into account.
Additionally, the dimension of the underlying Hilbert space is prohibitively large. Working
in photon number eigenbasis, and truncating it for each HH mode, e.g., at 10 photons, we
can realistically have a HH Hilbert space with a dimension of 1030. This emphasizes the
role of analytic approaches, sophisticated numerical methods and physically confirmed
approximations in general. Using a simple model for the material system is one of these
approximations. In the following, we summarize the results that were obtained using a
two-level atom—a concept that is widely used in quantum optics. Obviously, this model
cannot account for material-specific effects, but it is particularly useful to see the general,
qualitative properties of the HHG process.

The current paper is organized as follows: First, in Section 2, we introduce the models
to be investigated. Section 3 summarizes the results related to the case of quantized HH
modes and classical excitation. Section 4 discusses the case of a quantized exciting mode,
while conclusions are drawn, and an outlook is given in Section 5.

2. Models

The Hilbert space of the complete, fully quantized problem consists of the tensor
product of the Hilbert space describing the material system and the Fock space of the
radiation field. For the sake of simplicity, let us use the term ”atom” for the material
system. Considering the field, it is not necessary to take all modes into account: frequencies
considerably above the cutoff can be safely neglected. The complete Hamiltonian can be
written as:

H = Ha + He + HHH + Va−e + Va−HH , (1)

where the first term describes the unperturbed atom, and the Hamiltonian for the free
radiation field is formally split into two parts: He describing the excitation and HHH ,
which corresponds to the HH modes. The light–matter coupling also consists of two terms.
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Both He and HHH have the form of ∑ h̄ωn
(
ana†

n + 1/2
)
, where the sum runs over different

modes for the two Hamiltonians. All annihilation operators an commute, and so do all
creation operators, a†

n. Additionally, [an, a†
n′ ] = δnn′ . Considering the material system, in

the following, we focus on a two-level atom, for which

Ha =
h̄ω0

2
σz, (2)

where σz denotes the appropriate Pauli matrix. The interaction terms have the form of
−DE, where D denotes the dipole moment operator, while E is the electric field. In our
case, assuming that E is linearly polarized, the relevant component (x, for the sake of
simplicity) of D can be written as D = dσx and

Va−e = σx ∑
n∈e

h̄Ωn

2

(
an + a†

n

)
, Va−HH = σx ∑

m∈HH

h̄Ωm

2

(
am + a†

m

)
, (3)

where the summation is over the exciting and HH modes, respectively. Assuming the
optical or near infrared domain for the exciting field, the generalized Rabi frequencies

Ωn = 2d
√

h̄ωn
ε0V (with V denoting the quantization volume) are considerably lower than

the central frequency of the excitation, ωc. Special samples with particularly large dipole
moments (like quantum dots) can be exceptions.

For clarity, let us note that the action of, e.g., the tensor product operator σxam on a state
|n1〉|n2〉 . . . |nN〉|φa〉 (where |φa〉 denotes an arbitrary atomic state, while |ni〉 is a photon
number eigenstate of the ith mode) is given by |n1〉|n2〉 . . . (am|nm〉) . . . |nN〉(σx|φa〉).

It has to be emphasized that the time evolution induced by (1) is still difficult to
calculate, even if we consider the case of a two-level atom. Consequences of further
approximations—that include treating certain modes as classical, time-dependent fields, as
well as neglecting, e.g., mode-mode correlations—will be analyzed in the following.

3. Classical Excitation, Quantized Harmonics

Since average photon numbers are orders of magnitude lower in the HH modes than
in the exciting ones, as a first approach, it is reasonable to consider the excitation to be
classical. This means omitting He in Equation (1), and replacing Va−e with

Vcl
a−e = σx

h̄Ω(t)
2

, (4)

where h̄Ω(t) = −2dE(t). The time-dependent external electric field is assumed to have a
finite duration:

E(t) = E0 sin2
(

π
t
τ

)
cos(ωct), (5)

If 0 < t < τ, and E(t) = 0 otherwise. Initially (t < 0, before the arrival of the
pulse), the state of the atom will be its ground state, while the HH modes are unpopulated
(vacuum state).

In order to reduce the number of time-dependent variables, it is useful to concentrate
on the expectation values of the relevant operators, like photon numbers. For a numer-
ical solution, it is clear that we can take only a finite number N of modes into account.
Practically, N can be around a few thousand. The corresponding frequencies do not need
to be integer multiples of the central frequency of the excitation, they can be uniformly
distributed between zero and the cutoff frequency. Clearly, using a finite number of modes
leads to oscillatory dynamics, even without the laser pulse. For reliable results, we have
to restrict the calculation to a time interval that is short compared to these (unphysical)
oscillations. According to our experience, a frequency spacing of 0.01×ωc together with
the realistic assumption of Ωn/ω0 = 0.001

√
ωn/ω0 satisfy this requirement for the time



Photonics 2021, 8, 263 4 of 10

scale of the HHG process (around 100 fs), which is determined by τ, the duration of the
exciting pulse, see Equation (5).

In spite of taking a finite number of modes into account, the set of Heisenberg picture
dynamical equations for the relevant operators is infinite: the time derivative of a single
operator contains products of two operators, the time derivative of two-operator products
contains products of three operators, and so on. Clearly, the same holds for the expectation
values as well. In order to obtain a closed set of a finite number of equations, we have to
truncate this hierarchy. By taking a look at the interaction Hamiltonian, we see that there
is no direct mode–mode interaction. Therefore, we can assume that different HH modes
influence the dynamics of each other weakly. This assumption can be checked numerically:
taking only two or a single mode into account leads to solvable models. According to our
calculations, indeed, the results are numerically equivalent in the two cases.

This allows for a physically justified, consistent truncation of the infinite hierarchy
of equations. In detail, let us consider the expectation value 〈σxana†

m〉 as an example. The
weakness of the mode–mode correlations implies that this expectation value is negligible
unless n = m. If we apply this rule for all atomic operators σx, σy and σz and also neglect
terms that correspond to two-photon processes (e.g., 〈σxanan〉 or 〈σxa†

na†
n〉), we obtain

a closed set of equations. The single-particle expectation values that appear in these
equations are U = 〈σx〉, V = 〈σy〉, W = 〈σz〉 and 〈Nn〉 = 〈a†

nan〉. Note that U, V and W
are the components of the Bloch-vector, which allows the visualization of the atomic state
on a sphere with a unit radius. The component W—also called inversion—has the most
transparent interpretation, W = 1 means that the atom is in its excited state (”north pole”
of the Bloch-sphere), while W = −1 corresponds to a ground state atom (and the ”south
pole” of the Bloch-sphere). 〈Nn〉 is the photon number expectation value in the nth mode.
The terms

U+
n =

〈
σx(an + a†

n)
〉

, U−n = i
〈

σx(an − a†
n)
〉

(6)

and
V±n = (i)(1∓1)/2

〈
σy(an ± a†

n)
〉

, W±n = (i)(1∓1)/2
〈

σz(an ± a†
n)
〉

(7)

which are expectation values of light–matter interaction, also have to be included in order
to obtain a closed system of dynamical equations. For N HH modes, this means 7N + 3
ordinary differential equations for 7N + 3 real variables. They are to be solved using the
initial conditions W = −1, and all other expectation values are zero. (The atom is in its
ground state, and the HH modes are not populated.) Focusing on the photon number
expectation values, a typical result can be seen in Figure 1. The excitation corresponding to
this figure is given by Equation (5), with the central frequency of the exciting field being
resonant: ωc = ω0, and we consider many-cycle excitation: τ = 50T.

As we can see, the populations of the HH modes build up gradually as the amplitude
of the excitation increases. Initially, when the amplitude of the exciting field is considerably
lower than its maximal value, modes with lower frequencies become populated. After the
maximum of the envelope function, the range of the populated modes practically does
not change. When the excitation is over, the photon number expectation values plotted
versus the mode frequency resemble experimental HHG power spectra: we can see the
well-defined peaks at integer multiples of ωc, a plateau region and also the high-frequency
cutoff. The internal structure of the peaks—specifically the observable difference between
peaks corresponding to odd and even order harmonics—can be explained, e.g., using a
Floquet analysis of the problem [17]. This is, however, specific to the case of two-level
atoms, not expected to be directly applicable to more complex material systems. (For
example, for atomic gases—as well as for solids with inversion symmetry—HHG spectra
are dominated by odd-order peaks, which is a consequence of the spacetime symmetry of
the joint matter-excitation system [18–20]. For two-level systems, HH peaks also appear at
even multiples of the exciting frequency.)
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Figure 1. The expectation value 〈Nn〉 of the photon numbers in different modes. The index n
identifies the modes, the frequency of which is ωn. 〈Nn〉 is plotted as a function of ωn (measured in
units of the central frequency of the exciting field, ωc) at different time instants. Parameters of the
excitation: dE0/h̄ωc = 25, τ = 50T.

In order to analyze the photon statistics of the HH modes, the expectation values
of the photon numbers are not sufficient, and higher-order momenta are also required.
However, if we would like to extend the equations of motion to be able to account for,
e.g., ∆Nn =

√
〈N2

n〉 − 〈Nn〉2, the number of differential equations to solve (as well as the
number of dynamical quantities) would render the numerical solution of the problem
practically impossible. However, previous results suggest that the photon statistics of the
different modes are almost independent. Therefore we can consider a single mode only,
and calculate, e.g., the Mandel parameter

QM =
(∆N)2

〈N〉 − 1. (8)

This parameter allows us to compare the width of the photon statistics of the investi-
gated mode to that of coherent states, whose statistics are Poissonian, meaning QM = 0. In
view of this, the case QM > 0 (QM < 0) is considered as super-Poissonian (sub-Poissonian)
photon distribution. Clearly, in our case, QM is time-dependent. As it is shown in Refer-
ence [17], it exhibits rapid oscillations for all HH modes, and qualitative differences can be
found between, e.g., even and odd harmonics. Even the sign of QM(t) can change several
times, thus it is not completely unambiguous to tell whether these modes have super- or
sub-Poissonian statistics during the excitation process.

4. Quantized Excitation, Von-Neumann Lattice and Wigner Functions

Although average photon numbers in the exciting mode(s) can be high, there are
experimental results that can only be explained by considering these modes to be quan-
tized [13,14]. The process of HHG was shown to affect the photon statistics of the exciting
mode in a measurable way: the statistics of the ”missing photons” have a multipeak
structure that is very similar to the HHG spectra.

In order to investigate this effect, the first step can be considering a single, quantized
exciting mode that is initially in a coherent state |α〉. (Note that the photon number expec-
tation value is |α|2 in this case, and ”strong excitation” means a large magnitude of the
complex number α.) Now, recalling Equation (1), we have

H = Ha + He + Va−e, (9)
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where the terms are given in Section 2, but in this case, the sum over n for the exciting
modes reduces to a single term, the frequency of which will be denoted simply by ω. This
Hamiltonian is the same as the one corresponding to the well-known Jaynes–Cummings–
Paul model [21], without rotating-wave approximation (RWA). In spite of its seemingly
simple form, the analytic solution of this model is far from being trivial. (However, it can
be termed as a quantum integrable system, see Reference [22].) Additionally, even the
numerical solution of the dynamics induced by (9) offers difficulties for large magnitudes
of |α|. This is due to the Poissonian statistics of the coherent states—which are most
often used for the description of laser modes. When |α| is large, ∆N = |α| is also large,
thus the appropriate expansion |α〉 in terms of photon number eigenstates |n〉 requires
unmanageably many of these basis states. Therefore a less conventional approach is needed,
which uses a different basis.

In order to develop a treatable numerical approach, it is important to note that
the operator

H̃ = H − Ha = h̄ωa†a +
h̄Ω
2

σx(a + a†) (10)

allows for an analytic diagonalization. Within the framework of the two-level approx-
imation, H̃ above can be considered to describe the interaction of a single mode of the
electromagnetic radiation with a free electron. (The electron cannot be bound because of
the absence of the atomic Hamiltonian.) This implies that although the dynamics induced
by H̃ can be solved analytically, it is not expected that the process of HHG can be explained
in this way. Indeed—as we shall see later—no HH radiation is produced without the
atomic Hamiltonian. This shows that despite the simplicity of the two-level model, general
concepts apply to this case as well. Keeping this in mind, we continue the discussion
of the dynamics induced by H̃, which provides a starting point for a very transparent
interpretation of the HHG process.

Using the displacement operators with appropriate arguments, the degrees of freedom
for the exciting mode and the material system decouple:

D̃†(γ)H̃D̃(γ) = h̄ω

(
a†a− Ω2

4ω2 σ2
x

)
, (11)

where γ = −Ω
2ω . The equation above means that the dynamics without the Hamiltonian

of the atomic system can be obtained analytically. For example, if at t = 0, the state is
a tensor product |α0〉|+〉 (where σx|±〉 = ±1/2|±〉), at a later time instant t, we have
c+(t)|α+0 (t)〉|+〉. Similarly, |α0〉|−〉 evolves into c−(t)|α−0 (t)〉|−〉. The time-dependent pa-
rameters of the coherent states here are: α±0 (t) = ±γ + (α0 ∓ γ)e−iωt and the prefactors
are phases: c± = exp{±iγIm [α− (α∓ γ)e−iωt]}. Clearly, for an initial atomic state that
is a superposition of |+〉 and |−〉, we obtain the corresponding superposition of the time
evolved solutions as well. For example, for the ground state |g〉, we obtain

|α0〉|g〉 =
1√
2
|α0〉(|+〉+ |−〉)

H̃−→ 1√
2

(
c+(t)|α+0 (t)〉|+〉+ c−(t)|α−0 (t)〉|−〉

)
. (12)

This allows an interpretation in the phase space of the exciting mode, which is identical
to the complex plane. As one can check, the coherent states |α±0 (t)〉 have the same periodic-
ity as the excitation (T = 2π/ω), and the same holds for the prefactors c±. Thus, without
the Hamiltonian for the atomic system, the time evolution is periodic. (This statement is
independent from the initial states.) Therefore, it is sufficient to visualize the right-hand
side of Equation (12), e.g., on the interval [0, T]. Figure 2 shows the labels α±0 (t) in the case
when the initial complex number, α0, is real. Clearly, at t = 0 we have α+0 (0) = α−0 (0), and
the phase-space trajectories that we can associate with the these time-dependent labels are
circles. The radii of these circles are different, and their centers are separated by a distance
of 2|γ|, see Figure 2 (this is similar to the results presented in Reference [15]).
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Figure 2. The time evolution induced by H̃ (see Equation (10)) drives the initial state |α0〉|g〉 into
a superposition given by Equation (12). The figure shows the time-dependent labels of the two
coherent states that appear in Equation (12) in the complex plane for an optical cycle, t ∈ [0, T]. The
three double circles correspond to different, real initial values of α0, as indicated by the dots. Red
and blue curves correspond to α−0 and α+0 , respectively. γ = −0.5 in this figure.

In accord with the discussion following Equation (10), although the prefactors of the
time-dependent coherent states in Equation (12) contain terms that indicate the appearance
of high-order harmonics, no HH emission occurs. In our model, this is related to the
fact that the dipole moment operator commutes with H̃, thus its expectation value is a
constant of motion. That is—as expected—the atomic Hamiltonian Ha is also needed for
the HH radiation to be emitted. However, in order to see the details of the process, we
need an appropriate method to solve the complete dynamics induced by Equation (9)—at
least numerically.

As it was pointed out by J. von Neumann [23], a discrete subset of coherent states
{|α(mn)〉, Re α(nm) = m

√
π, Im α(nm) = n

√
π} with n and m being integers, forms a (non-

orthogonal) basis on the Hilbert-space of a single mode. (The completeness of these
states was shown in References [24,25].) In Reference [26], the operator equations for
the quantized modes were turned into c-number equations using this basis. It was also
demonstrated [27] that the basis of the von Neumann lattice coherent states turns out to be
very useful for calculating how HH radiation emerges on our model.

It can be shown that the complete (infinite) von Neumann lattice is not needed to
perform precise numerical calculations [27]. By choosing a very limited subset of the
lattice around the initial coherent state ( 5× 5 points), and rotating it as it is shown by
Equation (12), during the time scale of the HHG process, the action of Ha will not drive the
state of the system outside the subspace spanned by the rotating members of the basis. That
is, although the non-orthogonality of the von Neumann lattice states introduces a certain
inconvenience, it is a low price to pay for obtaining a small, numerically invariant subspace.
Using this approach, quasi-probability distribution functions [28–31] can also be calculated
in order to describe the quantum state of light in the phase space of the mode [32].

Instead of using the joint Wigner function for the atom-field system [33], now it is
more instructive to focus on the exciting mode alone. (Technically, in order to obtain the
density operator only for the mode, we have to trace over atomic degrees of freedom.) The
von Neumann lattice allows an elegant calculation of the Wigner function [28], which—as it
is shown in Figure 3—leads to transparent interpretation of the HHG process. Considering
|α0〉|g〉 as the initial state, during the time evolution, it splits into two parts, as given by
Equation (12). The atomic Hamiltonian Ha induces transitions between the constituents
of the split state (which have different atomic parts). This leads to a rapidly oscillating
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dipole moment expectation value, which is the source of the HH radiation. Snapshots of
the Wigner function that correspond to this time evolution are shown in Figure 3.
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Figure 3. Snapshots of the Wigner function of the exciting mode at 8 different time instants during
the first optical cycle; α0 = 10, γ = −0.5. Note that although the motion of the Wigner function in the
phase space is very similar to the trajectories shown by Figure 2, this plot is a result of a numerically
exact calculation, with all terms in Equation (9) being taken into account.

Let us note that for more realistic, pulsed (multimode) excitation, the process we
described above—even for several times 10 optical cycles—is much faster than the quantum
optical collapse and revival phenomena [34,35].

As a generalization, the case of more complex material systems can also be treated
using the method discussed above, and the physical interpretation is very similar, too. The
expansion of the initial state in the eigenbasis of a general dipole moment operator usually
contains more than two terms, which causes the initial state to split into more parts. The
atomic Hamiltonian induces transitions between these parts, leading to a time-dependent
dipole moment expectation value, and, eventually, high order harmonics.

5. Summary and Outlook

We have overviewed the results that were obtained using quantum optical models for
the description of the process of high-order harmonic generation (HHG). Among the three
interacting partners—the exciting field, matter and the high-order harmonic radiation—the
material system was described using quantum mechanical terms. Two examples were
discussed, in which either the harmonic modes or the excitation was also described on the
quantized level. The photon number expectation values of the quantized HH modes were
shown to reproduce the qualitative properties of the experimentally obtained HHG spectra.
Using the second model, a transparent description of the HHG process was presented in
the phase space of the exciting mode. The calculations were performed using the most
fundamental quantum optical model for the material system: a two-level atom. Ways for
generalizing the presented approach to more general systems were also discussed.

In spite of using simple models in order to see the most fundamental physical pro-
cesses, the computational difficulties were still considerable. The quantized description
of all the three interacting partners is still missing. Known models and computational
approaches are quite far from being able to answer all the questions that were listed in the
introduction. Despite having more open questions than answered ones, developing new
theoretical approaches, finding well-established, efficient approximations are of interest:
Besides the fundamental importance of these questions, the detailed knowledge of the
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underlying physical processes can also lead to new applications, e.g., the development of
new types of light sources.
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