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Abstract: Nonlinear dynamics of an optical pulse or a beam continue to be one of the active areas of
research in the field of optical solitons. Especially, in multi-mode fibers or fiber arrays and photore-
fractive materials, the vector solitons display rich nonlinear phenomena. Due to their fascinating and
intriguing novel properties, the theory of optical vector solitons has been developed considerably
both from theoretical and experimental points of view leading to soliton-based promising potential
applications. Mathematically, the dynamics of vector solitons can be understood from the framework
of the coupled nonlinear Schrödinger (CNLS) family of equations. In the recent past, many types of
vector solitons have been identified both in the integrable and non-integrable CNLS framework. In
this article, we review some of the recent progress in understanding the dynamics of the so called non-
degenerate vector bright solitons in nonlinear optics, where the fundamental soliton can have more
than one propagation constant. We address this theme by considering the integrable two coupled
nonlinear Schrödinger family of equations, namely the Manakov system, mixed 2-CNLS system (or
focusing-defocusing CNLS system), coherently coupled nonlinear Schrödinger (CCNLS) system, gen-
eralized coupled nonlinear Schrödinger (GCNLS) system and two-component long-wave short-wave
resonance interaction (LSRI) system. In these models, we discuss the existence of nondegenerate
vector solitons and their associated novel multi-hump geometrical profile nature by deriving their
analytical forms through the Hirota bilinear method. Then we reveal the novel collision properties of
the nondegenerate solitons in the Manakov system as an example. The asymptotic analysis shows
that the nondegenerate solitons, in general, undergo three types of elastic collisions without any
energy redistribution among the modes. Furthermore, we show that the energy sharing collision
exhibiting vector solitons arises as a special case of the newly reported nondegenerate vector solitons.
Finally, we point out the possible further developments in this subject and potential applications.

Keywords: integrable coupled nonlinear Schrödinger models; nondegenerate vector bright solitons;
degenerate vector bright solitons

1. Introduction

Solitons are stable localized nonlinear wave packets which can propagate without
distortion over long distances. After the discovery of solitons in the numerical experiments
on the Fermi–Pasta–Ulam–Tsingou anharmonic lattice problem [1,2], the field of solitons
and related nonlinear phenomena flourished and advanced by the invaluable discoveries
in nonlinear optics. The concept of solitons is not only reserved for nonlinear optics, but
it ubiquitously appears in many branches of physics, including hydrodynamics, Bose–
Einstein condensates, plasma physics, particle physics, and even astrophysics apart from
the mathematical interest in the theory of integrable nonlinear partial differential equations.
In optics, in general, an optical pulse or a beam has a natural property to spread while
it propagates in a linear medium because the Fourier components of the pulse or the
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beam start to travel with distinct velocities. The spreading occurs in the temporal domain
because of the material dispersion while in the spatial domain it is due to diffraction.
In some cases, the spreading takes place due to the combined effects of dispersion and
diffraction. However, a stable localized wave packet forms when this linear effect is
balanced by the nonlinear response of the medium. Such a stable light wave envelope is
known as the optical soliton. Optical soliton can be further classified as (i) spatial soliton,
(ii) temporal soliton and (iii) spatio-temporal soliton depending on the nature of formation
mechanism [3]. The evolution of optical soliton, whether it is a spatial or temporal one, in
(1 + 1)-dimensional setting is described by the ubiquitous nonlinear Schrödinger (NLS)
equation. For instance, the dimensionless NLS equation, derived from the Maxwell’s
equations under slowly varying envelope approximation, for the optical field propagation
in a single mode optical fiber turns out to be [4].

iqz − sgn(K′′)qtt + 2|q|2q = 0, K′′ =
( ∂2K

∂ω2

)
ω=ω0

=
1
v2

g
. (1)

In the temporal soliton case, where the soliton evolution is confined along the op-
tical fiber, q(z, t) is the complex wave amplitude and the independent variables z and t
denote normalized distance along the fiber and retarded time, respectively. In addition,

qz =
∂q
∂z and qtt =

∂2q
∂t2 . Here, the sign of the group velocity dispersion (GVD) or simply the

coefficient of the second derivative in time, in Equation (1), characterizes the nature of the
fiber dispersion. If K′′ < 0, then the dispersion is anomalous whereas the dispersion is
normal for K′′ > 0. The nonlinearity in Equation (1) arises due to the self phase modulation
(SPM), where the intensity of light induces a change in the refractive index of the medium
∆n(I) = n0(ω) + n2|E|2 = n0 + n2 I, where n0 refers to the linear refractive index and
n2 is the nonlinear refractive index of the medium due to Kerr effect, which gives rise
to an intensity-dependent phase modulation. On the other hand, the spatial soliton is a
self-trapped optical beam that guides itself by inducing a waveguide during the stable prop-
agation in a photorefractive medium without diffraction. Here, the diffraction is exactly
balanced by the nonlinearly induced self-focusing effect. In this context, the independent
variables, z and t in Equation (1), correspond to transverse spatial coordinates. Since this
review will focus on the theoretical aspects of vector bright solitons of certain coupled
integrable field models that emerge in optical fiber systems, the readers can find a detailed
discussion on the development and advancement of both spatial and spatio-temporal
solitons in the interesting review articles by Chen et al. [5] and by Malomed et al. [6],
respectively.

In 1973, Hasegawa and Tappert theoretically demonstrated that the lossless fibers can
admit bright soliton structure, which exhibits an intensity maximum in the time domain
when the GVD regime is anomalous [7]. They have also shown that the dark soliton,
with the intensity minimum or dip on a constant wave background field, arises in the
normal GVD regime [8]. After this theoretical work, in 1980, Mollenauer and his coworkers
succeeded experimentally in observing the optical soliton in a fiber [9]. These discoveries
clearly demonstrated how an abstract mathematical concept can turn into a practical
use. Both these theoretical and experimental works have opened up a new possibility
of using the ultra-short optical pulses in long distance communication applications [10].
On the other hand, the mathematical interest in understanding the analytical structure
of the underlying integrable models intensified after the NLS equation was solved by
Zakharov and Shabat through a more sophisticated inverse scattering transform (IST)
method [11], developed earlier by Gardner et al. for the celebrated Korteweg–deVries
equation [12]. Now, it is well known that the NLS Equation (1) is a completely integrable
infinite dimensional Hamiltonian system having special mathematical properties like an
infinite number of conserved quantities and Lax pair [13]. We note that in [11] the authors
had derived a double-pole solution, which has recently received attention in the theory
of rogue-waves for describing the Peregrine breather on the zero background field of the
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NLS equation [14], by considering the merging of two simple poles in the complex plane.
The interesting fact of the temporal bright solitons of the scalar NLS equation is that they
exhibit particle-like elastic collision.

Apart from the above fundamental aspects, in 1983, Gordon had predicted that when
two or more light pulses propagate in a nonlinear optical fiber, they exert forces, either
attractive or repulsive, on their neighbors [15]. This has been experimentally verified
by Mitschke and Mollenauer in [16]. Such a study brought out a special kind of soliton
state, namely the bound soliton state or soliton molecule [17]. A soliton molecule is a
bound soliton state that can be formed when two solitons persist at a stable equilibrium
separation distance, where the interaction force is zero among the individuals. Such a stable
equilibrium manifests as this bound state structure, reminiscent of a diatomic molecule in
chemical physics. The binding force arises between the constituents of the soliton composite
due to the Kerr nonlinearity [15,16] and the detailed mechanism can be found in Ref. [18].
This special kind of soliton state has been extensively studied in non-dispersion managed
fibers [19–25]. Recently, the existence of soliton molecules in dispersion-managed fiber [17]
and their usefulness in optical telecommunications with enhanced data carrying capacity
have been pointed out [26,27]. However, in order to elevate the transmission capacity of
the optical telecommunication systems, it is necessary to consider multichannel bit-parallel
wavelength fiber networks and wavelength division multiplexing schemes, where the light
pulses propagate in multi channels simultaneously. In fact, practically even in a single mode
fiber the bending and strains or birefringence induce two orthogonal polarization modes.
To pursue this kind of practical application, one has to essentially understand the problem
of the intermodal interaction of solitons. Therefore the contribution of the interaction
of copropagating modes must be taken into account. In fact, there is no surprise other
than the standard elastic collision of the bright solitons in single mode optical fibers. In
contrast to this, the bright soliton structure in two mode fibers or in a single mode fiber with
birefringence property or even in multimode fibers display rich propagation and collisional
properties. Due to these fascinating features and intriguing collision dynamics, vector
solitons receive intense attention among researchers. Apart from the several interesting
properties, vector solitons have also been found in a variety of applications, including
soliton-based optical computing [28,29], multi-level optical communication with enhanced
bit-rate transmission [30], soliton based signal processing systems [31] and so on.

Vector solitons are fascinating nonlinear objects in which a given soliton is split among
two or more components. In other words, a vector soliton with two or more polarization
components coupled together maintains its shape during propagation. Such vector soli-
tons are also named as multicolour solitons. The dynamics of vector solitons is usually
understandable within the framework of coupled nonlinear Schrödinger (CNLS) equations.
In general, the CNLS equations are non-integrable and they become integrable for specific
choices of parameters [32]. Therefore, mathematically vector solitons arise as solutions of
the CNLS equations. Like in the scalar NLS equation, the optical vector solitons are formed
due to an exact balance between the dispersion/diffraction and the self-phase modulation
and cross-phase modulation. This interesting class of optical solitons was first predicted
by Manakov in 1974, where he derived the one-soliton solution and made an asymptotic
analysis for the two-soliton solution through the IST method, by introducing a set of two
CNLS equations for the nonlinear interaction of the two orthogonally polarized optical
waves in birefringent fibers [33]. The Manakov system is essentially an integrable system,
where the strength of the nonlinear interactions within and between the components are
equal. Vector optical solitary wave propagation in birefringent fiber was first theoretically
studied by Menyuk by considering a pair of non-integrable CNLS equations [34]. Very
interestingly one of the present authors (ML) along with Radhakrishnan and Hietarinta
theoretically predicted that the bright solitons of the Manakov model exhibit novel energy
sharing collision through intensity redistribution [35]. They explicitly demonstrated this
fascinating collision scenario by analyzing the two bright soliton solution derived through
the Hirota bilinear method. Then this study was extended to N-CNLS equations by Kanna
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and Lakshmanan in [36], where there is a lot of exciting possibilities for the occurrence
of energy redistribution among the N-modes that have been reported. This theoretical
development was experimentally verified in [37–39] and, subsequently, it gave rise to
the possibility of constructing all optical logic gates [28,29,40–42]. The discovery of pho-
torefractive solitons [43–46] and the subsequent experimental developments [47–50] have
substantially enriched our knowledge on vector solitons. It is known that a set of N-CNLS
equations describes the beam propagation in a Kerr-like photorefractive medium [51–54].
Furthermore, the experimental studies on vector solitons in photorefractive media as well
as in dispersive media during the past three decades demand investigation of physical and
mathematical aspects of CNLS equations even more rigorously.

It is very important to point out that there exist many types of vector solitons that
have been reported so far for both integrable and non-integrable CNLS type equations.
For instance, in the non-integrable cases, a temporal light pulse composed of orthogonally
polarized components propagate with common group velocity and it is called group
velocity-locked soliton [55]. On the other hand, if the two polarization components of
the soliton are locked in phase, then such a vector soliton has been called a phase-locked
soliton [56], whereas for the polarization-locked vector soliton [57], the relative phase
between the components is locked at ±π

2 but across the pulse, the polarization state profile
is not uniform. However, that profile is invariant with propagation. Apart from the above,
other types of vector solitary waves have been reported in birefringent fibers [58–61] and
in saturable nonlinear medium [62,63], where the stability of multi-hump solitons has
been reported. In the integrable cases, bright–bright solitons [33,35,36,64], bright–dark or
dark–bright solitons [65–69] and dark–dark solitons [70,71] were documented in the context
of nonlinear optics and their novel properties in multicomponent BECs have also been
investigated considerably [72]. In a photorefractive medium, partially coherent solitons
or soliton complexes were identified in the N-CNLS system, and their special properties
were revealed by Akhmediev and his collaborators in [30,51–54]. Apart from the above,
during the last decade, a large volume of work has been dedicated to the temporal optical
solitons (both theoretically and experimentally) by considering the fiber lasers, which has
been reported as a very useful nonlinear system to study the dynamics and formation of
temporal optical solitons [73]. There exist different types of optical solitons in dissipative
systems too and their various properties have been explored in [74].

From the above studies on vector solitons, especially in integrable coupled nonlinear
Schrödinger models, we have identified that there exists a degeneracy in the structure of
the bright solitons as we have explained below in Section 3. That is, the solitons in two-
mode fibers or in multi-mode fibers propagate with identical wave numbers. In order to
avoid this degeneracy, we introduce two non-identical propagation constants appropriately
in the structure of the fundamental bright solitons of the 2-CNLS equation to start with.
Consequently, the degeneracy is removed and it leads to a new class of fundamental bright
solitons, namely nondegenerate fundamental vector bright solitons [75]. For the first time,
we have shown that such an inclusion of additional distinct propagation constants brings
out a general form of vector bright soliton solution to the several integrable CNLS sys-
tems [76,77], namely the Manakov system or 2-CNLS system, mixed 2-CNLS system (with
one mode in the anomalous dispersion regime and the other mode in the normal dispersion
regime), two-component coherently coupled NLS system, generalized CNLS system, and
two-component long-wave short-wave resonance interaction system [77]. We note that very
recently the nondegenerate solitons have also been studied in other contexts as well. For
instance, in multi-component BECs [78] using the Darboux transformation method, in the
coupled Fokas–Lenells system [79] and in the AB-system [80] such nondegenerate solitons
have been identified. We also note that a multi-valley dark nondegenerate soliton has been
studied in the context of multicomponent repulsive BECs [81]. In this paper, we critically
review the existence and their salient novel features of the general form of nondegenerate
vector bright solitons in the above class of two-component nonlinear Schrödinger systems.
Then we also critically analyze their novel collision properties with the Manakov system
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as an example. Furthermore, we also discuss in detail the corresponding already known
degenerate vector bright solitons and their intriguing collisional properties. Additionally,
we also illustrate the multi-hump nature of the nondegenerate fundamental bright solitons
in the N-CNLS system [82].

The outline of this review paper is as follows. In Section 2, we quickly point out
the derivation of 2-CNLS equations in the context of multi-mode fibers and introduce
the various coupled integrable models and their physical importance. In Section 3, we
clearly distinguish how the vector bright soliton reported so far in the literature for the
integrable coupled NLS family type equations may be considered as a special case of the
fundamental nondegenerate bright soliton solution derived recently by us. In Section 4,
we discuss the nondegenerate soliton solutions of the Manakov system and analyze their
underlying novel collision dynamics. In this section, we also describe the degenerate soliton
solutions and their interesting energy sharing collision apart from mentioning the possible
experimental realization and the multi-hump nature of the nondegenerate fundamental
bright solitons in the N-CNLS system. Then in Section 5, we describe the properties and
the existence of the nondegenerate fundamental bright soliton of the mixed CNLS system.
We also discuss the collision dynamics of the degenerate solitons by pointing out their
explicit analytical forms. In Section 6, we discuss the existence of both nondegenerate and
degenerate fundamental bright solitons in the coherently coupled NLS system and point
out the energy switching collision scenario of degenerate bright solitons. Furthermore,
we illustrate the existence of the nondegenerate bright soliton in the generalized coupled
nonlinear Schrödinger system and point out its degenerate limit in Section 7. Then, in
Section 8, we also elucidate the existence of the nondegenerate soliton in the two-component
(1+1)-dimensional LSRI system. Finally, in Section 9, we summarize the results and provide
a possible future outlook.

2. Derivation of CNLS Equations and Other Integrable CNLS Type Models

In general, the interaction between two or more co-propagating optical modes is
governed by the coupled nonlinear Schrödinger family of equations. The derivation
of one such CNLS equations starts from Maxwell’s equations for electromagnetic wave
propagation in a dielectric medium,

∇2~E− 1
c2

∂2~E
∂t2 = −µ0

∂2~P
∂t2 , (2)

where ~E(~r, t) is the electric field, ~P(~r, t) is the induced polarization, µ0 is the permeability
of free space and c is the velocity of light. The induced polarization ~P(~r, t) contains both
a linear part and a nonlinear part. That is ~P(~r, t) = ~PL(~r, t) + ~PNL(~r, t). The linear and
nonlinear induced polarizations are defined as

~PL(~r, t) = ε0

∫ +∞

−∞
χ(1)(t− t′)~E(~r, t′)dt′, (3a)

~PNL(~r, t) = ε0

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
χ(3)(t− t1, t− t2, t− t3)~E(~r, t1)~E(~r, t2)~E(~r, t3)dt1dt2dt3. (3b)

Here, ε0 is the permitivity of the free space and χ(j) is the jth order suceptibility tensor
of rank (j + 1) [4,83]. For elliptically birefringent fibers, the electric field ~E(~r, t) can be
written as

~E(~r, t) =
1
2

(
ê1E1(z, t) + ê2E2(z, t)

)
e−iω0t + c.c. (4)

In the above, the variables z and t denote the direction of propagation and retarded
time, respectively, and c.c stands for complex conjugation. The orthonormal vectors ê1

and ê2 are expressed as, ê1 = x̂+irŷ√
1+r2 and ê2 = rx̂−iŷ√

1+r2 , where r is a measure of the extent of
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ellipticity and x̂ and ŷ are unit polarization vectors along x and y directions, respectively.
In Equation (4), E1 and E2 are complex amplitudes of the polarization components at
frequency ω0. The nonlinear polarization can be obtained by substituting the expression
of the electric field ~E(~r, t) from Equation (4) in Equations (3a) and (3b). The electric-field
components are written under slowly varying approximation as

Ej(z, t) = Fj(x, y)Qj(z, t)eiK0jz, j = 1, 2, (5)

where Fj(x, y) are the fiber distribution function in the transverse directions x and y and
K0j, j = 1, 2 are the propagation constants for the two modes. By doing so, the following
coupled equations are obtained for Qj(z, t):

iQ1,z +
i

vg1
Q1,t −

k′′

2
Q1,tt + µ(|Q1|2 + B|Q2|2)Q1 = 0, (6a)

iQ2,z +
i

vg2
Q2,t −

k′′

2
Q2,tt + µ(|Q1|2 + B|Q2|2)Q2 = 0. (6b)

Here, k′′ =
(

∂2k
∂ω2

)
ω=ω0

accounts for the group velocity dispersion, µ is the nonlinear-
ity coefficient and vg1 and vg2 are the group velocities of the two co-propagating modes,

respectively. The constant B = 2+2 sin2 θ
2+cos2 θ

is the cross-phase modulation coupling parameter,
where θ is the angle of ellipticity which varies between 0 and π

2 . Here, we have assumed
that the fiber has a strong birefringent nature. Under three sets of consecutive transfor-
mations (detailed derivation can be found in [83]), we obtain the following dimensionless
2-CNLS equation with the integrability restriction B = 1 [32], which is obtained from the
Painlevé analysis,

iq1,z + q1,tt + 2µ(|q1|2 + |q2|2)q1 = 0, (7a)

iq2,z + q2,tt + 2µ(|q1|2 + |q2|2)q2 = 0. (7b)

The above set of CNLS equations constitutes the completely integrable system in-
troduced by Manakov to describe the propagation of an intense electromagnetic pulse in
a birefringent fiber [33]. The system (7a) and (7b) is well discussed in nonlinear optics
and in other areas of physics. In this review, we also wish to consider another 2-CNLS
equation which is a variant of the Manakov system, namely the mixed coupled nonlinear
Schrödinger system or Zakharov and Schulman system [64,84]. One can write both the
mixed CNLS equation and Manakov equation in a unified form as given below:

iqj,z + qj,tt + 2
(

σ1|q1|2 + σ2|q2|2
)

qj = 0, j = 1, 2. (8)

In Equation (8), σ1 and σ2 are the strength of the SPM and cross-phase modulation
(XPM) nonlinearities. If σ1 = σ2 = +1, the above equation becomes the Manakov equation
(focusing type 2-CNLS equations), where the two optical fields q1 and q2 propagate in
the anomalous dispersion regimes [33], whereas, for σ1 = σ2 = −1, they propagate in
the normal dispersion regimes or in other words, the resultant model (8) turns out to
be the defocusing Manakov system [70]. For the other choice, σ1 = +1 and σ2 = −1, the
system (8) becomes the mixed-CNLS system [64], in which the SPM is positive and the XPM
is negative in both the modes, where the first mode q1 is propagating in the anomalous dis-
persion regime while the second mode q2 is propagating in the normal dispersion regime.
Both the focusing and defocusing Manakov models also find applications in attractive
and repulsive multicomponent BECs [72]. We note that the soliton trapping and daughter
wave (shadow) formation have been reported [85] using the bright soliton solutions of the
Manakov system. Radhakrishnan and Lakshmanan have derived the dark–dark soliton
solution [70] and Sheppard and Kivshar have obtained bright–dark soliton solution [65]
to the above system. In the latter case, the authors have pointed out the existence of
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breathing bound states. Furthermore, it has been shown that the mixed CNLS system
models the electromagnetic pulse propagation in isotropic and homogeneous nonlinear
left handed materials [86]. By taking into account the electron–phonon interaction and in
the long-wavelength approximation, the mixed-CNLS system can also be obtained as the
modified Hubbard model (Lindner–Fedyanin system) [87–89]. The mixed CNLS system is
also realized in two species BECs for a suitable choice of interspecies and intraspecies inter-
actions [90]. We point out that the IST method and Darboux transformation method have
been rigorously developed to obtain the bright–bright, dark–dark and bright–dark soliton
solutions of the multicomponent focusing, defocusing and mixed CNLS systems [91–103].

Next, we consider the two-component coherently coupled nonlinear Schrödinger
equation, which arises due to the coherent effects of the coupling among the copropa-
gating optical fields. In general, an ultrashort pulse propagation in non-ideal weakly
birefringent multimode fibers and optical beam propagation in low anisotropic Kerr type
nonlinear media are described by the following two-component non-integrable CCNLS
system [3,104,105];

iq1,z + δq1,tt − µq1 + (|q1|2 + σ|q2|2)q1 + λq2
2q∗1 = 0, (9a)

iq2,z + δq2,tt + µq2 + (σ|q1|2 + |q2|2)q2 + λq2
1q∗2 = 0. (9b)

The above equation also appears in isotropic Kerr-type nonlinear gyrotropic medium [106].
In the above q1 and q2 are two coherently coupled orthogonally polarized modes, z and
t are the propagation direction and transverse direction, respectively, µ is the degree of
birefringence, σ and λ are the incoherent and coherent coupling parameters, respectively,
and δ is the group velocity dispersion. The nonlinearities arise in Equation (9) due to SPM
(|qj|2qj, j = 1, 2), XPM (σ|qk|2qj, j, k = 1, 2, j 6= k) and four-wave mixing effect ( λq2

kq∗j ,
j, k = 1, 2, j 6= k). Equation (9) is shown to be integrable for a specific choice of system
parameters (δ, µ, σ and λ) [105] and soliton solutions were derived by linearly superposing
the soliton solutions of the two nonlinear Schrödinger equations through a transformation.
The corresponding integrable two-component CCNLS system (2-CCNLS system) is

iq1,z + q1,tt + γ(|q1|2 + 2|q2|2)q1 − γq2
2q∗1 = 0, (10a)

iq2,z + q2,tt + γ(2|q1|2 + |q2|2)q2 − γq2
1q∗2 = 0. (10b)

Interestingly, Kanna et al. [107] have derived the fundamental and two bright soliton
solutions of (10) and its multicomponent version [108] by developing a non-standard
Hirota bilinearization procedure. They have classified the fundamental bright soliton
as incoherently coupled soliton (ICS) and coherently coupled soliton (CCS) based on a
condition on the parameters in the auxiliary function. A novel double-hump soliton profile
arises in these CCNLS systems due to the coherent coupling among the two copropagating
optical fields. Furthermore, they have also demonstrated a fascinating energy switching
collision during the interaction of ICS and CCS [107,108]. We remark that the CCNLS type
equations are useful in studying the dynamics of solitons in spinor BECs and coherently
coupled BECs [109–111] also. A similar type of CCNLS equation has been identified in the
context of spinor BEC and is shown to be integrable [112–114].

Next, we wish to examine the bright soliton solutions of the general coupled nonlinear
Schrödinger (GCNLS) system [115], namely

iq1,z + q1,tt + 2(a|q1|2 + c|q2|2 + bq1q∗2 + b∗q∗1q2)q1 = 0, (11a)

iq2,z + q2,tt + 2(a|q1|2 + c|q2|2 + bq1q∗2 + b∗q∗1q2)q2 = 0. (11b)

In the above GCNLS equations, a and c account for the strength of the SPM and XPM
nonlinearities whereas the complex parameter b in the phase dependent terms, bq1q∗2 +
b∗q∗1q2, describes the four-wave mixing effect that arises in multichannel communication
systems [4]. When a = c and b = 0 the system (11a) and (11b) reduces to the Manakov
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system (or Equation (8) with σ1 = σ2 = +1). Then, if a = −c and b = 0 the GCNLS
system becomes the mixed-CNLS model. This GCNLS system has received considerable
attention recently in both mathematical and physical aspects [115–118]. The integrability
properties of the system (11a) and (11b) have been studied in [115] in which the N-soliton
solution was obtained through the Riemann–Hilbert method. The GCNLS system is shown
to be integrable through Weiss–Tabor–Carnevale (WTC) test [116]. In [117], bright and
dark-soliton solutions were obtained through the Hirota bilinear method. By relating the
GCNLS system with the Manakov and Makhankov vector models, using a transformation
(q1 = ψ1 − b∗ψ2 and q2 = aψ2), the authors in [118] have constructed bright–bright, dark–
dark and a quasibreather–dark soliton solutions.

Finally, for our investigation, we also wish to take into account the following coupled
nonlinear Schrödinger type equations, namely the two-component long-wave short-wave
resonance interaction system,

iS(1)
t + S(1)

xx + LS(1) = 0, iS(2)
t + S(2)

xx + LS(2) = 0, Lt =
2

∑
l=1

(|S(l)|2)x. (12)

In the above, S(l)’s, l = 1, 2, are short-wave (SW) components, L is the long-wave (LW)
component and suffixes x and t denote partial derivatives with respect to spatial and tempo-
ral coordinates, respectively. The above LSRI system arises whenever the phase velocity of
the low-frequency long-wave matches with the group velocity of the high-frequency short-
waves [119,120]. In Equation (12), the formation of soliton in the SW components is due to
the exact balance between its dispersion by the nonlinear interaction of the LW with the
SW. At the same time, the formation and evolution of the soliton in the LW components is
determined by the self-interaction of the SWs. The above LSRI system (12) has considerable
physical relevance in nonlinear optics [121–124], plasma physics [125,126], hydrodynam-
ics [120,127–131] and BECs [132–134]. The LSRI system originally arose from the pioneering
study of nonlinear resonant interaction of the plasma waves by Zakharov [119], where
generalized Zakharov equations were deduced to describe Langmuir waves. Such general-
ized Zakharov equations were reduced to a (1 + 1)-dimensional Yajima–Oikawa equation
for describing the one-dimensional two-layer fluid flow [126] for which soliton solutions
were obtained through the IST method. Benney has also derived a single-component LSRI
system for modelling the dynamics of short capillary gravity waves and gravity waves in
deep water [120]. After these works, there has been a large amount of work in the direction
of LSRI involving (1 + 1) and (2 + 1)-dimensional single component and multi-component
cases [135–152]. In nonlinear optics, the single component LSRI system was deduced from
the coupled nonlinear Schrödinger equations describing the interaction of two optical
modes under small amplitude asymptotic expansion [121]. In the negative refractive index
media, the LSRI process has been investigated [122]. We wish to point out that the bright
soliton solutions for the general multi-component LSRI system have been derived through
the Hirota bilinear method [136]. In this paper, the authors have demonstrated two types of
energy sharing collisions for two different choices of nonlinearity coefficients. Considering
the collisions of solitons in these cases one finds that the solitons appearing in the LW
component always exhibit elastic collision whereas the solitons in the SW components
always undergo energy sharing collisions.

In this review, we investigate the existence of nondegenerate vector bright solitons
and their novel properties in the above described five interesting integrable coupled
field models.

3. Statement of the Problem

As we pointed out in Section 1, the fundamental (and even higher order) bright
soliton solutions which have been already reported for the integrable coupled nonlinear
Schrödinger family of equations are degenerate. Here, by degenerate, we mean that the
fundamental bright soliton nature is characterized by a single wave number in all the
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modes or components. The presence of identical wave numbers in all the modes restricts
the motion as well as the structure of the fundamental bright soliton in most of the CNLS-
type equations. Thus, the bright solitons propagate in all the modes with identical velocity
apart from the distinct polarization vector constants. Such a constrained motion always
persists in most of the fundamental bright soliton solutions of various CNLS systems. As a
consequence of this degeneracy, a single-hump structure only emerges in the fundamental
bright soliton profile. In order to demonstrate this clearly, in the following, we consider the
fundamental bright soliton solution of the Manakov system:

qj =
α
(j)
1 eη1

1 + eη1+η∗1+R ≡ Ajk1Reiη1I sech(η1R +
R
2
), j = 1, 2. (13)

Here Aj’s are the unit polarization vectors, Aj =
α
(j)
1

(|α1|2+|β1|2)1/2 , j = 1, 2, the wave

variable η1 (= η1R + iη1I), η1R = k1R(t − 2k1Iz), η1I = k1I t + (k2
1R − k2

1I)z and eR =
(|α1|2+|β1|2)
(k1+k∗1)

2 . From the above expression for the one-soliton solution, it is evident that the

fundamental soliton is described by only one complex wave number k1. Consequently,
the single-hump soliton propagates in the two modes, q1 and q2, with identical velocity
v = 2k1I . A similar situation always persists in the other coupled field models mentioned
above and their generalizations. For instance, the N-component Manakov type system [36],
the mixed N-CNLS system [64], the GCNLS system [115,117], and the multi-component
LSRI system [126,136] are such cases. However, in contrast to such cases, the coherent
coupling among the copropagating optical fields induces a special type of double-hump
vector bright soliton in the CCNLS system [107,108]. In this four wave mixing physical
situation also the coherently coupled soliton is governed by an identical propagation
constant in all the modes. Therefore, it is clear that the above mentioned degeneracy in
propagation constants always persist in all the previously reported vector bright solitons.

In order to differentiate the above class of vector bright solitons from more general
fundamental solitons, we classify them as degenerate and nondegenerate solitons based on
the absence or presence of more than one wave number in the multi-component soliton
solution. We call the solitons which propagate in all the modes with identical wave number
as degenerate vector solitons whereas the solitons with nonidentical wave numbers as
nondegenerate vector solitons. From the above literature, it is clear that the vector bright
solitons with identical wave numbers have been well understood. However, the studies
on solitons with non-identical propagation constants in all the modes have not been
considered until recently. Therefore one would like to investigate the role of additional
wave number(s) on the vector bright soliton structures and collision scenario as well. With
this motivation, we plan to look for a class of fundamental soliton solutions, in a more
general form, which possesses more than one distinct propagation constants. Recently,
we have successfully identified such a general class of fundamental vector bright soliton
solutions for a wide class of physically important CNLS type equations using the Hirota
bilinear method. In this review, we briefly describe the novel properties, including the
various collision properties, associated with the nondegenerate vector bright solitons of
the Manakov system by deriving their analytical forms through the bilinearization method.
Then we point out the existence of such nondegenerate solitons in other coupled systems,
namely the N-CNLS system, mixed 2-CNLS system, 2-CCNLS system, GCNLS system and
two-component LSRI system. In these systems, we also specify how the degenerate bright
soliton solution arises as a special case of the nondegenerate soliton solution and point out
their fascinating energy sharing collisions.

4. Nondegenerate Solitons and Their Collisions in Manakov System

To begin, we derive the nondegenerate bright soliton solutions of the Manakov system
(Equation (8) with σ1 = σ2 = 1) using the Hirota bilinear method. In order to obtain
this new class of soliton solutions, we first bilinearize the Manakov system with the
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bilinearizing transformation, qj = g(j)(z,t)
f (z,t) , j = 1, 2, where g(j)’s are complex functions

and f is a real function. It leads to the following bilinear forms of Equation (8), namely
(iDz + D2

t )g(j) · f = 0, j = 1, 2, D2
t f · f = 2 ∑2

n=1 g(n)g(n)∗, where ∗ denotes complex
conjugation. Here, the Hirota’s bilinear operators Dz and Dt are defined [153] as Dm

z Dn
t (a ·

b) =

(
∂
∂z −

∂
∂z′

)m(
∂
∂t −

∂
∂t′

)n

a(z, t)b(z′, t′)|z=z′ , t=t′ . Substituting the standard Hirota

series expansions for the unknown functions g(j) = εg(j)
1 + ε3g(j)

3 + ..., j = 1, 2, and
f = 1 + ε2 f2 + ε4 f4 + ... in the above bilinear equations, one can obtain a system of linear
partial differential equations (PDEs). Here ε is the series expansion parameter. These
linear PDEs arise after collecting the coefficients of the same powers of ε, and they can
be solved recursively for every order of ε with the general forms of seed solutions. The
resultant associated explicit expressions for g(j)’s and f constitute the soliton solutions to
the underlying Manakov system (8).

4.1. Nondegenerate Fundamental Soliton Solution of the Manakov System

The exact form of the nondegenerate fundamental soliton solution can be obtained by
considering the two different seed solutions for the two modes as

g(1)1 = α
(1)
1 eη1 , g(2)1 = α

(2)
1 eξ1 , η1 = k1t + ik2

1z, ξ1 = l1t + il2
1z, (14)

to the following lowest order linear PDEs, ig(j)
1z + g(j)

1tt = 0, j = 1, 2. In the above k1, l1,

α
(j)
1 , j = 1, 2, are distinct complex parameters. The presence of two distinct complex

wave numbers k1 and l1 (k1 6= l1, in general) in Equation (14) makes the final solution
as nondegenerate one. However, the identical seed solutions, that is the solutions (14)
with k1 = l1 but different α

(j)
1 ’s j = 1, 2, have been used so far to derive the vector bright

soliton solutions [35]. With the general forms of starting solutions (14), we allow the
series expansions of the unknown functions g(j) and f to terminate themselves while
solving the system of linear PDEs. We find that the series expansions become truncated as
g(j) = εg(j)

1 + ε3g(j)
3 and f = 1 + ε2 f2 + ε4 f4. With the explicit forms of unknown functions

g(j)
3 , f2 and f4, finally we obtain the following a new fundamental one-soliton solution for

the Manakov system,

q1 =
g(1)1 + g(1)3
1 + f2 + f4

=
1
D
(α

(1)
1 eη1 + eη1+ξ1+ξ∗1+∆(1)

1 ), (15a)

q2 =
g(2)1 + g(2)3
1 + f2 + f4

=
1
D
(α

(2)
1 eξ1 + eη1+η∗1+ξ1+∆(2)

1 ). (15b)

Here D = 1 + eη1+η∗1+δ1 + eξ1+ξ∗1+δ2 + eη1+η∗1+ξ1+ξ∗1+δ11 , e∆(1)
1 =

(k1−l1)α
(1)
1 |α

(2)
1 |

2

(k1+l∗1 )(l1+l∗1 )
2 , e∆(2)

1 =

− (k1−l1)|α
(1)
1 |

2α
(2)
1

(k1+k∗1)
2(k∗1+l1)

, eδ1 =
|α(1)1 |

2

(k1+k∗1)
2 , eδ2 =

|α(2)1 |
2

(l1+l∗1 )
2 and eδ11 =

|k1−l1|2|α
(1)
1 |

2|α(2)1 |
2

(k1+k∗1)
2(k∗1+l1)(k1+l∗1 )(l1+l∗1 )

2 . The

above one-soliton solution possesses two distinct complex wave numbers, k1 and l1, which
appear in both the expressions of q1 and q2 simultaneously. This confirms that the obtained



Photonics 2021, 8, 258 11 of 39

soliton solution is nondegenerate. The fundamental soliton solution (15a) and (15b) can
also be rewritten using Gram determinant forms as well [154,155],

g(1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗1
(k1+k∗1)

eη1+ξ∗1
(k1+l∗1 )

1 0 eη1

eξ1+η∗1
(l1+k∗1)

eξ1+ξ∗1
(l1+l∗1 )

0 1 eξ1

−1 0 |α(1)1 |
2

(k1+k∗1)
0 0

0 −1 0 |α(2)1 |
2

(l1+l∗1 )
0

0 0 −α
(1)
1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (16a)

g(2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗1
(k1+k∗1)

eη1+ξ∗1
(k1+l∗1 )

1 0 eη1

eξ1+η∗1
(l1+k∗1)

eξ1+ξ∗1
(l1+l∗1 )

0 1 eξ1

−1 0 |α(1)1 |
2

(k1+k∗1)
0 0

0 −1 0 |α(2)1 |
2

(l1+l∗1 )
0

0 0 0 −α
(2)
1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (16b)

f =

∣∣∣∣∣∣∣∣∣∣∣∣∣

eη1+η∗1
(k1+k∗1)

eη1+ξ∗1
(k1+l∗1 )

1 0

eξ1+η∗1
(l1+k∗1)

eξ1+ξ∗1
(l1+l∗1 )

0 1

−1 0 |α(1)1 |
2

(k1+k∗1)
0

0 −1 0 |α(2)1 |
2

(l1+l∗1 )

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (16c)

The above Gram determinant forms indeed satisfy the bilinear equations as well as
the Manakov Equation (8).

To explain the properties associated with the solution (15a) and (15b), we rewrite it in
hyperbolic form as

q1 =
2k1R A1eiη1I [cosh(ξ1R + φ1R) cos φ1I + i sinh(ξ1R + φ1R) sin φ1I ][

a11 cosh(η1R + ξ1R + φ1 + φ2 + c1) +
1

a∗11
cosh(η1R − ξ1R + φ2 − φ1 + c2)

] , (17a)

q2 =
2l1R A2eiξ1I [cosh(η1R + φ2R) cos φ2I + i sinh(η1R + φ2R) sin φ2I ][

a12 cosh(η1R + ξ1R + φ1 + φ2 + c1) +
1

a∗12
cosh(η1R − ξ1R + φ2 − φ1 + c2)

] , (17b)

where a11 =
(k∗1−l∗1 )

1
2

(k∗1+l1)
1
2

, a12 =
(k∗1−l∗1 )

1
2

(k1+l∗1 )
1
2

, c1 = 1
2 log (k∗1−l∗1 )

(l1−k1)
, c2 = 1

2 log (k1−l1)(k∗1+l1)
(l1−k1)(k1+l∗1 )

,

φ1 = 1
2 log (k1−l1)|α

(2)
1 |

2

(k1+l∗1 )(l1+l1)2 , φ2 = 1
2 log (l1−k1)|α

(1)
1 |

2

(k∗1+l1)(k1+k1)2 , η1R = k1R(t − 2k1Iz), η1I = k1I t +

(k2
1R − k2

1I)z, ξ1R = l1R(t − 2l1Iz), ξ1I = l1I t + (l2
1R − l2

1I)z, A1 = [α
(1)
1 /α

(1)∗
1 ]1/2, A2 =

i[α(2)1 /α
(2)∗
1 ]1/2. Here, φ1R, φ2R, φ1I and φ2I are real and imaginary parts of φ1 and φ2,

respectively, and k1R, l1R, k1I and l1I denote the real and imaginary parts of k1 and l1,
respectively. The geometrical structure of the solution (17a) and (17b) is described by
the four complex parameters k1, l1, α

(j)
1 , j = 1, 2. The nondegenerate fundamental bright

soliton solution (17a) and (17b) either propagates with identical velocity k1I = l1I or with
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non-identical velocities k1I 6= l1I in the two modes q1 and q2. In the identical velocity case,
the quantity φjI = 0, j = 1, 2 in (17a) and (17b) when k1I = l1I . This results in the forms

q1 =
2k1R A1eiη1I cosh(ξ1R + φ1R)[

a11 cosh(η1R + ξ1R + φ1 + φ2 + c1) +
1

a∗11
cosh(η1R − ξ1R + φ2 − φ1 + c2)

] , (18a)

q2 =
2l1R A2eiξ1I cosh(η1R + φ2R)[

a12 cosh(η1R + ξ1R + φ1 + φ2 + c1) +
1

a∗12
cosh(η1R − ξ1R + φ2 − φ1 + c2)

] , (18b)

where η1R = k1R(t − 2k1Iz), η1I = k1I t + (k2
1R − k2

1I)z, ξ1R = l1R(t − 2k1Iz), ξ1I =
k1I t + (l2

1R − k2
1I)z. The amplitude, velocity and central position of the nondegenerate

fundamental soliton in the first mode are found from Equation (18a) as 2k1R, 2l1I and φ1R
l1R

, re-
spectively. Similarly they are found for the soliton in the second mode from Equation (18b)
as 2l1R, 2k1I and φ2R

k1R
, respectively. The solution (18a) and (18b) admits both the symmetric

and asymmetric profiles, including a double-hump, a flat top and a single-hump profiles.
We have displayed a combination of these three types of symmetric profiles (and their
corresponding asymmetric profiles also) in our recent paper [76]. However, here, we
display a typical novel double-hump, a flat top and a single-hump profile in Figure 1.
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2
Figure 1. Symmetric intensity profiles of nondegenerate fundamental bright soliton solution (18a)
and (18b): while (a) denotes double-hump soliton in both the modes, (b) represents a flat-top in q1

mode and a double-hump in q2 mode and (c) denotes a single-hump in q1 mode and double-hump
in q2 mode. The parameter values of each figures are: (a): k1 = 0.333 + 0.5i, l1 = 0.315 + 0.5i,
α
(1)
1 = 0.45 + 0.45i, α

(2)
1 = 0.49 + 0.45i. (b): k1 = 0.425 + 0.5i, l1 = 0.3 + 0.5i, α

(1)
1 = 0.44 + 0.51i,

α
(2)
1 = 0.43 + 0.5i. (c): k1 = 0.55 + 0.5i, l1 = 0.333 + 0.5i, α

(1)
1 = 0.5 + 0.5i, α

(2)
1 = 0.5 + 0.45i.

The symmetric and asymmetric nature of the solution (18a) and (18b) can be confirmed
by calculating either the relative separation distance between the minima of the two modes
or by finding the corresponding extremum points from it. We remark that the double-hump
formation occurs in the structure of nondegenerate one-bright soliton solution (17a) and
(17b) when the relative velocity of the solitons in the two modes tends to zero. That is
∆v = v1 − v2 = 2(l1I − k1I) → 0. One can find the various special features associated
with the obtained nondegenerate fundamental soliton solution (17a) and (17b) further in
Ref. [76].

4.2. Nondegenerate Two-Soliton Solution

To obtain the nondegenerate two-soliton solution of Manakov Equation (8) we proceed
with the procedure given in the previous subsection along with the following seed solutions,
g(1)1 = α

(1)
1 eη1 + α

(1)
2 eη2 and g(2)1 = α

(2)
1 eξ1 + α

(2)
2 eξ2 , ηj = k jt + ik2

j z and ξ j = ljt + il2
j z,

j = 1, 2. We find that the series expansions for g(j), j = 1, 2, and f are terminated as
g(j) = εg(j)

1 + ε3g(j)
3 + ε5g(j)

5 + ε7g(j)
7 and f = 1+ ε2 f2 + ε4 f4 + ε6 f6 + ε8 f8. Here we assume

that all the k j’s and lj’s, j = 1, 2, are distinct. The explicit forms of the obtained unknown
functions in the truncated series expansions constitute the following nondegenerate two-
soliton solution and it can be expressed using Gram determinants in the following way:
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g(N) =

∣∣∣∣∣∣
A I φ

−I B 0T

0 CN 0

∣∣∣∣∣∣, f =

∣∣∣∣ A I
−I B

∣∣∣∣, N = 1, 2. (19)

Here the matrices A and B are of the order (4× 4) defined as A =

(
Amm′ Amn
Anm Ann′

)
,

B =

(
κmm′ κmn
κnm κnn′

)
, m, m′, n, n′ = 1, 2. The various elements of the matrix A can be

obtained from the following, Amm′ =
e

ηm+η∗
m′

(km+k∗
m′ )

, Amn = eηm+ξ∗n
(km+l∗n)

, Ann′ =
e

ξn+ξ∗
n′

(ln+l∗
n′ )

, Anm =

eη∗n+ξm

(k∗n+lm)
, m, m′, n, n′ = 1, 2. The elements of the matrix B are κmm′ =

ψ†
mσψm′

(k∗m+km′ )
, κmn =

ψ†
mσψ′n

(k∗m+kn)
, κnm = ψ

′†
n σψm

(l∗n+km)
, κnn′ =

ψ
′†
n σψ′n′

(l∗n+ln′ )
. In the latter, the column matrices are defined as

ψj =

(
α
(1)
j
0

)
, ψ′j =

(
0

α
(2)
j

)
, j = m, m′, n, n′ = 1, 2, ηj = k jt + ik2

j z and ξ j = ljt + il2
j z,

j = 1, 2. The other matrices in Equation (3) are defined as φ =
(
eη1 eη2 eξ1 eξ2

)T ,

C1 = −
(

α
(1)
1 α

(1)
2 0 0

)
, C2 = −

(
0 0 α

(2)
1 α

(2)
2

)
, 0 =

(
0 0 0 0

)
and σ = I is

a (4× 4) identity matrix. The presence of eight arbitrary complex parameters k j, lj, α
(j)
1

and α
(j)
2 , j = 1, 2, define the profile shapes of the nondegenerate two solitons and their

interesting collision scenarios. In addition to the above, we also find that the Manakov
system also admits degenerate and nondegenerate solitons simultaneously under the wave
number restriction k1 = l1 (or k2 = l2) but k2 6= l2 (or k1 6= l1). Such a special kind of
partially nondegenerate two-soliton solution can be deduced by fixing the latter wave
number restriction in the completely nondegenerate two-soliton solution (19). This partially
nondegenerate soliton solution can also be derived through the Hirota bilinear method. To
derive this solution one has to assume the following seed solutions, g(1)1 = α

(1)
1 eη1 + α

(1)
2 eη2

and g(2)1 = α
(2)
1 eη1 + α

(2)
2 eξ2 , ηj = k jt + ik2

j z and ξ2 = l2t + il2
2z, j = 1, 2, in the solution

construction process. The resultant coexistence soliton solution and its dynamics are
characterized by only seven complex parameters k j, l2, α

(j)
1 and α

(j)
2 , j = 1, 2.

4.3. Various Types of Collision Dynamics of Nondegenerate Solitons

In order to understand the interesting collision properties associated with the nonde-
generate solitons, one has to analyze the asymptotic forms of the complete nondegenerate
two-soliton solution (19) of the Manakov equation. By doing so, we observe that the
nondegenerate solitons in general exhibit three types of collision scenarios, namely shape
preserving, shape altering and shape changing collision behaviors, for either of the two
cases (i) Equal velocities: k1I = l1I , k2I = l2I and (ii) Unequal velocities: k1I 6= l1I , k2I 6= l2I .
To facilitate the understanding of these collision properties, here we present the asymptotic
analysis for the case of equal velocities only and it can be performed for unequal velocities
case also in a similar manner.

4.3.1. Asymptotic Analysis

We perform a careful asymptotic analysis for the nondegenerate two soliton solu-
tion (19) in order to understand the interaction dynamics of the nondegenerate solitons
completely. We deduce the explicit expressions for the individual solitons at the asymptotic
limits z → ±∞. To explore this, we consider as a typical example k jR, ljR > 0, j = 1, 2,
k1I > k2I , l1I > l2I , k1I = l1I and k2I = l2I , that corresponds to head-on collision between
the two nondegenerate solitons. In this situation, the two fundamental solitons S1 and S2
are well separated and subsequently the asymptotic forms of the individual nondegenerate
solitons can be deduced from the solution (19) by incorporating the following asymptotic
nature of the wave variables ξ jR = ljR(t− 2ljIz) and ηjR = k jR(t− 2k jIz), j = 1, 2, in it. The
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wave variables ηjR and ξ jR behave asymptotically as (i) Soliton 1 (S1): η1R, ξ1R ' 0, η2R,
ξ2R → ∓∞ as z∓∞ and (ii) Soliton 2 (S2): η2R, ξ2R ' 0, η1R, ξ1R → ∓∞ as z±∞. Corre-
spondingly, these results lead to the following asymptotic expressions of nondegenerate
individual solitons.
(a) Before collision: z→ −∞

Soliton 1: In this limit, the asymptotic forms of q1 and q2 are deduced from the two soliton
solutions (19) for soliton 1 as below:

q1 '
2A1−

1 k1Reiη1I cosh(ξ1R + φ−1 )[
a11 cosh(η1R + ξ1R + φ−1 + φ−2 + c1) +

1
a∗11

cosh(η1R − ξ1R + φ−2 − φ−1 + c2)
] , (20a)

q2 '
2A1−

2 l1Reiξ1I cosh(η1R + φ−2 )[
a12 cosh(η1R + ξ1R + φ−1 + φ−2 + c1) +

1
a∗12

cosh(η1R − ξ1R + φ−2 − φ−1 + c2)
] . (20b)

Here, a11 =
(k∗1−l∗1 )

1
2

(k∗1+l1)
1
2

, a12 =
(k∗1−l∗1 )

1
2

(k1+l∗1 )
1
2

, φ−1 = 1
2 log (k1−l1)|α

(2)
1 |

2

(k1+l∗1 )(l1+l∗1 )
2 ,

φ−2 = 1
2 log (l1−k1)|α

(1)
1 |

2

(k∗1+l1)(k1+k∗1)
2 , A1−

1 = [α
(1)
1 /α

(1)∗

1 ]1/2 and A1−
2 = i[α(2)1 /α

(2)∗

1 ]1/2. In the lat-

ter, superscript (1−) represents soliton S1 before collision and subscript (1, 2) denotes the
two modes q1 and q2, respectively.

Soliton 2: The asymptotic expressions for soliton 2 in the two modes before collision turn
out to be

q1 '
2k2R A2−

1 ei(η2I+θ−1 ) cosh(ξ2R + ϕ−1 )[
a21 cosh(η2R + ξ2R + ϕ−1 + ϕ−2 + c3) +

1
a∗21

cosh(η2R − ξ2R + ϕ−2 − ϕ−1 + c4)
] , (21a)

q2 '
2l2R A2−

2 ei(ξ2I+θ−2 ) cosh(η2R + ϕ−2 )[
a22 cosh(η2R + ξ2R + ϕ−1 + ϕ−2 + c3) +

1
a∗22

cosh(η2R − ξ2R + ϕ−2 − ϕ−1 + c4)
] . (21b)

In the above, a21 =
(k∗2−l∗2 )

1
2

(k∗2+l2)
1
2

, a22 =
(k∗2−l∗2 )

1
2

(k2+l∗2 )
1
2

, c3 = 1
2 log (k∗2−l∗2 )

(l2−k2)
, c4 = 1

2 log (k2−l2)(k∗2+l2)
(l2−k2)(k2+l∗2 )

,

ϕ−1 = 1
2 log (k2−l2)|α

(2)
2 |

2

(k2+l∗2 )(l2+l∗2 )
2 + Ψ1, Ψ1 = 1

2 log |k1−l2|2|l1−l2|4
|k1+l∗2 |2|l1+l∗2 |4

, ϕ−2 = 1
2 log (l2−k2)|α

(1)
2 |

2

(k∗2+l2)(k2+k∗2)
2 +

Ψ2, Ψ2 = 1
2 log |k2−l1|2|k1−k2|4

|k2+l∗1 |2|k1+k∗2 |4
, eiθ−1 =

(k1−k2)(l1−l2)(l∗1+l2)(k2−l1)
1
2 (k1+k∗2)(k

∗
2+l1)

1
2

(k∗1−k∗2)(l1+l∗2 )(l
∗
1−l∗2 )(k

∗
2−l∗1 )

1
2 (k∗1+k2)(k2+l∗1 )

1
2

, A2−
1 =

[α
(1)
2 /α

(1)∗
2 ]1/2, A2−

2 = [α
(2)
2 /α

(2)∗
2 ]1/2, eiθ−2 =

(l1−l2)(k1−l2)
1
2 (k1+l∗2 )

1
2 (l1+l∗2 )

(k∗1−l∗2 )
1
2 (l∗1−l∗2 )(k

∗
1+l2)

1
2 (l∗1+l2)

. Here, superscript

(2−) refers to soliton S2 before collision.

(b) After collision: z→ +∞

Soliton 1: The asymptotic form for soliton 1 after collision is deduced as,

q1 '
2k1R A1+

1 ei(η1I+θ+1 ) cosh(ξ1R + φ+
1 )[

a11 cosh(η1R + ξ1R + φ+
1 + φ+

2 + c1) +
1

a∗11
cosh(η1R − ξ1R + φ+

2 − φ+
1 + c2)

] , (22a)

q2 '
2l1R A2+

1 ei(ξ1I+θ+2 ) cosh(η1R + φ+
2 )[

a12 cosh(η1R + ξ1R + φ+
1 + φ+

2 + c1) +
1

a∗12
cosh(η1R − ξ1R + φ+

2 − φ+
1 + c2)

] . (22b)

Here, φ+
1 = φ−1 + ψ1, ψ1 = 1

2 log |k2−l1|2|l1−l2|4
|k2+l∗1 |2|l1+l∗2 |4

, φ+
2 = φ−2 + ψ2,

ψ2 = 1
2 log |k1−l2|2|k1−k2|4

|k1+l∗2 |2|k1+k∗2 |4
, eiθ+1 =

(k1−k2)(k1−l2)
1
2 (k∗1+k2)(k∗1+l2)

1
2

(k∗1−k∗2)(k
∗
1−l∗2 )

1
2 (k1+k∗2)(k1+l∗2 )

1
2

,
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eiθ+2 =
(l1−l2)(k2−l1)

1
2 (k2+l∗1 )

1
2 (l∗1+l2)

(k∗2−l∗1 )
1
2 (l∗1−l∗2 )(k

∗
2+l1)

1
2 (l1+l∗2 )

, A1+
1 = [α

(1)
1 /α

(1)∗

1 ]1/2 and A1+
2 = [α

(2)
1 /α

(2)∗

1 ]1/2, in

which superscript (1+) denotes soliton S1 after collision.

Soliton 2: The expression for soliton 2 after collision deduced from the two soliton solu-
tions is

q1 '
2A1+

2 k2Reiη2I cosh(ξ2R + ϕ+
1 )[

a21 cosh(η2R + ξ2R + ϕ+
1 + ϕ+

2 + c3) +
1

a∗21
cosh(η2R − ξ2R + ϕ+

2 − ϕ+
1 + c4)

] , (23a)

q2 '
2A2+

2 l2Reiξ2I cosh(η2R + ϕ+
2 )

[a22 cosh(η2R + ξ2R + ϕ+
1 + ϕ+

2 + c3) +
1

a∗22
cosh(η2R − ξ2R + ϕ+

2 − ϕ+
1 + c4)

] , (23b)

where ϕ+
1 = 1

2 log (k2−l2)|α
(2)
2 |

2

(k2+l∗2 )(l2+l∗2 )
2 , ϕ+

2 = 1
2 log (l2−k2)|α

(1)
2 |

2

(k∗2+l2)(k2+k∗2)
2 , ϕ+

3 = 1
2 log |k2−l2|2|α

(1)
2 |

2|α(2)2 |
2

|k2+l∗2 |2(k2+k∗2)
2(l2+l∗2 )

2 ,

ϕ+
4 = 1

2 log |α
(1)
2 |

2(l2+l∗2 )
2

|α(2)2 |2(k2+k∗2)
2
, A2+

1 = [α
(1)
2 /α

(1)∗
2 ]1/2 and A2+

2 = i[α(2)2 /α
(2)∗
2 ]1/2. In the latter,

superscript (2+) represents soliton S2 after collision.
In the above, ηjI = k jI t + (k2

jR − k2
jI)z, ξ jI = ljI t + (l2

jR − l2
jI)z, j = 1, 2, and the phase

terms ϕ−j , j = 1, 2, can also be rewritten as ϕ−1 = ϕ+
1 + Ψ1, ϕ−2 = ϕ+

2 + Ψ2. The above
asymptotic analysis clearly shows that there is a definite drastic alteration in the phase
terms only. It can be identified from the following relations among the phase terms before
and after collisions. That is,

φ+
1 = φ−1 + ψ1, φ+

2 = φ−2 + ψ2, ϕ+
1 = ϕ−1 −Ψ1, ϕ+

2 = ϕ−2 −Ψ2. (24)

The above relations imply that the initial structures of the nondegenerate two solitons
are preserved except for the phase terms. From this, we infer that they undergo either
shape preserving collision with zero phase shift or shape changing collision with a finite
phase shift. In addition to this, a special shape altering collision can also occur with a small
phase shift. The zero phase shift condition, deduced from Equation (24), turns out to be

φ+
j = φ−j , ϕ+

j = ϕ−j , j = 1, 2. (25)

In order to follow the above condition, the additional phase constants ψ′js and Ψj’s
should be maintained as zero. That is,

ψ1 =
1
2

log
|k2 − l1|2|l1 − l2|4
|k2 + l∗1 |2|l1 + l∗2 |4

= 0, ψ2 =
1
2

log
|k1 − l2|2|k1 − k2|4
|k1 + l∗2 |2|k1 + k∗2 |4

= 0. (26a)

Ψ1 =
1
2

log
|k1 − l2|2|l1 − l2|4
|k1 + l∗2 |2|l1 + l∗2 |4

= 0, Ψ2 =
1
2

log
|k2 − l1|2|k1 − k2|4
|k2 + l∗1 |2|k1 + k∗2 |4

= 0. (26b)

From the above, we deduce the following criterion, corresponding to the condi-
tions (25), for the occurrence of shape preserving collision with zero phase shift,

|k2 + l∗1 |2

|k2 − l1|2
| − |k1 + l∗2 |2
|k1 − l2|2

= 0. (27)

As a result, whenever the conditions (25) or equivalently the criterion (27), are satisfied
the nondegenerate bright solitons exhibit shape preserving collision with a zero phase shift.
Otherwise, they undergo shape altering and shape changing collisions, as discussed in the
following. Furthermore, the shape changing (and altering) collision scenario also belongs
to the elastic collision as we describe below.
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The above analysis clearly demonstrates that during the collision process the initial
phase of each of the soliton is changed. The total phase shift of soliton S1 in the two modes
after collision becomes

∆Φ1 = (φ+
1 + φ+

2 )− (φ−1 + φ−2 ) = ψ1 + ψ2

=
1
2

log
|k2 − l1|2|l1 − l2|4|k1 − l2|2|k1 − k2|4
|k2 + l∗1 |2|l1 + l∗2 |4|k1 + l∗2 |2|k1 + k∗2 |4

. (28a)

Similarly the total phase shift suffered by soliton S2 in the two modes is

∆Φ2 = (ϕ+
1 + ϕ+

2 )− (ϕ−1 + ϕ−2 ) = −(Ψ1 + Ψ2)

= −1
2

log
|k1 − l2|2|l1 − l2|4|k2 − l1|2|k1 − k2|4
|k1 + l∗2 |2|l1 + l∗2 |4|k2 + l∗1 |2|k1 + k∗2 |4

= −(ψ1 + ψ2) = −∆Φ1. (28b)

From the above expressions, we conclude that the phases of all the solitons are mainly
influenced by the wave numbers k j and lj, j = 1, 2, and not by the complex parameters

α
(j)
1 ’s and α

(j)
2 ’s, j = 1, 2. This peculiar property of nondegenerate solitons is different in

the case of degenerate vector bright solitons [35,36], see also Section 4.6 below, where the
complex parameters α

(j)
1 ’s and α

(j)
2 ’s, associated with polarization constants, play a crucial

role in shifting the position of solitons after the collision.

4.3.2. Elastic Collision: Shape Preserving, Shape Altering and Shape Changing Collisions

From the above asymptotic analysis, we observe that the intensities of nondegenerate
solitons S1 and S2 in the two modes are the same before and after collision in the equal
velocities case, k1I = l1I and k2I = l2I . To confirm this, we calculate the transition intensities

(using the expressions for the transition amplitudes Ti
j =

Ai+
j

Ai−
j

, i, j = 1, 2), |T1
1 |2 =

|A1+
1 |

2

|A1−
1 |2

,

|T1
2 |2 =

|A1+
2 |

2

|A1−
2 |2

, |T2
1 |2 =

|A2+
1 |

2

|A2−
1 |2

and |T2
2 |2 =

2|A2+
2 |

2

2|A2−
2 |2

. The various expressions deduced for

the different Ai
j’s previously confirm that the transition intensities are unimodular. That

is, |Tl
j |2 = 1, j, l = 1, 2. Thus, the collision scenario that occurs among the nondegenerate

solitons, in general, is always elastic. So, the nondegenerate solitons, for k1I = l1I , k2I = l2I ,
(but k1 6= l1, k2 6= l2) corresponding to two distinct wave numbers in general undergo
elastic collision without any intensity redistribution between the modes q1 and q2. However,
it is clear from Equation (24), that the changes that occur in the phase terms do alter the
structure of the nondegenerate solitons during the collision scenario. Consequently, there
is a possibility of shape altering and shape changing collisions occurring, without violating
the unimodular conditions of transition intensities, in the equal velocities case, apart from
the earlier mentioned shape preserving collision. A typical shape-preserving collision is
displayed in Figure 2, in which we set two well separated symmetric double-hump soliton
profiles as initial profiles in both the modes at z = −10. The initial structures of the two
double-hump solitons are preserved after the collision. It is evident from the dashed red
curves drawn at z = +10 in Figure 2. In addition to this, we have also verified that the
wave parameters k j and lj, j = 1, 2, that are given in the caption of Figure 2, satisfy the
zero phase shift criterion (27). The obtained numerical value from Equation (27) is equal
to −0.0064 (nearly equal to) 0. This value physically implies that during the collision the
two double-humped nondegenerate bright solitons pass through one another without a
phase shift and emerge from the collision unaltered in shape, amplitude and velocity. This
remarkable property has not been observed earlier in the cases of scalar NLS bright solitons
as well as in the degenerate vector bright solitons [35,36]. Very interestingly, a similar zero
phase shift shape preserving collision also occurs even when the symmetric double-hump
soliton interacts with an asymmetric double-hump soliton. Such collision is illustrated
in Figure 3.
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z=-10

z=10 S1
- S1

+

S2
-

S2
+

-80 0 80

0

0.05

t

|q
1

2

S1
- S1

+

S2
-

S2
+

-80 0 80

0

0.05

t

|q
2

2

Figure 2. Shape preserving collision of two symmetric double-hump solitons—the energy is not
exchanged among the nondegenerate solitons during the collision process. The parameter values

are k1 = 0.333 + 0.5i, l1 = 0.315 + 0.5i, k2 = 0.315− 2.2i, l2 = 0.333− 2.2i, α
(1)
1 = 0.45 + 0.45i,

α
(1)
2 = 0.49 + 0.45i, α

(2)
1 = 0.49 + 0.45i and α

(2)
2 = 0.45 + 0.45i.

In this case, the total intensity of each soliton is conserved which can be verified from
the relations |Al−

j |
2 = |Al+

j |
2, j, l = 1, 2. In addition to this, the total intensity in each of the

modes is also conserved, that is |A1−
j |

2 + |A2−
j |

2 = |A1+
j |

2 + |A2+
j |

2 = constant.

z=-12

z=12 S1
-

S2
-

S1
+

S2
+

-80 0 80

0

0.1

t

|q
1

2 S1
-

S2
-

S1
+

S2
+

-80 0 80

0

0.1

t

|q
2

2

Figure 3. Shape preserving collision between a symmetric double-hump soliton and an asymmetric
double-hump soliton: the parameter values are k1 = 0.333 + 0.5i, l1 = 0.315 + 0.5i, k2 = 0.315− 2.2i,
l2 = 0.333− 2.2i, α

(1)
1 = 0.45 + 0.45i, α

(1)
2 = 2.49 + 2.45i, α

(2)
1 = 0.49 + 0.45i and α

(2)
2 = 0.45 + 0.45i.

Then, we also come across another type of elastic collision, namely shape altering
collision for certain sets of parametric choices again with k1I = l1I and k2I = l2I . To
demonstrate this collision scenario in Figure 4, we fix the parameter values as k1 =

0.425 + 0.5i, l1 = 0.3 + 0.5i, k2 = 0.3− 2.2i, l2 = 0.425− 2.2i, α
(1)
1 = α

(2)
2 = 0.5 + 0.5i

and α
(1)
2 = α

(2)
1 = 0.45 + 0.5i. From this figure, one can observe that a symmetric (or

asymmetric) flattop soliton collides with an asymmetric (or symmetric) double-hump
soliton in the q1 (or q2) component. As a result, the symmetric flattop profile in the
q1 mode is modified slightly as the asymmetric flattop profile and slightly asymmetric
double-hump soliton S−2 becomes a symmetric double-hump soliton. Similarly, while the
symmetric double-hump soliton S−1 in the q2 mode changes slightly into an asymmetric
structure, the asymmetric flattop soliton S−2 becomes symmetric. As we pointed out earlier,
this kind of shape alteration essentially arises in the structures of nondegenerate bright
solitons is due to the phase conditions (24). However, the shape preserving nature of the
nondegenerate solitons can be brought out by taking appropriate position shifts based on
the expressions (22a) and (22b) and (23a) and (23b). For example, the expressions (22a)
and (22b) of soliton 1 after collision exactly coincide with the expressions (20a) and (20b)
after substituting z′ = z− ψ1

2l1Rk1I
and z′ = z− ψ2

2k1Rk1I
, respectively, in it. Similarly, for the

soliton 2, the expressions (23a) and (23b) exactly match with the expressions (21a) and
(21b) after taking the position shifts z′ = z + Ψ1

2l2Rk2I
and z′ = z + Ψ2

2k2Rk2I
, respectively, into

account. Correspondingly, the shapes of the nondegenerate solitons are preserved. A
typical example of this transition is illustrated in Figure 4c,d, where the initial profiles are



Photonics 2021, 8, 258 18 of 39

retained after taking the shifts in the positions of solitons. This is also true in the case of
shape changing collision. Here, we have not displayed the shape changing collisions and
their corresponding position shift plots for brevity.

z=-12

z=12 S1
- S1

+

S2
-

(a)

-70 0 70

0

0.09

t

|q
1

2

S1
- S1

+

S2
-S2

- (b)

-70 0 70

0

0.09

t

|q
2

2

z=-12

z=12
(c)

S1
- S1

+

S2
-

S2
+

-70 0 70

0

0.09

t

|q
1

2

(d)
S1
- S1

+

S2
-

S2
+

-70 0 70

0

0.09

t
|q

2

2

Figure 4. (a–d) A typical shape altering collision is displayed in the top panels. Their corresponding
shape preserving nature is brought out in the bottom panels after taking a pair of position shifts,
(z′ = z− ψ1

2l1Rk1I
= 12.3053, z′ = z− ψ2

2k1Rk1I
= 12.27) and (z′ = z + Ψ1

2l2Rk2I
= 12.0614, z′ = z + Ψ2

2k2Rk2I
=

12.0694) in the expressions (22a) and (22b) of soliton 1 and the expressions (23a) and (23b) of soliton 2,
respectively.

4.4. Collision between Nondegenerate and Degenerate Solitons

In this sub-section, we discuss the collision among the degenerate and nondegenerate
solitons admitted by the two-soliton solution (19) of the Manakov system (8) in the partial
nondegenerate limit k1 = l1 and k2 6= l2. The following asymptotic analysis assures that
there is a definite energy redistribution occurs among the modes q1 and q2.

4.4.1. Asymptotic Analysis

To elucidate this new kind of collision behavior, we analyze the partially nondegener-
ate two-soliton solution (19) in the asymptotic limits z→ ±∞. The resultant action yields
the asymptotic forms corresponding to degenerate and nondegenerate solitons. To obtain
the asymptotic forms for the present case we incorporate the asymptotic nature of the
wave variables ηjR = k jR(t− 2kI jz) and ξ2R = l2R(t− 2l2Iz), j = 1, 2, in the solution (19).
Here the wave variable η1R corresponds to the degenerate soliton and η2R, ξ2R correspond
to the nondegenerate soliton. In order to find the asymptotic behavior of these wave
variables we consider the parametric choice as k1R, k2R, l2R > 0, k1I > 0, k2I , l2I < 0,
k1I > k2I , k1I > l2I . For this choice, the wave variables behave asymptotically as follows:
(i) degenerate soliton S1: η1R ' 0, η2R,ξ2R → ∓∞ as z → ∓∞ (ii) nondegenerate soliton
S2: η2R, ξ2R ' 0, η1R → ±∞ as z→ ±∞. By incorporating these asymptotic behaviors of
wave variables in the solution (19), we deduce the following asymptotic expressions for
degenerate and nondegenerate solitons.

(a) Before collision: z→ −∞

Soliton 1: In this limit, the asymptotic form for the degenerate soliton deduced from the
partially nondegenerate two soliton solution (19) is

qj '

A1−
1

A1−
2

k1Reiη1I sech(η1R +
R
2
), j = 1, 2, (29)

where A1−
j = α

(j)
1 /(|α(1)1 |2 + |α

(2)
1 |2)1/2, j = 1, 2, R = ln (|α(1)1 |

2+|α(2)1 |
2)

(k1+k∗1)
2 . Here, in A1−

j the

superscript 1− denotes soliton S1 before collision and subscript j refers to the mode number.
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Soliton 2: The asymptotic expressions for the nondegenerate soliton S2 which is present in
the two modes before collision are obtained as

q1 '
2k2R A2−

1
D

(
eiξ2I+Λ1 cosh(η2R +

Φ21 − ∆21

2
) + eiη2I+Λ2 cosh(ξ2R +

λ2 − λ1

2
)

)
, (30a)

q2 '
2l2R A2−

2
D

(
eiη2I+Λ7 cosh(ξ2R +

Γ21 − γ21

2
) + eiξ2I+Λ6 cosh(η2R +

λ7 − λ6

2
)

)
, (30b)

D = eΛ5 cosh(η2R − ξ2R +
λ3 − λ4

2
) + eΛ3 cosh(i(η2I − ξ2I) +

ϑ12 − ϕ21

2
)

+eΛ4 cosh(η2R + η3R +
λ5 − R

2
).

Here, A2−
1 = [α

(1)
2 /α

(1)∗
2 ]1/2, A2−

2 = [α
(2)
2 /α

(2)∗
2 ]1/2. In the latter the superscript 2−

denote nondegenerate soliton S2 before collision. The various other constants appearing in
Equation (30) are defined in the Appendix A.

(b) After collision: z→ +∞

Soliton 1: The asymptotic forms for degenerate soliton S1 after collision deduced from the
solution (19) (with k1 = l1 and k2 6= l2) as,

qj '

A1+
1

A1+
2

ei(η1I+θ+j )k1R sech(η1R +
R′ − ς22

2
), j = 1, 2, (31)

where A1+
1 = α

(1)
1 /(|α(1)1 |2 + χ|α(2)1 |2)1/2, A1+

2 = α
(2)
1 /(|α(1)1 |2χ−1 + |α(2)1 |2)1/2, χ = (|k1−

l2|2|k1 + k∗2 |2)/(|k1 − k2|2|k1 + l∗2 |2), eiθ+1 =
(k1−k2)(k∗1+k2)(k1−l2)

1
2 (k∗1+l2)

1
2

(k∗1−k∗2)(k1+k∗2)(k
∗
1−l∗2 )

1
2 (k1+l∗2 )

1
2

,

eiθ+2 =
(k1−k2)

1
2 (k∗1+k2)

1
2 (k1−l2)(k∗1+l2)

(k∗1−k∗2)
1
2 (k1+k∗2)

1
2 (k∗1−l∗2 )(k1+l∗2 )

. Here 1+ in A1+
1 refers to degenerate soliton S1 af-

ter collision.

Soliton 2: Similarly the expression for the nondegenerate soliton, S2, after collision deduced
from the two soliton solution (19) (with k1 = l1 and k2 6= l2) is

q1 '
2k2R A2+

1 eiη2I cosh(ξ2R + Λ22−ρ1
2 )[ (k∗2−l∗2 )

1
2

(k∗2+l2)
1
2

cosh(η2R + ξ2R + ς22
2 ) +

(k2+l∗2 )
1
2

(k2−l2)
1
2

cosh(η2R − ξ2R + R3−R6
2 )

] , (32a)

q2 '
2l2R A2+

2 eiξ2I cosh(η2R +
µ22−ρ2

2 )[ (k∗2−l∗2 )
1
2

(k2+l∗2 )
1
2

cosh(η2R + ξ2R + ς22
2 ) +

(k∗2+l2)
1
2

(k2−l2)
1
2

cosh(η2R − ξ2R + R3−R6
2 )

] . (32b)

where ρj = log α
(j)
2 , j = 1, 2, A2+

1 = [α
(1)
2 /α

(1)∗
2 ]1/2, A2+

2 = i[α(2)2 /α
(2)∗
2 ]1/2. The explicit

expressions of all the undefined constants are given in Appendix A.

4.5. Degenerate Soliton Collision Induced Shape Changing Scenario of Nondegenerate Soliton

The coexistence of nondegenerate and degenerate solitons can be realized from the
partially nondegenerate limit of the soliton solution (19) (with k1 = l1 and k2 6= l2).
Such coexisting solitons undergo a novel collision property, which has been illustrated
in Figure 5. From this figure, one can observe that the intensity of the degenerate soliton
S1 is enhanced after collision in the q1 mode and it is suppressed in the q2 mode. As
we expected, like in the complete degenerate case [35,41], the degenerate soliton under-
goes energy redistribution among both the modes. In this case, the polarization vectors,
Al

j = α
(j)
l /(|α(1)1 |2 + |α

(2)
1 |2)1/2, l, j = 1, 2, play a crucial role in changing the shape of the

degenerate solitons under collision, where the intensity redistribution occurs between the
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modes q1 and q2. As we have pointed out below in the next subsection, the shape preserv-
ing collision arises in the pure degenerate case when the polarization parameters obey

the condition, α
(1)
1

α
(1)
2

=
α
(2)
1

α
(2)
2

, where α
(j)
i ’s, i, j = 1, 2, are complex parameters related to the

polarization vectors as given above. However, this collision property is not true in the case
of nondegenerate solitons as we have depicted in Figure 5. As a result, the nondegenerate
soliton S2 switches its asymmetric double-hump profile into a single-hump profile along
with a phase shift. In addition, we also noticed from the asymptotic expressions (30a)
and (30b) and (32a) and (32b), that the asymmetric double-hump profile of nondegenerate
soliton is transformed into another form of an asymmetric double-hump profile when it
interacts with a degenerate soliton for a specific choice of parameter values. In the non-
degenerate case, the relative separation distances (or phases) are in general not preserved
during the collision. Therefore the mechanism behind the occurrence of shape preserving
and shape changing collisions in the nondegenerate solitons is quite new. These novel
collision properties can be understood from the corresponding asymptotic analysis given
in the previous subsection. The analysis reveals that energy redistribution occurs between
the modes q1 and q2. In order to confirm the shape changing nature of this interesting
collision scenario, we obtain the following expression for the transition amplitudes,

T1
1 =

(|α(1)1 |2 + |α
(2)
1 |2)1/2

(|α(1)1 |2 + χ|α(2)1 |2)1/2
, T1

2 =
(|α(1)1 |2 + |α

(2)
1 |2)1/2

(|α(1)1 |2χ−1 + |α(2)1 |2)1/2
. (33)

In general, the transition amplitudes are not equal to unity. If the quantity Tl
j is not

unimodular (for this case the constant χ 6= 1), then the degenerate and nondegenerate
solitons always exhibit shape changing collision. The standard elastic collision can be
recovered when χ = 1. One can calculate the shift in the positions of both degenerate
and nondegenerate solitons after collision from the asymptotic analysis. This new kind
of collision property has not been observed in the degenerate vector bright solitons of the
Manakov system [35,41].

Figure 5. Shape changing collision between a degenerate and nondegenerate soliton: k1 = l1 = 1 + i,
k2 = 1− i, l2 = 1.5− 0.5i, α

(1)
1 = 0.8 + 0.8i, α

(2)
2 = 0.6 + 0.6i, α

(1)
2 = 0.25 + 0.25i, α

(2)
1 = 1 + i.

4.6. Degenerate Bright Solitons and Their Shape Changing/Energy Redistribution Collision in the
Manakov System

The already reported degenerate vector one-bright soliton solution of the Manakov
system (8) can be deduced from the one-soliton solution (15a) and (15b) by imposing the
condition k1 = l1 in it. The forms of qj given in Equations (15a) and (15b) degenerate into
the standard bright soliton form [35,41]

qj =
α
(j)
1 eη1

1 + eη1+η∗1+R , j = 1, 2, (34)

which can be rewritten as

qj = k1R Âjeiη1I sech(η1R +
R
2
), (35)
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where η1R = k1R(t − 2k1Iz), η1I = k1I t + (k2
1R − k2

1I)z,

Âj =
α
(j)
1√

(|α(1)1 |2+|α
(2)
1 |2)

, eR =
(|α(1)1 |

2+|α(2)1 |
2)

(k1+k∗1)
2 , j = 1, 2. Note that the above fundamental

bright soliton always propagates in both the modes q1 and q2 with the same velocity 2k1I .
The polarization vectors (Â1, Â2)

† have different amplitudes and phases, unlike the case
of nondegenerate solitons where they have only different unit phases. The presence of
a single wave number k1 in the solution (35) restricts the degenerate soliton to have a
single-hump form only. A typical profile of the degenerate soliton is shown in Figure 6. As
already pointed out in [35,41], the amplitude and central position of the degenerate vector
bright soliton are obtained as 2k1R Âj, j = 1, 2 and R

2k1R
, respectively.

|q1
2

|q2
2

-30 0 30

0

0.08

t

|q
1,
2

2

Figure 6. Degenerate one-soliton of the Manakov equation: the values of the parameters are k1 =

0.3 + 0.5i, α
(1)
1 = 1.5 + 1.5i, α

(2)
1 = 0.5 + 0.5i.

Furthermore, the degenerate two-soliton solution can be deduced from the nondegen-
erate two-soliton solution (19) by applying the degenerate limits k1 = l1 and k2 = l2. This
degenerate two-soliton solution of the Manakov system is obtained in [35]. The two-soliton
solution can be compactly written in terms of Gram determinants as

qj =
g(j)

f
, j = 1, 2, (36a)

where

g(j) =

∣∣∣∣∣∣∣∣∣∣∣

A11 A12 1 0 eη1

A21 A22 0 1 eη2

−1 0 B11 B12 0
0 −1 B21 B22 0
0 0 −α

(j)
1 −α

(j)
2 0

∣∣∣∣∣∣∣∣∣∣∣
, f =

∣∣∣∣∣∣∣∣
A11 A12 1 0
A21 A22 0 1
−1 0 B11 B12
0 −1 B21 B22

∣∣∣∣∣∣∣∣, (36b)

in which Aij =
eηi+η∗j

ki + k∗j
, and Bij = κji =

(
α
(1)
j α

(1)∗
i + α

(2)
j α

(2)∗
i

)
(k j + k∗i )

, i, j = 1, 2. The above

degenerate bright two-soliton solution is characterized by six arbitrary complex parameters
k1, k2, α

(j)
1 and α

(j)
2 , j = 1, 2.

By fixing the wave numbers as ki = li, i = 1, 2, ..., N, the N degenerate vector bright
soliton solution can be recovered from the nondegenerate N-soliton solutions. In passing
we, also note that the nondegenerate one-soliton solution (15a) and (15b) can arise when we
fix the parameters α

(1)
2 = α

(2)
1 = 0 in Equations (36a) and (36b) and rename the constants

k2 as l1 and α
(2)
2 as α

(2)
1 in the resultant solution. We also note that the above degenerate

two-soliton solution (36a) and (36b) can also be rewritten from the Gram determinant forms
of the nondegenerate two-soliton solution (19).

As reported in [35,36,41], the degenerate fundamental solitons (ki = li, i = 1, 2) in
the Manakov system undergo shape changing collision due to the intensity redistribution
among the modes. The energy redistribution occurs in the degenerate case because the
polarization vectors of the two modes combine with each other in a specific way. This shape
changing collision is illustrated in Figure 7 where the intensity redistribution occurs because
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of the enhancement of soliton S1 in the first mode and the corresponding suppression of
the intensity of the same soliton in the second mode. To hold the conservation of energy
between the modes, the intensity of the soliton S2 is suppressed in the first mode and it is
enhanced in the second mode. The standard elastic collision occurs (as already noted) for

the very special choice of parameters, namely α
(1)
1

α
(1)
2

=
α
(2)
1

α
(2)
2

[35,36].

Figure 7. Shape changing collision of the degenerate two-solitons: k1 = l1 = 1 + i, k2 = l2 =

1.51− 1.51i, α
(1)
1 = 0.5 + 0.5i, α

(1)
2 = α

(2)
1 = α

(2)
2 = 1.

4.7. Possible Experimental Realization of Nondegenerate Solitons

To experimentally observe the nondegenerate vector solitons (single hump/double
hump solitons) in the Manakov system, one may adopt the mutual-incoherence method that
has been used to observe the multi-hump multi-mode solitons experimentally (Ref. [50]).
The Manakov solitons (degenerate solitons) can also be observed by the same experimental
procedure with appropriate modifications (Ref. [37]). In the following, we briefly envisage
how the procedure given in Ref. [50] can be redesigned to generate the double-humped
nondegenerate soliton as it has been discussed in our work [76].

To observe the nondegenerate vector solitons experimentally, it is essential to consider
two laser sources with different properties so that the wavelength of the second laser beam
is different from the first one. Using polarizing beam splitters, each one of the laser beams
can be split into ordinary and extraordinary beams. The extraordinary beam coming out
from the first source can be further split into two individual fields F11 and F12 by allowing
it to fall on a beam splitter. These two fields are nothing but the reflected and transmitted
extraordinary beams coming out from the beam splitter. The intensities of these two fields
are different. Similarly, the second beam which is coming out from the second source can
also be split into two fields F21 and F22 by passing through another beam splitter. The
intensities of these two fields are also different. As a result, one can generate four fields
that are incoherent to each other. To set the incoherence in phase among these four fields,
one should allow them to travel a sufficient distance before the coupling is performed.
The fields F11 and F12 now become nondegenerate two individual solitons in the first
mode, whereas F21 and F22 form another set of two nondegenerate solitons in the second
mode. The coupling between the fields F11 and F21 can be performed by combining them
using another beam splitter. Similarly, by suitably locating another beam splitter, one can
combine the fields F12 and F22, respectively. After appropriate coupling is performed, the
resultant optical field beams can now be focused through two individual cylindrical lenses
and the output may be recorded in an imaging system, which consists of a crystal and CCD
camera. The collision between the nondegenerate two-solitons in both the modes can now
be seen from the recorded images.

To observe the elastic collision between double-humped nondegenerate solitons, one
must make arrangements to vanish the mutual coherence property between the solitons
F11 and F12 in the first mode q1 and F21 and F22 in the second mode q2 (Ref. [37]). The
four optical beams are now completely independent and incoherent with one another.
The collision angle at which the nondegenerate solitons interact should be sufficiently
large enough. Under this situation, no energy exchange is expected to occur between the
nondegenerate solitons of the two modes. This experimental procedure can also be used
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to realize multi-humped nondegenerate vector solitons in the N-CNLS system but with
appropriate modification in the initial conditions.

4.8. Multi-Humped Nondegenerate Fundamental Bright Soliton Solution in N-CNLS System

In this sub-section, we explore the existence of the nondegenerate fundamental bright
soliton solution for coupled multi-component nonlinear Schrödinger equations of Man-
akov type [36,82]. Here, we intend to point out the multi-hump nature of the nonde-
generate fundamental solitons in the following system of multi-component nonlinear
Schrödinger equations,

iqj,z + qj,tt + 2
N

∑
p=1
|qp|2qj = 0, j = 1, 2, ..., N. (37)

Here, straight away we provide the nondegenerate fundamental soliton solution of
the above N-CNLS system, which is derived through the Hirota bilinear method. We note
that for detailed derivation one can refer to our recent paper [82]. The nondegenerate

fundamental bright soliton solution qj =
g(j)

f , j = 1, 2, ..., N, of the N-CNLS system written
in a more compact form using the following Gram determinants

g(N) =

∣∣∣∣∣∣
A I φ
−I B 0T

0 CN 0

∣∣∣∣∣∣, f =

∣∣∣∣ A I
−I B

∣∣∣∣, (38)

where the elements of the matrices A and B are

Aij =
eηi+η∗j

(ki + k∗j )
, Bij = κji =

ψ†
i σψj

(k∗i + k j)
, CN = −

(
α
(1)
1 , α

(2)
1 , . . . , α

(N)
1

)
,

ψj =
(

α
(1)
1 , α

(2)
1 , . . . , α

(j)
1

)T
, φ =

(
eη1 , eη2 , . . . , eηn

)T , j, n = 1, 2, .., N.

In the above, g(N) and f are ((22N) + 1) and (22N)th order determinants, respectively.
When j 6= i, the elements κji in the square matrix B do not exist (κji = 0). Then, in the
above fundamental soliton solution T denotes the transpose of the matrices ψj and φ, †
represents transpose complex conjugate, σ = I is an (n × n) identity matrix, φ is a (n × 1)
column matrix, 0 is a (1 × n) null matrix, CN is a (1 × n) row matrix and ψ represents a
(n × 1) column matrix. Furthermore, for a given set of N and j values, the corresponding
elements only exist and all the other elements are equal to zero in ψj and CN matrices.
We have verified the reliability of the nondegenerate fundamental soliton solution (38) by
substituting it into the bilinear equations of the N-CNLS system along with the following

derivative formula of the determinants, ∂M
∂x = ∑1≤i,j≤n

∂ai,j
∂x

∂M
∂ai,j

= ∑1≤i,j≤n
∂ai,j
∂x ∆i,j, where

∆i,j’s are the cofactors of the matrix M, the elementary properties of the determinants
and the bordered determinant properties [153,155]. This action produces a pair of Jacobi
identities and thus their occurrence confirms the validity of the obtained soliton solution. A
multi-hump profile nature is a special feature of the obtained nondegenerate fundamental
soliton solution (38). Such multi-hump structures and their propagation are characterized
by 2N arbitrary complex wave parameters. The fundamental nondegenerate soliton admits
a very interesting N-hump profile in the present N-CNLS system. The number of peaks or
humps in the intensity profile of the nondegenerate fundamental soliton solution of the
N-CNLS system is essentially equal to the number of wave numbers or equivalently the
number of components involved. In this system, in general, the nondegenerate solitons
propagate with different velocities in different modes but one can make them propagate
with identical velocity by restricting the imaginary parts of all the wave numbers k j,
j = 1, 2, ..., N, to be equal. We wish to note that the degenerate fundamental bright
soliton solution of the N-CNLS system can be obtained by setting all the wavenumbers k j ,
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j = 1, 2, ..., N , as identical, k j = k1, j = 1, 2, ..., N. It leads to single-hump intensity profiles
only in all the modes [36]. Very interestingly, the N-CNLS system (9) also admits a special
kind of multi-humped partially nondegenerate fundamental soliton solution for a smaller
number of restrictions on the wave numbers, as we have explained in [82]. Consequently,
in this partially nondegenerate case, the number of humps is not equal to the number of
components.

In order to indicate the multi-hump nature of the nondegenerate soliton, here we
demonstrate this special feature in the case of 3-CNLS and 4-CNLS systems. As a specific
example, we can easily check that this multi-parameter solution admits a novel asymmetric
triple-hump profile in the case of the 3-CNLS system when we fix the velocity as k1I =
k2I = k3I = 0.5. The other parameter values are chosen as k1R = 0.53, k2R = 0.5, k3R = 0.45,
α
(1)
1 = 0.65 + 0.65i, α

(2)
1 = 0.45− 0.45i and α

(3)
1 = 0.35 + 0.35i. In Figure 8a, we display the

asymmetric triple-hump profiles in all the components for the above choice of parameter
values. Then, the nondegenerate one-soliton solution in the 4-CNLS system exhibits
an asymmetric quadruple-hump profile in all the modes. This novel quadruple-hump
profile is displayed in Figure 8b for the parameter values k1 = 0.48 + 0.5i, k2 = 0.5 + 0.5i,
k3 = 0.53 + 0.5i, k4 = 0.55 + 0.5i, α

(1)
1 = 0.65 + 0.65i, α

(2)
1 = 0.55− 0.55i, α

(3)
1 = 0.45 + 0.45i

and α
(4)
1 = 0.35− 0.35i. We remark that the nondegenerate fundamental soliton solution

reduces to a double-humped partially nondegenerate soliton by considering a restriction
k1 = k2 (or k2 = k3) [82].
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|q2
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|q3
2
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Figure 8. (a) Denotes triple-hump profile of the nondegenerate fundamental soliton in the 3-CNLS
system and (b) represents a quadruple-humped nondegenerate soliton profiles in the 4-CNLS system.

In general, to derive nondegenerate N-soliton solution of the N-CNLS system, we

have to consider a more general form of the starting solutions g(j)
1 = ∑N

l,j=1 α
(j)
l eη

(j)
l , η

(j)
l =

k(j)
l t + ik(j)2

l z to the lowest order set of N linear PDEs ig(j)
1,z + g(j)

1,tt = 0, j = 1, 2, ..., N. This
choice of initial seed solutions yields a very complicated nondegenerate N-soliton solution.
We do not provide the details of this intricate form here for brevity and they will be
published elsewhere.

Figure 9. The singular double-hump profiles of the nondegenerate one-soliton solution (39a) and
(39b) of the mixed 2-CNLS system.

5. Nondegenerate and Degenerate Bright Solitons in the Mixed 2-CNLS System

This section is essentially devoted to showing the existence of nondegenerate fun-
damental bright solitons in the mixed 2-CNLS system or Equation (8) with σ1 = +1 and
σ2 = −1. In this section, we also point out how the degenerate fundamental bright soliton
can be captured from the obtained nondegenerate one-soliton solution and indicate its



Photonics 2021, 8, 258 25 of 39

energy sharing collision. In order to write down the analytical form of the nondegenerate
fundamental soliton solution, one has to follow the same procedure that has been adopted
to derive such a solution in the case of the Manakov system. Since the solution construction
methodology has been extensively described in References [75–77] and in the earlier section,
here we immediately present the explicit form of the nondegenerate fundamental soliton
solution of the mixed 2-CNLS system. It reads as

q1 =
g(1)1 + g(1)3
1 + f2 + f4

=
1
D
(α

(1)
1 eη1 + eη1+ξ1+ξ∗1+∆(1)

1 ), (39a)

q2 =
g(2)1 + g(2)3
1 + f2 + f4

=
1
D
(α

(2)
1 eξ1 + eη1+η∗1+ξ1+∆(2)

1 ). (39b)

Here D = 1 + eη1+η∗1+δ1 + eξ1+ξ∗1+δ2 + eη1+η∗1+ξ1+ξ∗1+δ11 , e∆(1)
1 = − (k1−l1)α

(1)
1 |α

(2)
1 |

2

(k1+l∗1 )(l1+l∗1 )
2 ,

e∆(2)
1 =

(k1−l1)|α
(1)
1 |

2α
(2)
1

(k1+k∗1)
2(k∗1+l1)

, eδ1 =
|α(1)1 |

2

(k1+k∗1)
2 , eδ2 = − |α(2)1 |

2

(l1+l∗1 )
2 and eδ11 = − |k1−l1|2|α

(1)
1 |

2|α(2)1 |
2

(k1+k∗1)
2|k1+l∗1 |2(l1+l∗1 )

2 .

Like in the Manakov system, the two complex parameters α
(j)
1 ’s, j = 1, 2, and the two wave

numbers k1, and l1 describes the behavior of the above general form of the one-soliton
solution (39a) and (39b). By rewriting the solution (39a) and (39b) in hyperbolic form, as
has been done in Equations (17a) and (17b), we find that the amplitude, velocity and cen-

tral position of the soliton in the first mode is 2k1R, 2k1I and φ1
2l1R

= 1
2l1R

log (l1−k1|α
(2)
1 |

2)

(k1+l∗1 )(l1+l∗1 )
2 ,

respectively. In the second mode, the amplitude, velocity and central position of the

soliton are defined by 2l1R, 2l1I and φ2
2k1R

= 1
2k1R

log (k1−l1|α
(1)
1 |

2)

(k∗1+l1)(k1+k∗1)
2 , respectively. In the

mixed 2-CNLS system too, the nondegenerate fundamental soliton propagates in the
two modes either with identical velocity (v1 = v2 = 2k1I) or with non-identical velocity
(v1 = 2k1I 6= v2 = 2l1I) depending on the restriction on the imaginary parts of the wave
numbers k1 and l1. The solution (39a) and (39b) always shows singular behavior due to
the presence of the negative sign in the constant terms eδ2 and eδ11 except for k1 = l1. This
negative sign essentially arises because of the presence of defocusing nonlinearity of the
mixed CNLS system. The singularity nature of the solution (39a) and (39b) is depicted
in Figure 9 with the parameter values k1 = 1.25 + 0.45i, l1 = −0.5 + 0.45i, α

(1)
1 = 0.3 and

α
(2)
1 = i. We note that the singular nature of the soliton has been recently discussed in the

context of singular optics [156]. The nondegenerate higher order bright solitons can also be
obtained in a similar way and one can analyze their collision dynamics.

By imposing the limit k1 = l1 in the solution (39a) and (39b), one can capture the
following degenerate fundamental vector bright soliton solution of the mixed 2-CNLS
system, qj = k1R Âjeiη1I sech(η1R + R

2 ), where η1R = k1R(t− 2k1Iz), η1I = k1I t + (k2
1R −

k2
1I)z, Âj =

α
(j)
1√

(|α(1)1 |2−|α
(2)
1 |2)

, eR =
(|α(1)1 |

2−|α(2)1 |
2)

(k1+k∗1)
2 , j = 1, 2. The latter degenerate bright

soliton solution always admits the non-singular single-hump intensity profile when |α(1)1 | >
|α(2)1 |. The degenerate multi-soliton solutions and their interesting collision properties have
been already discussed in [64]. The two-soliton solution of the mixed 2-CNLS system can

be easily obtained by replacing Bij with Bij = κji =

(
α
(1)
j α

(1)∗
i − α

(2)
j α

(2)∗
i

)
(k j + k∗i )

, i, j = 1, 2 in the

degenerate two-soliton solution (36a) and (36b) of the Manakov system. However, here
we indicate the special collision dynamics exhibited by the degenerate bright solitons only
through a graphical demonstration as we illustrated below in Figure 10 for the parametric
choice k1 = 1− i, k2 = 1.7 + I, α

(1)
1 = 1 + i, α

(1)
2 = 1− i, α

(2)
1 = 0.5 + 0.3i and α

(2)
2 = 0.7.

From Figure 10, we identify that during the collision process of the degenerate two bright
solitons S1 and S2 in the present mixed 2-CNLS system, the intensity of the soliton S1
is enhanced in all the modes. In contradiction to this, the intensity of the other soliton
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S2 is suppressed in both the modes. Therefore, such a special property of enhancement
of the intensity of a given soliton always occurs in the mixed 2-CNLS system. One may
find the details of energy conservation in Ref. [64]. Additionally, we also observe the
amplitude dependent phase shifts in each of the modes. This energy sharing collision is
quite different from the shape changing collision of the Manakov system. The collision
scenario is depicted in Figure 10 can be viewed as a signal amplification process, in which
the soliton S1 refers as a signal wave and the soliton S2 represents as a pump wave. During
this amplification process, there is no external amplification medium is employed and is
without the introduction of any noise [64]. We point out that the standard NLS soliton-like

collision can be recovered by imposing the restriction α
(1)
1

α
(1)
2

=
α
(2)
1

α
(2)
2

.

Figure 10. Energy sharing collision of degenerate two bright solitons of the mixed 2-CNLS system [64].

6. Existence of Nondegenerate and Degenerate Bright Solitons in Two-Component
Coherently Coupled Nonlinear Schrödinger System

Now, we intend to derive a more general form of nondegenerate fundamental bright
soliton solution of the two-component CCNLS system (10). In this section, we also mention
the already known degenerate one bright soliton solution and illustrate its fascinating
energy switching collision property through a graphical demonstration. To obtain the ex-
plicit forms of the nondegenerate soliton solution, we adopt a non-standard bilinearization
procedure in which an appropriate number of auxiliary functions have been introduced
to match the number of bilinear equations with the number of bilinearizing variables.
This procedure was developed by Gilson et al. [157] for the Sasa–Satsuma higher order
nonlinear Schrödinger equations and by Kanna et al. [107,108] for the coherently coupled
nonlinear Schrödinger equations. By adopting this technique, we obtain the following

correct bilinear equations of system (10) through the bilinearizing transformation qj =
g(j)

f ,
j = 1, 2, to Equation (10) with the introduction of an auxiliary function s. The set of bilinear
equations are

D1(g(j) · f ) = γsg(j)∗, j = 1, 2, D2( f · f ) = 2γ

(
2

∑
j=1
|g(j)|2

)
, s · f =

2

∑
j=1

(g(j))2, (40)

where D1 = iDz + D2
t and D2 = D2

t . Here g(j)’s and f are complex and real functions,
respectively, ∗ denotes the complex conjugate. After the bilinearization, essentially we
follow the procedure that has been described in [107] for the degenerate case but now
with the general forms of seed solutions g(1)1 = α1eη1 , g(2)1 = β1eξ1 , η1 = k1t + ik2

1z,

ξ1 = l1t + il2
1z. While doing so, the series expansions are truncated as g(j) = εg(j)

1 + ε3g(j)
3 +

ε5g(j)
5 + ε7g(j)

7 , f = 1+ ε2 f2 + ε4 f4 + ε6 f6 + ε8 f8 and s = ε2s2 + ε4s4 + ε6s6. By substituting
the obtained forms of the unknown functions in the appropriate places, we obtain the
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following a more general form of nondegenerate coherently coupled fundamental bright
soliton solution of the 2-CCNLS system (10),

q1(z, t) =
1
f

(
α1eη1 + e2η1+η∗1+∆11 + eη∗1+2ξ1+∆12 + eη1+ξ1+ξ∗1+∆13 + eη1+2(η∗1+ξ1)+∆14

+ eη1+2(ξ1+ξ∗1 )+∆15 + e2η1+η∗1+ξ1+ξ∗1+∆16 + e2(η1+ξ1+ξ∗1 )+η∗1+∆17

)
,

q2(z, t) =
1
f

(
β1eξ1 + e2ξ1+ξ∗1+∆21 + eξ∗1+2η1+∆22 + eξ1+η1+η∗1+∆23 + eξ1+2(ξ∗1+η1)+∆24

+ eξ1+2(η∗1+η1)+∆25 + e2ξ1+ξ∗1+η1+η∗1+∆26 + e2(η1+η∗1+ξ1)+ξ∗1+∆27

)
,

f = 1 + eη1+η∗1+δ1 + eξ1+ξ∗1+δ2 + e2(η1+η∗1 )+δ3 + e2(η1+ξ∗1 )+δ4 + e2(ξ1+η∗1 )+δ5

+e2(ξ1+ξ∗1 )+δ6 + e(η1+η∗1+ξ1+ξ∗1 )+δ7 + e2(η1+η∗1 )+ξ1+ξ∗1+ν1

+e2(ξ1+ξ∗1 )+η1+η∗1+ν2 + e2(η1+η∗1+ξ1+ξ∗1 )+ν3 . (41)

The various constants which appear in the above solution are defined by

e∆11 =
γα1|α1|2

2κ11
, e∆12 =

γα∗1 β2
1

2θ∗21
, e∆13 =

γα1|β1|2ρ1

θ1l11
, e∆14 =

γ2ρ2
1α∗1 β2

1|α1|2

4κ11θ∗41
,

e∆15 =
γ2ρ2

1α1|β1|4

4l2
11θ2

1
, e∆16 =

γ2ρ2
1ρ∗1α1|α1|2|β1|2

2κ11l11θ2
1θ∗1

, e∆17 =
γ3ρ4

1ρ∗1
2α1|α1|2|β1|4

8κ11l2
11θ4

1θ∗1
2 ,

e∆21 =
γβ1|β1|2

2l11
, e∆22 =

γα2
1β∗1

2θ2
1

, e∆23 = −γ|α1|2β1ρ1

θ∗1 κ11
, e∆24 =

γ2ρ2
1α2

1|β1|2α∗1
4l11θ4

1
,

e∆25 =
γ2ρ2

1|α1|4β1

4κ2
11θ∗21

, e∆26 = −
γ2ρ2

1ρ∗1 β1|α1|2|β1|2

2κ11l11θ1θ∗21
, e∆27 =

γ3ρ4
1ρ∗21 β1|α1|4|β1|2

8κ2
11l11θ2

1θ∗41
,

eδ1 =
γ|α1|2

κ11
, eδ2 =

γ|β1|2
l11

, eδ3 =
γ2|α1|4

4κ2
11

, eδ4 =
γ2α2

1β∗21
4θ4

1
, eδ5 =

γ2α∗21 β2
1

4θ∗41
,

eδ6 =
γ2|β1|4

4l2
11

, eδ7 =
γ2|ρ1|2|α1|2|β1|2

κ11l11|θ1|2
, eν1 =

γ3|ρ1|4|α1|4|β1|2

4κ2
11l11|θ1|4

,

eν2 =
γ3|ρ1|4|α1|2|β1|4

4κ11l2
11|θ1|2

, eν3 =
γ4|ρ1|8|α1|4|β1|4

16κ2
11l2

11|θ1|8
, l11 = (l1 + l∗1 )

2,

θ1 = (k1 + l∗1 ), ρ1 = (k1 − l1), κ11 = (k1 + k∗1)
2.

The auxiliary function s(z, t) is found to be, s = α2
1e2η1 + β2

1e2ξ1 + e2η1+ξ1+ξ∗1+φ1

+ e2ξ1+η1+η∗1+φ2 + e2(η1+η∗1+ξ1)+φ3 + e2(η1+ξ∗1+ξ1)+φ4 , eφ1 =
γρ2

1α2
1|β1|2

θ2
1 l11

, eφ2 =
γρ2

1β2
1|α1|2

θ∗21 κ11
, eφ3 =

γ2ρ4
1β2

1|α1|4
4θ∗41 κ2

11
, eφ4 =

γ2ρ4
1α2

1|β1|4
4θ4

1 l2
11

. The shape of the coherently coupled nondegenerate funda-

mental soliton solution (41) is governed by the four complex parameters k1, l1, α1 and β1.
Due to the presence of coherent coupling among the two fields q1 and q2 (or four-wave
mixing effect) and the additional wave number, the solution (41) admits rich geometrical
structures, such as a breather, a quadruple-hump, a triple-hump, a double-hump, a flattop
and a single-hump profiles under a suitable choice of parameter values. We display a
novel non-trivial breathing nondegenerate fundamental soliton profile in Figure 11. To
draw this figure, we fixed the parametric values as γ = 4, k1 = 2.5 + 0.5i, l1 = 1.65 + 0.5i,
α1 = 0.5 + 0.5i and β1 = 1− i. The breathing nature of the multi-hump profile of the non-
degenerate soliton in the present 2-CCNLS system cannot be observed in the degenerate
case [107,108], as described below. We note that one can also derive the nondegenerate
multi-soliton solutions to the 2-CCNLS system. However, the resultant expressions will be
cumbersome due to the presence of the four-wave mixing effect.



Photonics 2021, 8, 258 28 of 39

z=-7

z=-3

z=0

z=7

(c)

-10 0 10

0

3

t

|q
1,
2

2

(d)

-10 0 10

0

1.4

t

|q
1,2

2

Figure 11. The figures (a,b) denote the contour plots of the breathing non-degenerate fundamental
bright soliton of the 2-CCNLS system and the corresponding line plots are drawn for various z values
in figures (c,d).

In order to obtain the degenerate one-soliton solution, one has to impose the wave
number restriction k1 = l1 in Equation (41). This results in the following explicit degenerate
bright one-soliton solution,

q1 =
α1eη1 + e2η1+η∗1+∆1

1 + eη1+η∗1+R1 + e2η1+2η∗1+δ11
, q2 =

β1eη1 + e2η1+η∗1+∆2

1 + eη1+η∗1+R1 + e2η1+2η∗1+δ11
, (42)

where the auxiliary function is reduced to the form s = (α2
1 + β2

1)e
2η1 . Here, η1 = k1(t +

ik1z), e∆1 =
γα∗1(α

2
1+β2

1)

2(k1+k∗1)
2 , e∆2 =

γβ∗1(α
2
1+β2

1)

2(k1+k∗1)
2 , eR1 = γ(|α1|2+|β1|2)

(k1+k∗1)
2 , eδ11 =

γ2(α2
1+β2

1)(α
∗2
1 +β∗21 )

4(k1+k∗1)
4 . The

above degenerate solution (42) is characterized by only two complex parameters α1 and β1
and a single complex wave number k1. We point out that the degenerate solution (42) is
classified as a coherently coupled bright soliton and an incoherently coupled bright soliton
depending on the presence/absence of the auxiliary function s [107]. If the restriction,
α2

1 + β2
1 = 0 is imposed, where the auxiliary function s becomes zero, in the solution (42),

then the resultant solution is called ICS [107]. Due to this restriction, the coherent coupling
among the fields q1 and q2 vanishes. Under the latter restriction, the analytical form of ICS
is reduced from the solution (42) as

q1 = A1 sech(η1R +
R1

2
)eiη1I , q2 = ±q1. (43)

Here, A1 = α1
2 e−

R1
2 , R1 = log

(
2γ|α1|2
(k1+k∗1)

2

)
, η1R = k1R(t− 2k1Iz) and η1I = k1I t + (k2

1I −
k2

1R)z. From the above solution, it is evident that the ICS always admits a ‘sech’-type
intensity profile only. However, very interestingly, a novel double-hump profile arises in
the degenerate case when the auxiliary function is non-zero. That is, for α2

1 + β2
1 6= 0 the

coherent coupling among the optical fields is established. Thus, the solution (42) admits
the double-hump profile as demonstrated below in Figure 12. However, in the degenerate
case, even the presence of single wave number k1 and the four wave mixing effect can
induce only the double-hump profile apart from a flattop profile. We do not present the
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degenerate two-soliton solution of the 2-CCNLS system for brevity. However, the explicit
form of the degenerate two-soliton solution has been given in [107,108].

In addition to the above, we wish to specify the fascinating shape changing collision
of degenerate solitons in the 2-CCNLS system. Especially, we discuss the collision between
the coherently coupled soliton (42) and incoherently coupled soliton (43). As an example,
we illustrate such a novel collision scenario in Figure 13. In order to display both CCS
and ICS in this figure we choose the parametric values as γ = 2, k1 = 1.9 + i, k2 = 2.1− i,
α1 = 0.5i, α2 = 0.5 + 0.5i, β1 = 1.5 and β2 = 0.5− 0.5i. In Figure 13, we refer the soliton S1
as CCS and the soliton S2 as ICS. This figure clearly explains that the CCS S1 encounters
intensity/energy switching in all the modes. In contradiction to this, the ICS S2 undergoes
elastic collision with a finite phase shift as specified in [107]. Consequently, the CCS S1
switches its double-hump intensity profile to the single-hump profile in the first component
and it is reversed in the second component without affecting the structure of ICS S2. In
this type of energy switching collision scenario, the energy in the individual component
is not conserved. However, the total energy,

∫ +∞
−∞ (|q1|2 + |q2|2)dt, is conserved. The

detailed discussion on this collision scenario and its asymptotic analysis has been carried
out in [108]. We also note that elastic collision always occurs during the collision among
the two coherently coupled solitons and it is true in the case of collision between two
incoherently coupled solitons too. We remark that the generalization of the above outcome
for the multi-component CCNLS system has been established in [108] with exciting results.

|q1
2

|q2
2

-25 0 25

0

0.15

0.35

t

|q
1,
2

2

Figure 12. A typical degenerate bright soliton profile in the 2-CCNLS system is drawn for the values
γ = 2, k1 = 0.5 + 0.5i,α1 = 0.72 + 0.5i and β1 = 0.5− 0.42i.

Figure 13. Energy switching collision between CCS and ICS in a 2-CCNLS system [107,108].

7. Fundamental Vector Bright Solitons in a GCNLS System

To construct both the nondegenerate and degenerate fundamental vector bright soliton
solutions of the GCNLS system (11a) and (11b), we consider the bilinear forms, (iDz +
D2

t )g(j) · f = 0, j = 1, 2, D2
t f · f = 2(ag(1)g(1)∗ + cg(2)g(2)∗ + bg(1)g(2)∗ + b∗g(1)∗g(2)),

which result from substituting the dependent variable transformation qj =
g(j)(z,t)

f (z,t) , j = 1, 2,

to Equations (11a) and (11b). Here g(j)’s are complex functions and f is a real function. By
following the same procedure that has been outlined in Section 4.1, we obtain the general
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form of nondegenerate fundamental bright soliton solution of the GCNLS system (11a)
and (11b) as [158]

q1 =
g(1)1 + g(1)3
1 + f2 + f4

=
1
D
(α

(1)
1 eη1 + eη1+ξ1+ξ∗1+ν11 + eη1+η∗1+ξ1+ν12), (44a)

q2 =
g(2)1 + g(2)3
1 + f2 + f4

=
1
D
(α

(1)
1 eη1 + eη1+ξ1+ξ∗1+ν21 + eη1+η∗1+ξ1+ν22), (44b)

D = 1 + eη1+η∗1+δ1 + eη1+ξ∗1+δ2 + eη∗1+ξ1+δ∗2 + eξ1+ξ∗1+δ3 + eη1+η∗1+ξ1+ξ∗1+δ4 .

Here, η1 = k1(t+ ik1z), ξ1 = l1(t+ il1z), eν11 =
c(k1−l1)α

(1)
1 |α

(2)
1 |

2

(k1+l∗1 )(l1+l∗1 )
2 , eν12 =

b∗(k1−l1)α
(2)
1 |α

(1)
1 |

2

(k1+k∗1)(l1+k∗1)
2 ,

eν21 = − b(k1−l1)α
(1)
1 |α

(2)
1 |

2

(l1+l∗1 )(k1+l∗1 )
2 , eν22 = − a(k1−l1)α

(2)
1 |α

(1)
1 |

2

(k1+k∗1)
2(l1+k∗1)

, eδ1 =
a|α(1)1 |

2

(k1+k∗1)
2 , eδ2 =

bα
(1)
1 α

(2)∗
1

(k1+l∗1 )
2 , eδ3 =

c|α(2)1 |
2

(l1+l∗1 )
2 and eδ4 =

|k1−l1|2|α
(1)
1 |

2|α(2)1 |
2(ac|k1+l∗1 |2−|b|2(k1+k∗1)(l1+l∗1 ))

(k1+k∗1)
2(k∗1+l1)2(k1+l∗1 )

2(l1+l∗1 )
2 . Under the restrictions, (a =

c = 1, b = 0) and (a = 1, c = −1, b = 0) the solution (44a) and (44b) of GCNLS system
exactly coincides with the nondegenerate one-soliton solution of the Manakov system and
mixed 2-CNLS system, respectively. In the present GCNLS system, the properties of the
nondegenerate fundamental bright soliton solution (44a) and (44b) is determined by the
four complex parameters α

(j)
1 , j = 1, 2, k1 and l1 apart from the system parameters a (SPM),

c (XMP) and b (the four wave mixing effect). The nondegenerate one-soliton solution
admits singularity whenever either one of the signs of SPM (a) and XPM (c) is negative or
if both are negative. Additionally, the condition (ac|k1 + l∗1 |2 − |b|2(k1 + k∗1)(l1 + l∗1 )) > 0
should also be maintained to obtain a regular soliton solution of the GCNLS system. The
solution exhibits a double-hump or a single-hump intensity profile for suitable choices of
parameter values. Very surprisingly, like in the case of the 2-CCNLS system, the presence
of a four-wave mixing term and an additional wave number induces breather formation in
the structure of nondegenerate fundamental soliton. A typical breathing behavior along
the z direction is displayed in Figure 14. This kind of breathing soliton is not observed in
the Manakov and mixed CNLS cases.

Figure 14. Breathing nondegenerate fundamental soliton in the GCNLS system. Here the parameters

are k1 = 1.65 + 0.5i, l1 = 0.45 + 0.5i, α
(1)
1 = 0.35 + 0.35 + i, α

(2)
1 = 0.5 + 0.5i, a = c = 1 and

b = 0.5− 0.5i.

The degenerate bright soliton solution is recovered by incorporating the limit k1 = l1 in
the solution (44a) and (44b). It leads to the following expressions of the degenerate bright soli-

ton solution [117], qj = Ajk1R sech(η1R + R1
2 )eiη1I , Aj =

α
(j)
1

(a|α(1)1 |2+c|α(2)1 |2+bα
(1)
1 α

(2)∗
1 +b∗α(1)∗1 α

(2)
1 )1/2

,

eR1 =
(a|α(1)1 |

2+c|α(2)1 |
2+bα

(1)
1 α

(2)∗
1 +b∗α(1)∗1 α

(2)
1 )

(k1+k∗1)
2 , η1R = k1R(t − 2k1Iz), η1I = k1I t + (k2

1R − k2
1I)z.

The latter expressions ensure that the degenerate fundamental soliton always admits a
single-hump profile characterized by three complex constants k1 and α

(j)
1 ’s. The degen-

erate two-soliton solution can be easily obtained by replacing the form of Bji = κij =

(aα
(1)
i α

(1)∗
j +cα

(2)
i α

(2)∗
j +bα

(1)
i α

(2)∗
j +b∗α(1)∗j α

(2)
i )

(ki+k∗j )
, i, j = 1, 2, into Equations (36a) and (36b). With ar-

bitrary values of b, the degenerate two solitons undergo two types of shape changing
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collisions corresponding to two different choices: (i) Manakov type shape changing colli-
sion for a, c > 0, (ii) a mixed 2-CNLS type shape changing collision for a > 0, c < 0. We
do not provide the corresponding collision plots for brevity. We wish to point out that
the degenerate bright solitons also undergo a special collision scenario, where the two
degenerate solitons in each of the components do not pass through each other, whereas
they bounce off each other when they start to collide. This type of bright soliton collision
scenario is referred to as soliton reflection in the literature [115,118].

8. Nondegenerate and Degenerate Bright Solitons in Two Component LSRI System

Finally, we intend to construct the nondegenerate fundamental soliton solution for
the two-component long-wave short-wave resonance interaction system, namely the two-
component Yajima–Oikawa system [77,126]. To derive the nondegenerate one-soliton
solution we again bilinearize Equation (12) through the following dependent variable

transformations, S(l)(x, t) = g(l)(x,t)
f (x,t) , l = 1, 2, L = 2 ∂2

∂x2 ln f (x, t). By doing so, we obtain
the following bilinear equations:

D1g(l) · f = 0, l = 1, 2, D2 f · f =
2

∑
n=1
|g(n)|2, (45)

where D1 ≡ iDt + D2
x and D2 ≡ DxDt. With the modified forms of seed solutions g(1)1 =

α1eη1 , g(2)1 = β1eξ1 , η1 = k1x + ik2
1t, ξ1 = l1x + il2

1t, we find that the series expansions

that are given in [77] are terminated as g(l) = εg(l)1 + ε3g(l)3 , f = 1 + ε2 f2 + ε4 f4. The
explicit forms of the unknown functions lead to the following nondegenerate fundamental
soliton solution,

S(1) =
g(1)1 + g(1)3
1 + f2 + f4

=
α1eη1 + eη1+ξ1+ξ∗1+µ11

1 + eη1+η∗1+R1 + eξ1+ξ∗1+R2 + eη1+η∗1+ξ1+ξ∗1+R3
, (46a)

S(2) =
g(2)1 + g(2)3
1 + f2 + f4

=
β1eξ1 + eξ1+η1+η∗1+µ12

1 + eη1+η∗1+R1 + eξ1+ξ∗1+R2 + eη1+η∗1+ξ1+ξ∗1+R3
, (46b)

L =
2
f 2

(
(k1 + k∗1)

2eη1+η∗1+R1 + (l1 + l∗1 )
2eξ1+ξ∗1+R2 + eη1+η∗1+ξ1+ξ∗1+R4 ,

+ e2(η1+η∗1 )+ξ1+ξ∗1+R1+R3 + eη1+η∗1+2(ξ1+ξ∗1 )+R2+R3

)
, (46c)

f = (1 + eη1+η∗1+R1 + eξ1+ξ∗1+R2 + eη1+η∗1+ξ1+ξ∗1+R3),

where eµ11 = iα1|β1|2(l1−k1)
2(k1+l∗1 )(l1−l∗1 )(l1+l∗1 )

2 , eµ12 = iβ1|α1|2(k1−l1)
2(k∗1+l1)(k1−k∗1)(k1+k∗1)

2 , eR1 = |α1|2
2i(k1+k∗1)

2(k1−k∗1)
,

eR2 = |β1|2
2i(l1+l∗1 )

2(l1−l∗1 )
, eR3 = − |α1|2|β1|2|k1−l1|2

4|k1+l∗1 |2(k1−k∗1)(l1−l∗1 )(k1+k∗1)
2(l1+l∗1 )

2 , eR4 = −2(k1 + k∗1)(l1 +

l∗1 )(e
R1+R2 − eR3) + ((k1 + k∗1)

2 + (l1 + l∗1 )
2)(eR1+R2 + eR3). The above the nondegenerate

one-soliton solution in the two-component LSRI system is also governed by the four
arbitrary complex parameters k1, l1, α1 and β1. The solution (46a)–(46c) admits both regular
and singular solutions. To obtain the non-singular solution, the quantities eR1 , eR2 and
eR3 should be positive definite. Consequently, the imaginary parts of the wave numbers
k1 and l1 are restricted as k1I , l1I < 0. For this reason, the nondegenerate soliton in the
present LSRI system always propagates in the same direction. It has been shown in [77]
that the velocity of the soliton is described by the imaginary parts of wave numbers k1
and l1. Then, the amplitudes of the nondegenerate soliton in the short-wave components

S(1) and S(2) are found to be 4k1R A1
√

k1I and 4l1R A2
√

l1I , respectively, where A1 =
iα1/2

1
α1/2∗

1

and A2 =
iβ1/2

1
β1/2∗

1
. From the expressions for the amplitudes, we find that the nondegenerate

one-soliton in the present LSRI system (12) exhibits the amplitude-dependent velocity
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property as in the KdV-soliton. The solution (46a) and (46b) exhibits double-hump, flattop
and single-hump profiles depending on the appropriate choice of parameters. A typical
asymmetric double-hump profile is illustrated in Figure 15 with the parameter values
k1 = 0.35− 0.5i, l1 = 0.315− 0.5i, α1 = 0.5 + i, β1 = 0.45 + 0.5i.

We wish to point out that the explicit compact forms of higher-order nondegenerate
soliton solutions have also been very recently obtained by us [159]. As in the Manakov
system, we also find that the nondegenerate solitons in the present two-component LSRI
system (12) also in general exhibit three kinds of elastic collisions, namely shape preserving
collision with zero phase shift and shape altering and shape changing collisions with a finite
phase shifts. Remarkably, during the shape preserving collision, the two nondegenerate
solitons pass through one another without any change in phase shift. In contrast to this
collision scenario, the alteration in phase shift leads to a change in the profile structure of
the solitons after collision. However, as we have demonstrated in the case of the Manakov
system, the shape of the solitons will be restored after considering appropriate time shifts.
In addition, the unity condition of the transition intensities also validates that both shape
altering and shape changing collisions also belong to the case of elastic collision [159]. As
in the case of the Manakov equation, here also we can identify two partially nondegenerate
solitons, when the wave numbers satisfy the condition k1 = l1 and k2 6= l2, as an example,
and the collision of the nondegenerate soliton with the degenerate soliton exhibits a novel
energy exchange collision as demonstrated in [159].

|S(1) 2

|S(2) 2

|L|

-30 0 30

0

0.2
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|S
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)

2
,
|L
|

Figure 15. Asymmetric double-hump profile of the nondegenerate fundamental soliton in a 2-
component LSRI system.

We capture the degenerate soliton solution of Equation (12) by substituting the limit
k1 = l1 in Equation (46a–c). This results in the following degenerate fundamental soliton
forms [136]: S(l) = 2Alk1R

√
k1Iei(η1I+

π
2 ) sech(η1R + R

2 ), L = 2k2
1R sech2(η1R + R

2 ), l = 1, 2.
Here A1 = α1

(|α1|2+|β1|2)1/2 , A2 = β1
(|α1|2+|β1|2)1/2 , η1R = k1R(t + 2k1Iz), η1I = k1I t + (k2

1R −

k2
1I)z, eR = −(|α1|2+|β1|2)

16k2
1Rk1I

. The degenerate soliton always admits a single-hump profile in

both the SW components as well as in the LW component. The amplitude of the soliton
in the SW and LW components are 2Alk1R

√
k1I , 2k2

1R, respectively. Their velocity and the
central position are identified as 2k1I and R

2k1R
, respectively. From this, it is known that the

degenerate bright soliton also exhibits the amplitude-dependent velocity property, since
the velocity explicitly appears in the amplitude part of the soliton. The explicit expression
for the degenerate two bright soliton solution of the 2-LSRI system (12) can be identified
from [136].

As has been demonstrated in Ref. [136], the degenerate bright solitons undergo
energy sharing collision through energy redistribution among the SW components. We
demonstrate this energy sharing collision in Figure 16. It is evident from this figure that
the intensity of the soliton S1 is suppressed in the S(1) component after collision with
the soliton S2. In addition it is enhanced in the second SW component S(2). In order to
hold the conservation of energy, the intensity of the soliton S2 is enhanced in the S(1) SW
component and it is suppressed in the S(2) SW component. However, in the degenerate
case, the solitons in the LW component always undergo elastic collision. The standard
elastic collision can occur in both the SW components for the choice α1

α2
= β1

β2
[136].
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Figure 16. Energy sharing collision among the degenerate solitons in a 2-component LSRI system.

The parameter values are k1 = 1.5− 0.5i, k2 = 2− 2i, α
(1)
1 = 2.5, α

(2)
1 = 1.2, α

(1)
2 = 0.95 and α

(2)
2 = 0.6.

9. Summary and Outlook

In summary, we have shown that the coupled nonlinear Schrödinger family of equa-
tions, namely the Manakov system or 2-CNLS system, N-CNLS system, mixed 2-CNLS
system, 2-CCNLS system, GCNLS system and the 2-component LSRI system, can admit a
more general form of fundamental bright soliton solution with non-identical propagation
constants. In these systems, the obtained nondegenerate one-soliton solution admits novel
geometrical structures which are not possible in the degenerate counterparts. Very sur-
prisingly, the nondegenerate fundamental soliton in the N-CNLS system exhibits a novel
intricate N-hump intensity profile. Then we elucidated that the nondegenerate bright
solitons possess novel collision properties. In particular, they exhibit shape preserving,
shape altering and shape changing collisions. However, by performing a careful asymptotic
analysis, we found that all these three types of collision scenarios can be viewed as an
elastic collision. For appropriate choices of parameters, they also exhibit energy sharing
collision properties. Furthermore, we demonstrated that the degenerate vector bright
solitons of all the CNLS systems can be captured by imposing appropriate constraints on
the wave numbers. In addition to the above, we also explained the various intriguing
energy sharing collisions that occur between the degenerate vector bright solitons through
graphical demonstration and analytical calculations. From the application point of view,
the multi-hump nature of the nondegenerate solitons will be useful to enhance the flow
of data in multi-level optical communication applications. On the other hand, the energy
sharing collision properties of the degenerate vector solitons are utilized to construct all
the optical logic gates and they are also useful in optical switching device applications.

We also wish to note here that the light pulse spread naturally occurs while it prop-
agates in an optical fiber due to the intrinsic properties of the fibers. This spreading or
limitation usually occurs due to various fiber losses and fiber deformations. Practically, one
cannot completely achieve stable propagation of information in laboratories. To overcome
this difficulty a number of schemes have been proposed in the literature. Recently, the
usage of dispersion managed solitons in optical communication has also been described
to address this problem. In addition, the concept of soliton molecules and multi-soliton
complexes have also been suggested to improve the data flow in optical fibers. In view
of these facts, the multi-hump nature of the nondegenerate vector solitons is expected to
be useful in enhancing the data flow in multi-level communication applications and in
overcoming practical limitations.

Although the existence of nondegenerate vector bright solitons have been pointed
out in several CNLS families of equations, much remains to be uncovered, especially
with higher-order nonlinear effects, such as third order dispersion, self-steepening and
stimulated Raman scattering and so on. It is evident from our study that much work is
needed to study the collision properties associated with the newly derived vector solitons.
From the current level of research activity, we believe that the area of nondegenerate vector
solitons will continue to develop in future.
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Appendix A. Constants That Appear in the Asymptotic Expressions in Section 4.4.1
The various constants which arise in the asymptotic analysis of collision between

degenerate and nondegenerate solitons in Section 4.4.1 are given below.

eΛ1 =
iα(1)1 (k1 − k2)

1
2 (k1 − l2)

1
2 (k∗1 + k2)

1
2 (k1 + k∗1)(k2 + l∗2 )

1
2 |k1 + l∗2 |2

α
(1)
2 (k∗1 − l∗2 )

1
2 (k∗2 − l∗2 )

1
2

eR∗5+
R3−R6

2 ,

eΛ2 =
(k1 − k2)

1
2 (k∗2 + l2)

1
2 (k1 + k∗2)Λ̂1Λ̂2

(k∗1 − k∗2)
1
2 (k∗2 − l∗2 )

1
2 (k∗1 + k2)

, eΛ3 =
|α(1)1 ||α

(2)
1 |(k1 + k∗1)(k2 + k∗2)(l2 + l∗2 )

|k2 − l2|
,

eΛ4 = (|α(1)1 |
2 + |α(2)1 |

2)1/2(|α(1)1 |
2|k1 − k2|2|k1 + l∗2 |2 + |α

(2)
1 |

2|k1 − l2|2|k1 + k∗2 |2)1/2,

eΛ5 =
|k2 + l∗2 |
|k2 − l2|

(|α(1)1 |
2|k1 + l∗2 |2 + |α

(2)
1 |

2|k1 − l2|2)1/2(|α(1)1 |
2|k1 − k2|2 + |α

(2)
1 |

2|k1 + k∗2 |2)1/2,

eΛ6 =
(k1 − l2)

1
2 (k2 + l∗2 )

1
2 (k1 + l∗2 )Λ̂3Λ̂4

(k∗1 − l∗2 )
1
2 (k∗2 − l∗2 )

1
2 (k∗1 + l2)

, Λ̂1 = (|α(1)1 |
2(k1 − k2)− |α

(2)
1 |

2(k∗1 + k2))
1/2,

eΛ7 =
α
(2)
1 (k1 − k2)

1
2 (k1 − l2)

1
2 (k∗1 + l2)

1
2 (k1 + k∗1)(k

∗
2 + l2)

1
2 |k1 + k∗2 |2

α
(2)
2 (k∗1 − k∗2)

1
2 (k∗2 − l∗2 )

1
2

eR∗2+
R6−R3

2 ,

Λ̂2 = (|α(1)1 |
2(k1 − k2)|k1 + l∗2 |2 − |α

(2)
1 |

2|k1 − l2|2(k∗1 + k2))
1/2,

Λ̂4 = (|α(1)1 |
2|k1 − k2|2(k∗1 + l2)− |α

(2)
1 |

2(k1 − l2)|k1 + k∗2 |2)1/2,

Λ̂3 = (|α(2)1 |
2(k1 − l2)− |α

(1)
1 |

2(k∗1 + l2))1/2,

e
Φ21−∆21

2 =
|α(1)2 |(k1 − k2)(k∗2 − k∗1)

1
2 (k2 − l2)

1
2

(k1 + k∗2)(k2 + k∗2)(k2 + k∗1)
1
2 (k∗2 + l2)

1
2

, e
λ2−λ1

2 =
|α(2)2 ||k1 − l2|(k2 − l2)

1
2 Λ̂2

(k2 + l∗2 )
1
2 |k1 + l∗2 |2(l2 + l∗2 )Λ̂1

,

e
λ5−R

2 =
|k1 − k2||k1 − l2||k2 − l2|Λ̂5

|k1 + k∗2 |2|k1 + l∗2 |2|k2 + l∗2 |(|α
(1)
1 |2 + |α

(2)
1 |2)1/2

e
R3+R6

2 ,

e
ϑ12−ϕ21

2 =
(k2 − k1)

1
2 (k∗1 − l∗2 )

1
2 (k∗2 + l2)

1
2

(k2 + l∗2 )
1
2 (k∗2 − k∗1)

1
2 (k1 − l2)

1
2

e
R∗2+R5−(R2+R∗5 )

2 , e
λ3−λ4

2 =
|k1 − k2|Λ̂6|k1 + l∗2 |2e

R3−R6
2

|k1 + k∗2 |2|k1 − l2|Λ̂7
,

e
Γ21−γ21

2 =
(k2 − l2)

1
2 (k1 − l2)(k∗1 − l∗2 )

1
2

(k2 + l∗2 )
1
2 (k1 + l∗2 )(k

∗
1 + l2)

1
2

e
R6
2 , e

λ7−λ6
2 =

(k1 − k2)(k2 − l2)
1
2 Λ̂4

|k1 + k∗2 |2(k∗2 + l2)
1
2 Λ̂3

e
R3
2 ,

Λ̂5 = (|α(1)1 |
2|k1 − k2|2|k1 + l∗2 |2 + |α

(2)
1 |

2|k1 − l2|2|k1 + k∗2 |2)1/2,

e
R′−ς22

2 =
|k1 − k2||k1 − l2|Λ̂5

|k1 + k∗2 |2|k1 + l∗2 |2(k1 + k∗1)
, e

ς22
2 =

|k2 − l2|
|k2 + l∗2 |

e
R3+R6

2 , e
R3−R6

2 =
|α(1)2 |(l2 + l∗2 )

|α(2)2 |(k2 + k∗2)
,

Λ̂6 = (|α(1)1 |
2|k1 − k2|2 + |α

(2)
1 |

2|k1 + k∗2 |2)1/2, Λ̂7 = (|α(1)1 |
2|k1 + l∗2 |2 + |α

(2)
1 |

2|k1 − l2|2)1/2,

e
Λ22−ρ1

2 =
(k2 − l2)

1
2

(k2 + l∗2 )
1
2

e
R6
2 , e

µ22−ρ2
2 =

(l2 − k2)
1
2

(k∗2 + l2)
1
2

e
R3
2 , eR1 =

|α(1)1 |
2

(k1 + k∗1)
2 , eR2 =

α
(1)
1 α

(1)∗
2

(k1 + k∗2)
2 ,

eR3 =
|α(1)2 |2

(k2 + k∗2)
2 , eR4 =

|α(2)1 |
2

(k1 + k∗1)
2 , eR5 =

α
(2)
1 α

(2)∗
2

(k1 + l∗2 )
2 , eR6 =

|α(2)2 |2

(l2 + l∗2 )
2 .



Photonics 2021, 8, 258 35 of 39

References
1. Zabusky, N.J.; Kruskal, M.D. Interaction of “Solitons” in a Collisionless Plasma and the Recurrence of Initial States. Phys. Rev.

Lett. 1965, 15, 240–243. [CrossRef]
2. Dauxois, T. Fermi, Pasta, Ulam and a mysterious lady. Phys. Today 2008, 61, 55–57. [CrossRef]
3. Kivshar, Y.; Agrawal, G.P. Optical Solitons: From Fibers to Photonic Crystals, 1st ed.; Academic Press: San Diego, CA, USA, 2003.
4. Agrawal, G.P. Nonlinear Fiber Optics, 5th ed.; Academic Press: Oxford, UK, 2013.
5. Chen, Z.; Segev, M.; Christodoulides, D.N. Optical spatial solitons: Historical overview and recent advances. Rep. Prog. Phys.

2012, 75, 086401. [CrossRef]
6. Malomed, B.A.; Mihalache, D.; Wise, F.; Torner, L. Spatiotemporal optical solitons. J. Opt. B Quantum Semiclass. Opt. 2005, 7,

R53–R72. [CrossRef]
7. Hasegawa, A.; Tappert, F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous

dispersion. Appl. Phys. Lett. 1973, 23, 142. [CrossRef]
8. Hasegawa, A.; Tappert, F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion.

Appl. Phys. Lett. 1973, 23, 171. [CrossRef]
9. Mollenauer, L.F.; Stolen, R.H.; Gordon, J.P. Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical

Fibers. Phys. Rev. Lett. 1980, 45, 1095. [CrossRef]
10. Mollenauer, L.F.; Gordon, J.P. Nonlinear Fiber Optics, 1st ed.; Academic Press: San Diego, CA, USA, 2006.
11. Zakharov, V.E.; Shabat, A.B. Interaction between solitons in a stable medium. Sov. Phys. JETP 1973, 37, 823–828.
12. Gardner, C.S.; Green, G.; Kruskal, M.; Miura, R. Method for solving the Korteweg-deVries equation. Phys. Rev. Lett. 1967, 19, 1095.

[CrossRef]
13. Ablowitz, M.J.; Clarkson, P.A. Solitons, Nonlinear Evolution Equations and Inverse Scattering, 1st ed.; Cambridge University Press:

Cambridge, UK, 1991.
14. Chabchoub, A.; Slunyaev, A.; Hoffmann, N.; Dias, F.; Kibler, B.; Genty, G.; Dudley, J.M.; Akhmediev, N. The Peregrine breather on

the zero-background limit as the two-soliton degenerate solution: An experimental study. arXiv 2020, arXiv:2011.13252.
15. Gordon, J.P. Interaction forces among solitons in optical fibers. Opt. Lett. 1983, 8, 596–598. [CrossRef]
16. Mitschke, F.M.; Mollenauer, L.F. Experimental observation of interaction forces between solitons in optical fibers. Opt. Lett. 1987,

12, 355. [CrossRef] [PubMed]
17. Stratmann, M.; Pagel, T.; Mitschke, F.M. Experimental Observation of Temporal Soliton Molecules. Phys. Rev. Lett. 2005, 95,

143902. [CrossRef]
18. Hause, A.; Hartwig, H.; Böhm, M.; Mitschke, F.M. Binding mechanism of temporal soliton molecules. Phys. Rev. A 2008, 78,

063817. [CrossRef]
19. Akhmediev, N.; Town, G.; Wabnitz, S. Soliton coding based on shape invariant interacting soliton packets: The three-soliton case.

Opt. Commun. 1994, 104, 385. [CrossRef]
20. Malomed, B.A. Bound solitons in the nonlinear Schrödinger/Ginzburg-Landau equation. In Large Scale Structures in Nonlinear

Physics. Lecture Notes in Physics; Fournier, J.D., Sulem, P.L., Eds.; Springer: Berlin/Heidelberg, Germany, 1991; p. 392.
21. Afanasjev, V.V.; Malomed, B.A.; Chu, P.L. Stability of bound states of pulses in the Ginzburg-Landau equations. Phys. Rev. E 1997,

56, 6020. [CrossRef]
22. Khawaja, U.A. Stability and dynamics of two-soliton molecules. Phys. Rev. E 2010, 81, 056603. [CrossRef] [PubMed]
23. Grelu, P.; Soto-Crespo, J.M. Multisoliton states and pulse fragmentation in a passively mode-locked fibre laser. J. Opt. B Quantum

SemiClass. Opt. 2004, 6, S271. [CrossRef]
24. Tang, D.Y.; Zhao, B.; Shen, D.Y.; Lu, C.; Man, W.S.; Tam, H.Y. Compound pulse solitons in a fiber ring laser. Phys. Rev. A 2003, 68,

013816. [CrossRef]
25. Akhmediev, N.N.; Ankiewicz, A.; Soto-Crespo, J.M. Stable soliton pairs in optical transmission lines and fiber lasers. J. Opt. Soc.

Am. B 1998, 15, 515. [CrossRef]
26. Melchert, O.; Willms, S.; Bose, S.; Yulin, A.; Roth, B.; Mitschke, F.M.; Morgner, U.; Babushkin, I.; Demircan, A. Soliton Molecules

with Two Frequencies. Phys. Rev. Lett. 2019, 123, 243905. [CrossRef]
27. Rohrmann, P.; Hause, A.; Mitschke, F. Solitons Beyond Binary: Possibility of Fibre-Optic Transmission of Two Bits per Clock

Period. Sci. Rep. 2012, 2, 866. [CrossRef]
28. Jakubowski, M.H.; Steiglitz, K.; Squier, R. State transformations of colliding optical solitons and possible application to computa-

tion in bulk media. Phys. Rev. E 1998, 58, 6752. [CrossRef]
29. Steiglitz, K. Time-gated Manakov spatial solitons are computationally universal. Phys. Rev. E 2000, 63, 016608. [CrossRef]
30. Akhmediev, N.; Ankiewicz, A. Multi-soliton complexes. Chaos 2000, 10, 600. [CrossRef] [PubMed]
31. Mitschke, F. A Brief History of Fiber-Optic Soliton Transmission. In Handbook of Optical Fibers; Peng, G.-D., Ed.; Springer:

Singapore, 2017; pp. 1–47.
32. Radhakrishnan, R.; Sahadevan, R.; Lakshmanan, M. Integrability and singularity structure of coupled nonlinear Schródinger

equations. Chaos Solitons Fractals 1995, 5, 2315. [CrossRef]
33. Manakov, S.V. On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Sov. Phys. JETP 1974, 38, 248.
34. Menyuk, C.R. Pulse propagation in an elliptically birefringent Kerr medium. IEEE J. Quantum Electron. 1989, 25, 2674. [CrossRef]

http://doi.org/10.1103/PhysRevLett.15.240
http://dx.doi.org/10.1063/1.2835154
http://dx.doi.org/10.1088/0034-4885/75/8/086401
http://dx.doi.org/10.1088/1464-4266/7/5/R02
http://dx.doi.org/10.1063/1.1654836
http://dx.doi.org/10.1063/1.1654847
http://dx.doi.org/10.1103/PhysRevLett.45.1095
http://dx.doi.org/10.1103/PhysRevLett.19.1095
http://dx.doi.org/10.1364/OL.8.000596
http://dx.doi.org/10.1364/OL.12.000355
http://www.ncbi.nlm.nih.gov/pubmed/19738889
http://dx.doi.org/10.1103/PhysRevLett.95.143902
http://dx.doi.org/10.1103/PhysRevA.78.063817
http://dx.doi.org/10.1016/0030-4018(94)90575-4
http://dx.doi.org/10.1103/PhysRevE.56.6020
http://dx.doi.org/10.1103/PhysRevE.81.056603
http://www.ncbi.nlm.nih.gov/pubmed/20866346
http://dx.doi.org/10.1088/1464-4266/6/5/015
http://dx.doi.org/10.1103/PhysRevA.68.013816
http://dx.doi.org/10.1364/JOSAB.15.000515
http://dx.doi.org/10.1103/PhysRevLett.123.243905
http://dx.doi.org/10.1038/srep00866
http://dx.doi.org/10.1103/PhysRevE.58.6752
http://dx.doi.org/10.1103/PhysRevE.63.016608
http://dx.doi.org/10.1063/1.1286263
http://www.ncbi.nlm.nih.gov/pubmed/12779410
http://dx.doi.org/10.1016/0960-0779(94)E0101-T
http://dx.doi.org/10.1109/3.40656


Photonics 2021, 8, 258 36 of 39

35. Radhakrishnan, R.; Lakshmanan, M.; Hietarinta, J. Inelastic collision and switching of coupled bright solitons in optical fibers.
Phys. Rev. E 1997, 56, 2213. [CrossRef]

36. Kanna, T.; Lakshmanan, M. Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear
Schrödinger equations. Phys. Rev. Lett. 2001, 86, 5043. [CrossRef] [PubMed]

37. Anastassiou, C.; Segev, M.; Steiglitz, K.; Giordmaine, J.A.; Mitchell, M.; Shih, M.F.; Lan, S.; Martin, J. Energy-exchange interactions
between colliding vector solitons. Phys. Rev. Lett. 1999, 83, 2332. [CrossRef]

38. Kang, J.U.; Stegeman, G.I.; Aitchison, J.S.; Akhmediev, N. Observation of Manakov spatial solitons in AlGaAs planar waveguides.
Phys. Rev. Lett. 1996, 76, 3699. [CrossRef]

39. Rand, D.; Glesk, I.; Bres, C.S.; Nolan, D.A.; Chen, X.; Koh, J.; Fleischer, J.W.; Steiglitz, K.; Prucnal, P. R. Observation of temporal
vector soliton propagation and collision in birefringent fiber. Phys. Rev. Lett. 2007, 98, 053902. [CrossRef] [PubMed]

40. Soljacic, M.; Steiglitz, K.; Sears, S.M.; Segev, M.; Jakubowski, M.H.; Squier, R. Collisions of Two Solitons in an Arbitrary Number
of Coupled Nonlinear Schrödinger Equations. Phys. Rev. Lett. 2003, 90, 254102. [CrossRef] [PubMed]

41. Kanna, T.; Lakshmanan, M. Exact soliton solutions of coupled nonlinear Schrödinger equations: Shape-changing collisions, logic
gates, and partially coherent solitons. Phys. Rev. E 2003, 67, 046617. [CrossRef] [PubMed]

42. Vijayajayanthi, M.; Kanna, T.; Murali, K.; Lakshmanan, M. Harnessing energy-sharing collisions of Manakov solitons to implement
universal NOR and OR logic gates. Phys. Rev. E 2018, 97, 060201(R). [CrossRef] [PubMed]

43. Segev, M.; Crosignani, B.; Yariv, A.; Fischer, B. Spatial solitons in photorefractive media. Phys. Rev. Lett. 1992, 68, 923. [CrossRef]
[PubMed]

44. Duree, G.C.; Shultz, J.L.; Segev, M.; Yariv, A.; Crosignani, B.; Porto, P.D.; Sharp, E.J.; Neurgaonkar, R.R. Observation of self-trapping
of an optical beam due to the photorefractive effect. Phys. Rev. Lett. 1993, 71, 533. [CrossRef]

45. Segev, M.; Valley, G.C.; Crosignani, B.; DiPorto, P.; Yariv, A. Steady-State Spatial Screening Solitons in Photorefractive Materials
with External Applied Field. Phys. Rev. Lett. 1994, 73, 3211. [CrossRef] [PubMed]

46. Christodoulides, D.N.; Carvalho, M.I. Bright, dark, and gray spatial soliton states in photorefractive media. J. Opt. Soc. Am. B
1995, 12, 1628. [CrossRef]

47. Christodoulides, D.N.; Singh, S.R.; Carvalho, M.I. Incoherently coupled soliton pairs in biased photorefractive crystals. Appl.
Phys. Lett. 1996, 68, 1763. [CrossRef]

48. Chen, Z.; Segev, M.; Coskun, T.H.; Christodoulides, D.N. Observation of incoherently coupled photorefractive spatial soliton
pairs. Opt. Lett. 1996, 21, 1436. [CrossRef] [PubMed]

49. Chen, Z.; Segev, M.; Coskun, T.H.; Christodoulides, D.N.; Kivshar, Y.S.; Afanasjev, V.V. Incoherently coupled dark–bright
photorefractive solitons. Opt. Lett. 1996, 21, 1821. [CrossRef]

50. Mitchell, M.; Segev, M.; Christodoulides, D.N. Observation of multihump multimode solitons. Phys. Rev. Lett. 1998, 80, 4657.
[CrossRef]

51. Akhmediev, N.; Królikowski, W.; Snyder, A.W. Partially coherent colitons of variable shape. Phys. Rev. Lett. 1998, 81, 4632.
[CrossRef]

52. Ankiewicz, A.; Królikowski, W.; Akhmediev, N. Partially coherent solitons of variable shape in a slow Kerr-like medium: Exact
solutions. Phys. Rev. E 1999, 59, 6079. [CrossRef] [PubMed]

53. Sukhorukov, A.A.; Akhmediev, N. Coherent and Incoherent Contributions to Multisoliton Complexes. Phys. Rev. Lett. 1999, 83,
4736. [CrossRef]

54. Królikowski, W.; Akhmediev, N.; Luther-Davies, B. Collision-induced shape transformations of partially coherent solitons. Phys.
Rev. E 1999, 59, 4654. [CrossRef]

55. Christodoulides, D.N.; Joseph, R.I. Vector solitons in birefringent nonlinear dispersive media. Opt. Lett. 1988, 13, 53. [CrossRef]
56. Akhmediev, N.N.; Buryak, A.V.; Soto-Crespo, J.M.; Andersen, D.R. Phase-locked stationary soliton states in birefringent nonlinear

optical fibers. J. Opt. Soc. Am. B 1995, 12, 434. [CrossRef]
57. Collings, B.C.; Cundiff, S.T.; Akhmediev, N.N.; Soto-Crespo, J.M.; Bergman, K.; Knox, W.H. Polarization-locked temporal vector

solitons in a fiber laser: Experiment. J. Opt. Soc. Am. B 2000, 17, 354. [CrossRef]
58. Tratnik, M.V.; Sipe, J.E. Bound solitary waves in a birefringent optical fiber. Phys. Rev. A 1988, 38, 2011. [CrossRef]
59. Haelterman, M.; Sheppard, A.P.; Snyder, A.W. Bound-vector solitary waves in isotropic nonlinear dispersive media. Opt. Lett.

1993, 18, 1406. [CrossRef]
60. Yang, J. Classification of the solitary waves in coupled nonlinear Schrödinger equations. Phys. D Nonlinear Phenom. 1997, 108, 92.

[CrossRef]
61. Elena, A.; Ostrovskaya, E.A.; Kivshar, Y.S.; Chen, Z.; Segev, M. Interaction between vector solitons and solitonic gluons. Opt. Lett.

1999, 24, 327.
62. Ostrovskaya, E.A.; Kivshar, Y.S.; Skryabin, D.V.; Firth, W.J. Stability of Multihump Optical Solitons. Phys. Rev. Lett. 1999, 83, 296.

[CrossRef]
63. Pelinovsky, D.E.; Yang, J. Instabilities of multihump vector solitons in coupled nonlinear Schrödinger equations. Stud. Appl. Math.

2005, 115, 109. [CrossRef]
64. Kanna, T.; Lakshmanan, M.; Dinda, P.T.; Akhmediev, N. Soliton collisions with shape change by intensity redistribution in mixed

coupled nonlinear Schrödinger equations. Phys. Rev. E 2006, 73, 026604. [CrossRef] [PubMed]
65. Sheppard, A.P.; Kivshar, Y.S. Polarized dark solitons in isotropic Kerr media. Phys. Rev. E 1997, 55, 4773. [CrossRef]

http://dx.doi.org/10.1103/PhysRevE.56.2213
http://dx.doi.org/10.1103/PhysRevLett.86.5043
http://www.ncbi.nlm.nih.gov/pubmed/11384416
http://dx.doi.org/10.1103/PhysRevLett.83.2332
http://dx.doi.org/10.1103/PhysRevLett.76.3699
http://dx.doi.org/10.1103/PhysRevLett.98.053902
http://www.ncbi.nlm.nih.gov/pubmed/17358859
http://dx.doi.org/10.1103/PhysRevLett.90.254102
http://www.ncbi.nlm.nih.gov/pubmed/12857135
http://dx.doi.org/10.1103/PhysRevE.67.046617
http://www.ncbi.nlm.nih.gov/pubmed/12786519
http://dx.doi.org/10.1103/PhysRevE.97.060201
http://www.ncbi.nlm.nih.gov/pubmed/30011592
http://dx.doi.org/10.1103/PhysRevLett.68.923
http://www.ncbi.nlm.nih.gov/pubmed/10046033
http://dx.doi.org/10.1103/PhysRevLett.71.533
http://dx.doi.org/10.1103/PhysRevLett.73.3211
http://www.ncbi.nlm.nih.gov/pubmed/10057319
http://dx.doi.org/10.1364/JOSAB.12.001628
http://dx.doi.org/10.1063/1.116659
http://dx.doi.org/10.1364/OL.21.001436
http://www.ncbi.nlm.nih.gov/pubmed/19881683
http://dx.doi.org/10.1364/OL.21.001821
http://dx.doi.org/10.1103/PhysRevLett.80.4657
http://dx.doi.org/10.1103/PhysRevLett.81.4632
http://dx.doi.org/10.1103/PhysRevE.59.6079
http://www.ncbi.nlm.nih.gov/pubmed/11969593
http://dx.doi.org/10.1103/PhysRevLett.83.4736
http://dx.doi.org/10.1103/PhysRevE.59.4654
http://dx.doi.org/10.1364/OL.13.000053
http://dx.doi.org/10.1364/JOSAB.12.000434
http://dx.doi.org/10.1364/JOSAB.17.000354
http://dx.doi.org/10.1103/PhysRevA.38.2011
http://dx.doi.org/10.1364/OL.18.001406
http://dx.doi.org/10.1016/S0167-2789(97)82007-6
http://dx.doi.org/10.1103/PhysRevLett.83.296
http://dx.doi.org/10.1111/j.1467-9590.2005.01565
http://dx.doi.org/10.1103/PhysRevE.73.026604
http://www.ncbi.nlm.nih.gov/pubmed/16605468
http://dx.doi.org/10.1103/PhysRevE.55.4773


Photonics 2021, 8, 258 37 of 39

66. Radhakrishnan, R.; Aravinthan, K. Spatial vector soliton and its collisions in isotropic self-defocusing Kerr media. Phys. Rev. E
2007, 75, 066605. [CrossRef]

67. Radhakrishnan, R.; Manikandan, N.; Aravinthan, K. Energy-exchange collisions of dark-bright-bright vector solitons. Phys. Rev.
E 2015, 92, 062913. [CrossRef] [PubMed]

68. Vijayajayanthi, M.; Kanna, T.; Lakshmanan, M. Bright-dark solitons and their collisions in mixed N-coupled nonlinear Schrödinger
equations. Phys. Rev. A 2008, 77, 013820. [CrossRef]

69. Feng, B.F. General N-soliton solution to a vector nonlinear Schrödinger equation. J. Phys. A Math. Theor. 2014, 47, 355203.
[CrossRef]

70. Radhakrishnan, R.; Lakshmanan, M. Bright and dark soliton solutions to coupled nonlinear Schrödinger equations. J. Phy. A
Math. Gen. 1995, 28, 2683. [CrossRef]

71. Ohta, Y.; Wang, D.S.; Yang, J. General N-Dark-Dark Solitons in the Coupled Nonlinear Schrödinger Equations. Stud. Appl. Math.
2011, 127, 345. [CrossRef]

72. Kevrekidis, P.G.; Frantzeskakis, D.J. Solitons in coupled nonlinear Schrödinger models: A survey of recent developments. Rev.
Phys. 2016, 1, 140. [CrossRef]

73. Song, Y.; Shi, X.; Wu, C.; Tang, D.; Zhang, H. Recent Progress of study on optical solitons in fiber lasers. Appl. Phys. Rev. 2019, 6,
021313. [CrossRef]

74. Akhmediev, N.; Ankiewicz, A. Dissipative Solitons; Springer: Berlin/Heidelberg, Germany, 2005.
75. Stalin, S.; Ramakrishnan, R.; Senthilvelan, M.; Lakshmanan, M. Nondegenerate solitons in Manakov system. Phys. Rev. Lett. 2019,

122, 043901. [CrossRef]
76. Ramakrishnan, R.; Stalin, S.; Lakshmanan, M. Nondegenerate solitons and their collisions in Manakov systems. Phys. Rev. E 2020,

102, 042212. [CrossRef] [PubMed]
77. Stalin, S.; Ramakrishnan, R.; Lakshmanan, M. Nondegenerate soliton solutions in certain coupled nonlinear Schrödinger systems.

Phys. Lett. A 2020, 384, 126201. [CrossRef]
78. Qin, Y.H.; Zhao, L.C.; Ling, L. Nondegenerate bound-state solitons in multicomponent Bose-Einstein condensates. Phys. Rev. E

2019, 100, 022212. [CrossRef]
79. Zhang, C.R.; Tian, B.; Qu, Q.X.; Liu, L.; Tian, H.Y. Vector bright solitons and their interactions of the couple Fokas-Lenells system

in a birefringent optical fiber. Z. Angew. Math. Phys. 2020, 71, 18. [CrossRef]
80. Ding, C.C.; Gao, Y.T.; Hu, L.; Deng, G.F.; Zhang, C.Y. Vector bright soliton interactions of the two-component AB system in a

baroclinic fluid. Chaos Solitons Fractals 2021, 142, 110363. [CrossRef]
81. Qin, Y.H.; Zhao, L.C.; Yang, Z.Q.; Ling, L. Multivalley dark solitons in multicomponent Bose-Einstein condensates with repulsive

interactions. arXiv 2021, arXiv:2102.10507.
82. Ramakrishnan, R.; Stalin, S.; Lakshmanan, M. Multihumped nondegenerate fundamental bright solitons in N-coupled nonlinear

Schrödinger system. J. Phys. A Math. Theor. 2021, 54, 14LT01. [CrossRef]
83. Lakshmanan, M.; Kanna, T. Shape changing collisions of optical solitons, universal logic gates and partially coherent solitons in

coupled nonlinear Schrödinger equations. Pramana J. Phys. 2001, 57, 885. [CrossRef]
84. Zakharov, V.E.; Schulman, E.I. To the integrability of the system of two coupled nonlinear Schrödinger equations. Phys. D 1982,

4, 270. [CrossRef]
85. Kaup, D.J.; Malomed, B.A. Soliton trapping and daughter waves in the Manakov model. Phys. Rev. E 1993, 48, 599. [CrossRef]

[PubMed]
86. Lazarides, N.; Tsironis, G.P. Coupled nonlinear Schrödinger field equations for electromagnetic wave propagation in nonlinear

left-handed materials. Phys. Rev. E 2005, 71, 036614. [CrossRef]
87. Makhankov, V.G. Quasi-classical solitons in the Lindner-Fedyanin model-“hole”-like excitations. Phys. Lett. A 1981, 81, 156.

[CrossRef]
88. Makhankov, V.G.;Makhaldiani, N.V.; Pashaev, O.K. On the integrability and isotopic structure of the one-dimensional Hubbard

model in the long wave approximation. Phys. Lett. A 1981, 81, 161. [CrossRef]
89. Lindner, U.; Fedyanin, V. Solitons in a one-dimensional modified Hubbard model. Phys. Status Solidi B 1978, 89, 123. [CrossRef]
90. Pérez-García, V.M.; Beitia, J.B. Symbiotic solitons in heteronuclear multicomponent Bose-Einstein condensates. Phys. Rev. A 2005,

72, 033620. [CrossRef]
91. Ablowitz, M.J.; Prinari, B.; Trubatch, A.D. Soliton interactions in the vector NLS equation. Inverse Probl. 2004, 20, 1217. [CrossRef]
92. Prinari, B.; Ablowitz, M.J.; Biondini, G. Inverse scattering transform for the vector nonlinear Schrödinger equation with

nonvanishing boundary conditions. J. Math. Phys. 2006, 47, 063508. [CrossRef]
93. Prinari, B.; Biondini, G.; Trubatch, A.D. Inverse scattering transform for the multi-component Nonlinear Schrödinger equation

with nonzero boundary conditions. Stud. Appl. Math. 2011, 126, 245. [CrossRef]
94. Biondini, G.; Kovacic, G. Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary

conditions. J. Math. Phys. 2014, 55, 031506. [CrossRef]
95. Biondini, G.; Kraus, D. Inverse Scattering transform for the defocusing Manakov system with nonzero boundary conditions.

SIAM J. Math. Anal. 2015, 47, 706. [CrossRef]
96. Prinari, B.; Vitale, F.; Biondini, G. Dark-bright soliton solutions with nontrivial polarization interactions for the three-component

defocusing nonlinear Schrödinger equation with nonzero boundary conditions. J. Math. Phys. 2015, 56, 071505. [CrossRef]

http://dx.doi.org/10.1103/PhysRevE.75.066605
http://dx.doi.org/10.1103/PhysRevE.92.062913
http://www.ncbi.nlm.nih.gov/pubmed/26764780
http://dx.doi.org/10.1103/PhysRevA.77.013820
http://dx.doi.org/10.1088/1751-8113/47/35/355203
http://dx.doi.org/10.1088/0305-4470/28/9/025
http://dx.doi.org/10.1111/j.1467-9590.2011.00525.x
http://dx.doi.org/10.1016/j.revip.2016.07.002
http://dx.doi.org/10.1063/1.5091811
http://dx.doi.org/10.1103/PhysRevLett.122.043901
http://dx.doi.org/10.1103/PhysRevE.102.042212
http://www.ncbi.nlm.nih.gov/pubmed/33212644
http://dx.doi.org/10.1016/j.physleta.2019.126201
http://dx.doi.org/10.1103/PhysRevE.100.022212
http://dx.doi.org/10.1007/s00033-019-1225-9
http://dx.doi.org/10.1016/j.chaos.2020.110363
http://dx.doi.org/10.1088/1751-8121/abe6bb
http://dx.doi.org/10.1007/s12043-001-0005-0
http://dx.doi.org/10.1016/0167-2789(82)90068-9
http://dx.doi.org/10.1103/PhysRevA.48.599
http://www.ncbi.nlm.nih.gov/pubmed/9909633
http://dx.doi.org/10.1103/PhysRevE.71.036614
http://dx.doi.org/10.1016/0375-9601(81)90050-5
http://dx.doi.org/10.1016/0375-9601(81)90051-7
http://dx.doi.org/10.1002/pssb.2220890115
http://dx.doi.org/10.1103/PhysRevA.72.033620
http://dx.doi.org/10.1088/0266-5611/20/4/012
http://dx.doi.org/10.1063/1.2209169
http://dx.doi.org/10.1111/j.1467-9590.2010.00504.x
http://dx.doi.org/10.1063/1.4868483
http://dx.doi.org/10.1137/130943479
http://dx.doi.org/10.1063/1.4926439


Photonics 2021, 8, 258 38 of 39

97. Biondini, G.; Kraus, D.K.; Prinari, B. The three-component defocusing nonlinear Schrödinger equation with nonzero boundary
conditions. Commun. Math. Phys. 2016, 348, 475–533. [CrossRef]

98. Park, Q.H.; Shin, H.J. Systematic construction of multicomponent optical solitons. Phys. Rev. E 2000, 61, 3093. [CrossRef]
99. Degasperis, A.; Lombardo, S. Multicomponent integrable wave equations: I. Darboux-dressing transformation J. Phys. A Math.

Theor. 2007, 40, 961. [CrossRef]
100. Degasperis, A.; Lombardo, S. Multicomponent integrable wave equations: II. Soliton solutions. J. Phys. A Math. Theor. 2009, 42,

385206. [CrossRef]
101. Ling, L.; Zhao, L.C.; Guo, B. Darboux transformation and multi-dark soliton for N-component nonlinear Schrödinger equations.

Nonlinearity 2015, 28, 3243. [CrossRef]
102. Ling, L.; Zhao, L.C.; Guo, B. Darboux transformation and classification of solution for mixed coupled nonlinear Schrödinger

equations. Commun. Nonlin. Sci. Numer. Simul. 2016, 32, 285. [CrossRef]
103. Tsuchida, T. Exact solutions of multicomponent nonlinear Schrödinger equations under general plane-wave boundary conditions.

arXiv 2013, arXiv:1308.6623v2.
104. Crosignani, B.; Cutolo, A.; Porto, P.D. Coupled-mode theory of nonlinear propagation in multimode and single-mode fibers:

Envelope solitons and self-confinement. J. Opt. Soc. Am. 1982, 72, 1136. [CrossRef]
105. Park, Q.H.; Shin, H.J. Painlevé analysis of the coupled nonlinear Schrödinger equation for polarized optical waves in an isotropic

medium. Phys. Rev. E 1999, 59, 2373. [CrossRef]
106. Akhmediev, N.N.; Ostrovskaya, E.A. Elliptically polarized spatial solitons in cubic gyrotropic materials. Opt. Commun. 1996, 132,

190. [CrossRef]
107. Kanna, T.; Vijayajayanthi, M.; Lakshmanan, M. Coherently coupled bright optical solitons and their collisions. J. Phys. A Math.

Theor. 2010, 43, 434018. [CrossRef]
108. Kanna, T.; Sakkaravarthi, K. Multicomponent coherently coupled and incoherently coupled solitons and their collisions. J. Phys.

A Math. Theor. 2011, 44, 285211. [CrossRef]
109. Kasamatsu, K.; Tsubota, M.; Ueda, M. Vortex molecules in coherently coupled two-component Bose-Einstein condensates. Phys.

Rev. Lett. 2004, 93, 250406. [CrossRef] [PubMed]
110. Congy, T.; Kamchatnov, A.M.; Pavloff, N. Nonlinear waves in coherently coupled Bose-Einstein condensates. Phys. Rev. A 2016,

93, 043613. [CrossRef]
111. Babu Mareeswaran, R.; Kanna, T. Superposed nonlinear waves in coherently coupled Bose-Einstein condensates. Phys. Lett. A

2016, 380, 3244. [CrossRef]
112. Ieda, J.; Miyakawa, T.; Wadati, M. Exact Analysis of Soliton Dynamics in Spinor Bose—Einstein Condensates. Phys. Rev Lett. 2004,

93, 194102. [CrossRef]
113. Prinari, B.; Ortiz, A.K.; van der Mee, C.; Grabowski, M. Inverse Scattering Transform and Solitons for Square Matrix Nonlinear

Schrödinger Equations. Stud. Appl. Math. 2018, 141, 308. [CrossRef]
114. Li, L.; Li, Z.; Malomed, B.; Mihalache, D.; Liu, W. Exact Soliton Solutions and Nonlinear Modulation Instability in Spinor

Bose-Einstein Condensates. Phys. Rev. A 2005, 72, 033611. [CrossRef]
115. Wang, D.S.; Zhang, D.J.; Yang, J. Integrable properties of the general coupled nonlinear Schrödinger equations. J. Math. Phys.

2010, 51, 023510. [CrossRef]
116. lü, M.; Peng, M. Painlevé-integrability and explicit solutions of the general two-coupled nonlinear Schrödinger system in the

optical fiber communications. Nonlinear. Dyn. 2013, 73, 405. [CrossRef]
117. Vishnu Priya, N.; Senthilvelan, M. N-bright-bright and N-dark-dark solitons of the coupled generalized nonlinear Schrödinger

equations. Commun. Nonlin. Sci. Numer. Simul. 2016, 36, 366. [CrossRef]
118. Agalarov, A.; Zhulego, V.; Gadzhimuradov, T. Bright, dark, and mixed vector soliton solutions of the general coupled nonlinear

Schrödinger equations. Phys. Rev. E 2015, 91, 042909. [CrossRef]
119. Zakharov, V.E. Collapse of Langmuir waves. Sov. Phys. JETP 1972, 35, 908.
120. Benny, D.J. A General Theory for Interactions Between Short and Long Waves. Stud. Appl. Math. 1977, 56, 81. [CrossRef]
121. Kivshar, Y.S. Stable vector solitons composed of bright and dark pulses. Opt. Lett. 1992, 17, 1322. [CrossRef]
122. Chowdhury, A. Tataronis, J.A. Long wave–short wave resonance in nonlinear negative refractive index media. Phys. Rev. Lett.

2008, 100, 153905. [CrossRef]
123. Ablowitz, M.J.; Biondini, G.; Blair, S. Nonlinear Schrödinger equations with mean terms in nonresonant multidimensional

quadratic materials. Phys. Rev. E 2001, 63, 046605. [CrossRef] [PubMed]
124. Sazonov, S.V.; Ustinov, N.V. Vector solitons generated by the long wave-short wave interaction. JETP Lett. 2011, 94, 610. [CrossRef]
125. Nishikawa, K.; Hojo, H.; Mima, K.; Ikezi, H. Coupled nonlinear electron-plasma and ion-acoustic waves. Phys. Rev. Lett. 1974, 33,

148. [CrossRef]
126. Yajima, N.; Oikawa, M. Formation and interaction of sonic-Langmuir solitons: Inverse scattering method. Prog. Theor. Phys. 1976,

56, 1719. [CrossRef]
127. Kawahara, T. Nonlinear self-modulation of capillary-gravity waves on liquid layer. J. Phys. Soc. Jpn. 1975, 38, 265. [CrossRef]
128. Kawahara, T.; Sugimoto, N.; Kakutani, T. Nonlinear interaction between short and long capillary-gravity waves. J. Phys. Soc. Jpn.

1975, 39, 1379. [CrossRef]
129. Djordjevic, V.D.; Redekopp, L.G. On two-dimensional packets of capillary-gravity waves. J. Fluid Mech. 1977, 79, 703. [CrossRef]

http://dx.doi.org/10.1007/s00220-016-2626-7
http://dx.doi.org/10.1103/PhysRevE.61.3093
http://dx.doi.org/10.1088/1751-8113/40/5/007
http://dx.doi.org/10.1088/1751-8113/42/38/385206
http://dx.doi.org/10.1088/0951-7715/28/9/3243
http://dx.doi.org/10.1016/j.cnsns.2015.08.023
http://dx.doi.org/10.1364/JOSA.72.001136
http://dx.doi.org/10.1103/PhysRevE.59.2373
http://dx.doi.org/10.1016/0030-4018(96)00378-1
http://dx.doi.org/10.1088/1751-8113/43/43/434018
http://dx.doi.org/10.1088/1751-8113/44/28/285211
http://dx.doi.org/10.1103/PhysRevLett.93.250406
http://www.ncbi.nlm.nih.gov/pubmed/15697880
http://dx.doi.org/10.1103/PhysRevA.93.043613
http://dx.doi.org/10.1016/j.physleta.2016.07.064
http://dx.doi.org/10.1103/PhysRevLett.93.194102
http://dx.doi.org/10.1111/sapm.12223
http://dx.doi.org/10.1103/PhysRevA.72.033611
http://dx.doi.org/10.1063/1.3290736
http://dx.doi.org/10.1007/s11071-013-0795-x
http://dx.doi.org/10.1016/j.cnsns.2015.12.016
http://dx.doi.org/10.1103/PhysRevE.91.042909
http://dx.doi.org/10.1002/sapm197756181
http://dx.doi.org/10.1364/OL.17.001322
http://dx.doi.org/10.1103/PhysRevLett.100.153905
http://dx.doi.org/10.1103/PhysRevE.63.046605
http://www.ncbi.nlm.nih.gov/pubmed/11308966
http://dx.doi.org/10.1134/S0021364011200112
http://dx.doi.org/10.1103/PhysRevLett.33.148
http://dx.doi.org/10.1143/PTP.56.1719
http://dx.doi.org/10.1143/JPSJ.38.265
http://dx.doi.org/10.1143/JPSJ.39.1379
http://dx.doi.org/10.1017/S0022112077000408


Photonics 2021, 8, 258 39 of 39

130. Kopp, C.G.; Redekopp, L.G. The interaction of long and short internal gravity waves: Theory and experiment. J. Fluid. Mech.
1981, 111, 367. [CrossRef]

131. Boyd, J.P. Long wave/short wave resonance in equatorial waves. J. Phys. Oceanogr. 1982, 13, 450. [CrossRef]
132. Zabolotskii, A.A. Resonant interaction between a localized fast wave and a slow wave with constant asymptotic amplitude. JETP

2009, 109, 859. [CrossRef]
133. Aguero, M.; Frantzeskakis, D.J.; Kevrekidis, P.G. Asymptotic reductions of two coupled (2+1)-dimensional nonlinear Schrödinger

equations: Application to Bose-Einstein condensates. J. Phys. A Math. Gen. 2006, 39, 7705. [CrossRef]
134. Niztazakis, H.E.; Frantzeskakis, D.J.; Kevrekidis, P.G.; Malomed, B.A.; González, R.C. Bright-dark soliton complexes in spinor

Bose-Einstein condensates. Phys. Rev. A 2008, 77, 033612. [CrossRef]
135. Ma, Y.C.; Redekopp, L.G. Some solutions pertaining to the resonant interaction of long and short waves. Phys. Fluids 1979, 22,

1872. [CrossRef]
136. Kanna, T.; Sakkaravarthi, K.; Tamilselvan, K. General multicomponent Yajima-Oikawa system: Painlevé analysis, soliton solutions,

and energy-sharing collisions. Phys. Rev. E 2013, 88, 062921. [CrossRef]
137. Chen, J.; Chen, Y.; Feng, B.F.; Maruno, K.I. General mixed multi-soliton solutions to one-dimensional multicomponent Yajima-

Oikawa system. J. Phys. Soc. Jpn. 2015, 84, 074001. [CrossRef]
138. Chen, J.; Chen, Y.; Feng, B.F.; Maruno, K.I. Multi-dark soliton solutions of the two-dimensional multi-component Yajima-Oikawa

systems. J. Phys. Soc. Jpn. 2015, 84, 034002. [CrossRef]
139. Oikawa, M.; Okamura, M.; Funakoshi, M. Two-dimensional resonant interaction between long and short waves. J. Phys. Soc. Jpn.

1989, 58, 4416. [CrossRef]
140. Ohta, Y.; Maruno, K.; Oikawa, M. Two-component analogue of two-dimensional long wave-short wave resonance interaction

equations: A derivation and solutions. J. Phys. A Math. Theor. 2007, 40, 7659. [CrossRef]
141. Radha, R.; Senthil Kumar, C.; Lakshmanan, M.; Gilson, C.R. The collision of multimode dromions and a firewall in the two-

component long-wave-short-wave resonance interaction equation. J. Phys. A Math. Theor. 2009, 42, 102002. [CrossRef]
142. Kanna, T.; Vijayajayanthi, M.; Sakkaravarthi, K.; Lakshmanan, M. Higher dimensional bright solitons and their collisions in a

multicomponent long wave-short wave system. J. Phys. A Math.Theor. 2009, 42, 115103. [CrossRef]
143. Sakkaravarthi, K.; Kanna, T.; Vijayajayanthi, M.; Lakshmanan, M. Multicomponent long-wave-short-wave resonance interaction

system: Bright solitons, energy-sharing collisions, and resonant solitons. Phys. Rev. E 2014, 90, 052912. [CrossRef]
144. Kanna, T.; Vijayajayanthi, M.; Lakshmanan, M. Mixed solitons in a (2 + 1)-dimensional multicomponent long-wave-short-wave

system. Phys. Rev. E 2014, 90, 042901. [CrossRef]
145. Chen, J.; Feng, B.F.; Chen, Y.; Ma, Z. General bright-dark soliton solution to (2 + 1)-dimensional multi-component long-wave-

short-wave resonance interaction system. Nonlinear Dyn. 2017, 88, 1273. [CrossRef]
146. Chow, K.W.; Chan, H.N.; Kedzioara, D.J.; Grimshaw, R.H.J. Rogue wave modes for the long wave-short wave resonance model. J.

Phys. Soc. Jpn. 2013, 82, 074001. [CrossRef]
147. Chen, S.; Grelu, P.; Soto-Crespo, J.M. Dark-and bright-rogue-wave solutions for media with long-wave-short-wave resonance.

Phys. Rev. E 2014, 89, 011201(R). [CrossRef] [PubMed]
148. Chan, H.N.; Ding, E.; Kedzioara, D.J.; Grimshaw, R.H.J.; Chow, K.W. Rogue waves for a long wave–short wave resonance model

with multiple short waves. Nonlinear Dyn. 2016, 85, 2827. [CrossRef]
149. Chen, S.; Soto-Crespo, J.M.; Grelu, P. Coexisting rogue waves within the (2 + 1)-component long-wave-short-wave resonance.

Phys. Rev. E 2014, 90, 033203. [CrossRef]
150. Chen, J.; Chen, Y.; Feng, B.F.; Maruno, K.I. Rational solutions to two-and one-dimensional multicomponent Yajima-Oikawa

systems. Phys. Lett. A 2015, 379, 1510. [CrossRef]
151. Rao, J.; Porsezian, K.; He, J.; Kanna, T. Dynamics of lumps and dark-dark solitons in the multi-component long-wave-short-wave

resonance interaction system. Proc. R. Soc. A 2018, 474, 20170627. [CrossRef]
152. Yang, J.W.; Gao, Y.T.; Sun, Y.H.; Shen, Y.J.; Su, C.Q. Higher-order rogue waves with new spatial distributions for the (2 + 1)-

dimensional two-component long-wave-short-wave resonance interaction system. Eur. Phys. J. Plus 2016, 131, 416. [CrossRef]
153. Hirota, R. The Direct Method in Soliton Theory; Cambridge University Press: Cambridge, UK, 2004.
154. Ablowitz, M.J.; Ohta, Y.; Trubatch, A.D. On discretizations of the vector nonlinear Schrödinger equation. Phys. Lett. A 1999,

253, 287. [CrossRef]
155. Vijayajayanthi, M.; Kanna, T.; Lakshmanan, M. Multisoliton solutions and energy sharing collisions in coupled nonlinear

Schrödinger equations with focusing, defocusing and mixed type nonlinearities. Eur. Phys. J. Spec. Top. 2009, 173, 57. [CrossRef]
156. Gilson, C.; Hietarinta, J.; Nimmo, J.; Ohta, Y. Sasa-Satsuma higher-order nonlinear Schrödinger equation and its bilinearization

and multisoliton solutions. Phys. Rev. E 2003, 68, 016614. [CrossRef] [PubMed]
157. Sakaguchi, H.; Malomed, B.A. Singular solitons. Phys. Rev. E 2020, 101, 012211. [CrossRef] [PubMed]
158. Ramakrishnan, R.; Stalin, S.; Lakshmanan, M. Dynamics of nondegenerate solitons in generalized coupled nonlinear Schrödinger

system. 2021, Unpublished.
159. Stalin, S.; Ramakrishnan, R.; Lakshmanan, M. Dynamics of nondegenerate solitons in long-wave short-wave resonance interaction

system. 2021, Unpublished.

http://dx.doi.org/10.1017/S0022112081002425
http://dx.doi.org/10.1175/1520-0485(1983)013<0450:LWWRIE>2.0.CO;2
http://dx.doi.org/10.1134/S1063776109110144
http://dx.doi.org/10.1088/0305-4470/39/24/007
http://dx.doi.org/10.1103/PhysRevA.77.033612
http://dx.doi.org/10.1063/1.862493
http://dx.doi.org/10.1103/PhysRevE.88.062921
http://dx.doi.org/10.7566/JPSJ.84.074001
http://dx.doi.org/10.7566/JPSJ.84.034002
http://dx.doi.org/10.1143/JPSJ.58.4416
http://dx.doi.org/10.1088/1751-8113/40/27/015
http://dx.doi.org/10.1088/1751-8113/42/10/102002
http://dx.doi.org/10.1088/1751-8113/42/11/115103
http://dx.doi.org/10.1103/PhysRevE.90.052912
http://dx.doi.org/10.1103/PhysRevE.90.042901
http://dx.doi.org/10.1007/s11071-016-3309-9
http://dx.doi.org/10.7566/JPSJ.82.074001
http://dx.doi.org/10.1103/PhysRevE.89.011201
http://www.ncbi.nlm.nih.gov/pubmed/24580164
http://dx.doi.org/10.1007/s11071-016-2865-3
http://dx.doi.org/10.1103/PhysRevE.90.033203
http://dx.doi.org/10.1016/j.physleta.2015.02.040
http://dx.doi.org/10.1098/rspa.2017.0627
http://dx.doi.org/10.1140/epjp/i2016-16416-8
http://dx.doi.org/10.1016/S0375-9601(99)00048-1
http://dx.doi.org/10.1140/epjst/e2009-01067-9
http://dx.doi.org/10.1103/PhysRevE.68.016614
http://www.ncbi.nlm.nih.gov/pubmed/12935277
http://dx.doi.org/10.1103/PhysRevE.101.012211
http://www.ncbi.nlm.nih.gov/pubmed/32069529

	Introduction
	Derivation of CNLS Equations and Other Integrable CNLS Type Models 
	Statement of the Problem
	Nondegenerate Solitons and Their Collisions in Manakov System
	Nondegenerate Fundamental Soliton Solution of the Manakov System
	Nondegenerate Two-Soliton Solution
	Various Types of Collision Dynamics of Nondegenerate Solitons
	Asymptotic Analysis
	Elastic Collision: Shape Preserving, Shape Altering and Shape Changing Collisions

	Collision between Nondegenerate and Degenerate Solitons
	Asymptotic Analysis

	Degenerate Soliton Collision Induced Shape Changing Scenario of Nondegenerate Soliton
	Degenerate Bright Solitons and Their Shape Changing/Energy Redistribution Collision in the Manakov System
	Possible Experimental Realization of Nondegenerate Solitons
	Multi-Humped Nondegenerate Fundamental Bright Soliton Solution in N-CNLS System

	Nondegenerate and Degenerate Bright Solitons in the Mixed 2-CNLS System
	Existence of Nondegenerate and Degenerate Bright Solitons in Two-Component Coherently Coupled Nonlinear Schrödinger System
	Fundamental Vector Bright Solitons in a GCNLS System
	Nondegenerate and Degenerate Bright Solitons in Two Component LSRI System
	Summary and Outlook
	Constants That Appear in the Asymptotic Expressions in Section 4.4.1
	References

