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Abstract: This paper proposes the use of digital-grating moiré effect for measuring the focal lengths
and radius of curvatures of biconvex and biconcave spherical simple lenses and spherical mirrors.
Based on Fresnel diffraction, the equation for the electric field of propagated light passing through
the test samples was derived. Through digital image post processing, the recorded intensity on
an observation screen was superimposed on a digital grating to generate a moiré pattern. On
substituting the slant angle of the moiré pattern into the derived equation, the focal lengths and radius
of curvatures could be determined. The experimental results successfully demonstrated the feasibility
of the proposed method; the percent errors for focal length and radius of curvature measurement
were less than 0.5%. The measurement uncertainty was analyzed and the correctness of the derived
equation was confirmed through simulation. Because of the use of digital image post processing,
the proposed method has advantages such as a simple set up, easy operation, high stability, high
accuracy, and low cost. Thus, the method has considerable potential in relevant application.

Keywords: moiré effects; diffraction theory; lenses; mirrors; digital image processing

1. Introduction

Focal length and radius of curvature, the most important parameters of spherical
lenses and mirrors, have been widely used to design optical systems and commercial
electro-optical products. The measurement of focal length and radius of curvature is
necessary to ensure the quality and performance of lenses and mirrors. Methods such
as nodal slide and image magnification have been proposed for these measurements [1].
These methods have been successfully applied to measure the lenses with short focal
lengths or large numerical apertures. Modern methods mainly use the Talbot effect and
moiré technique to measure focal length [2–8]. In both these methods, two Ronchi gratings
are required. After the test light passes through the test lens and mirror, the magnified self-
image of the first grating is superimposed on the second grating to generate moiré fringes.
By rotating one grating with respect to the other, the slant angle of the moiré fringes can be
used to estimate to the curvature and focal length of the test samples. However, the rotation
of the grating can introduce mechanical vibrations. In addition, two gratings are required;
therefore, measurement using these two methods is complex and time-consuming. Digital
image post processing, a recent trend in relevant applications, has several advantages [9,10].
The technique proposed by Angelis et al. for the automated analysis of moiré fringes for
accurate measurement of the focal length of lenses is based on the fast Fourier transform
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(FFT) and least-squares fit methods [11]. Lee proposed a Talbot interferometry-based digital
image method for measuring the focal length of lenses without using moiré fringes. In this
method, only one grating is required and the original Fourier transform is used to access
the spectrum beyond the limitations of the usual fast Fourier transform [12]. However,
using the original Fourier transform can be time-consuming.

In this paper, a method based on digital-grating moiré effect is proposed for measuring
the focal lengths and radius of curvatures of spherical lenses and mirrors. The measurement
system consists of a test light source, a Ronchi grating, a digital camera, and a personal
computer. Based on Fresnel diffraction, the electric fields of the test light at various
positions and the intensity at an observation screen were derived using the kernel equation
for the method. After the test light passed through the grating and sample, the light
intensity was projected on the observation screen and captured by the digital camera.
This light intensity was superimposed on a digital grating to generate a moiré fringe.
Using the slant angle of the moiré fringe, the focal length and radius of curvature of the
test sample were determined. To demonstrate the feasibility of the proposed method,
the focal lengths of three convex mirrors and two concave lenses were measured. The
measurement percent errors for the focal lengths and radius of curvatures were less than
0.5%. Because the method applied digital image post processing, only a single digital
image was required to be captured during measurement. Therefore, this method is time
saving and free of mechanical vibrations. In addition, only one grating is required in
this method. Consequently, this method has merits such as a simple establishment, easy
operation, high stability, high accuracy, and low cost. Thus, it has considerable potential in
relevant applications.

2. Principles

Figure 1a,b schematically represent the measurements for the reflection spherical mir-
rors and transmission spherical lenses (bi-convex or bi-concave), respectively. To facilitate
understanding, an x–y–z coordinate system is introduced in the figures. A collimated
and expanded laser beam with a wavelength of λ passes through the Ronchi grating (G),
located at (x0, y0); the transmittance of the grating can be written as

t0(x0, y0) =
1
2
(1 + cos

2πx0

p1
), (1)

where p1 is the period of the grating in the x–direction. The electric field behind the grating
is denoted as U0 (x0, y0, 0) (at z = 0) and the intensity can be expressed as

I0 = |U0(x0, y0, 0)|2 =
1
4
(1 + 2 cos

2πx0

p1
+ cos2 2πx0

p1
), (2)

Figure 1. Schematic of the measurement setup for (a) reflection and (b) transmission samples. SF,
spatial light filter; G, Ronchi grating; TS, test sample; OS, observation screen; DC, digital camera.
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According to Fresnel diffraction, the electric field U1 (x1, y1, d1) of the test light
reaching the test sample (TS) after propagating a distance of d1 can be expressed as

U1(x1, y1, d1) =
ejkd1

jλd1

∫ ∫ ∞

−∞
t0(x0, y0)e

j k
2d1

[(x1−x0)
2+(y1−y0)

2]dx0dy0. (3)

Meanwhile, the transmittance of the test sample, t1 (x1, y1), can be expressed as [13]

t1(x1, y1) = e−j k
2 f (x2

1+y2
1), (4)

where k = 2πn/λ is the propagation number, n is the refractive index of the environmental
medium, and f is the focal length of the test sample. For converging lenses or concave
mirrors, the focal length has a positive sign. By contrast, for diverging lenses or convex
mirrors, the focal length has a negative sign.

As shown in Figure 1a,b, respectively, the reflected and transmitted electric field U′1
can be written as

U′1(x1, y1, d1) =
ejkd1

jλd1

∫ ∫ ∞

−∞
t0(x0, y0)e

j k
2d1

[(x1−x0)
2+(y1−y0)

2]e−j k
2 f (x2

1+y2
1)dx0dy0. (5)

Again, the test light travels an additional distance of propagation d2 and reaches
the observation screen (OS), as shown in Figure 1a,b, respectively. According to Fresnel
diffraction, the electric field of the test light on the observation screen can be written as

U2(x2, y2, d2) =
ejkd2

jλd2

∫ ∫ ∞

−∞
U′1(x1, y1, d1)e

j k
2d2

[(x2−x1)
2+(y2−y1)

2]dx1dy1. (6)

With extensive substitution, Equation (6) can be expressed as [13]

U2(x2, y2, d2) =
1
2

1 + cos

2π
x2

p1

(
1− d2

f

)
× exp

[
−j

πλd1

p2
1

( 1
d1
− 1

f +
1
d2

1
d2
− 1

f

)]. (7)

Accordingly, the intensity on the observation screen, recorded using a digital camera
(DC), can be expressed as follows:

I(x2, y2, d2) = |U2(x2, y2, d2)|2 =
1
4

1 + 2 cos
2πx2

p1(1− d2
f )

cos
πλd1

p1
2 (

1
d1
− 1

f +
1
d2

1
d2
− 1

f
) + cos2 2πx2

p1(1− d2
f )

. (8)

The captured intensity with a period of mp1 and a grating vector K1 = (2π/mp1)î
is superimposed on a digital grating with a period of p2 and a grating vector
K2 = (2π cosθ/p2)î−(2π sinθ/p2) ĵ, as shown in Figure 2. The value of p2 is determined by
the captured pattern described in Equation (8) and is set as p2 ∼= mp1. Therefore, a moiré
pattern with a slant angle α can be obtained. The slant angle α is defined as the angle
between the grating vector K3 of moiré pattern and the y-axis which can be written as [14]

α = tan−1
(

p2 −mp1cosθ

mp1 sin θ

)
= tan−1

 p2 −
∣∣∣1− d2

f

∣∣∣p1 cos θ∣∣∣1− d2
f

∣∣∣p1 sin θ

 = tan−1
(

1−M cos θ

M sin θ

)
, (9)

where m = |1 − d2/f | is the imaging magnification for grating G, θ is the angle between the
practical and digital gratings, and M is the period ratio of the two period patterns (captured
intensity and digital grating) which equals mp1/p2. Therefore, the observation plane is in
the grid image given by the test sample under study. It results from the setup of Figure 1
and the magnification formula m = |1 − d2/f |.
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Figure 2. Schematic illustration for the generation of moiré pattern and related orientations.

Accordingly, the focal length of the test samples can be expressed as

f =
p1(tan α sin θ + cos θ)d2

p1(tan α sin θ + cos θ)− p2
, (10)

and the radius of curvature of the test samples can be written as

R = −2 f = − 2p1(tan α sin θ + cos θ)d2

p1(tan α sin θ + cos θ)− p2
, (for spherical mirrors) (11)

and

R1 = −R2 = 2(nl − 1) f =
2(nl − 1)p1(tan α sin θ + cos θ)d2

p1(tan α sin θ + cos θ)− p2
, (for spherical lenses)

(12)
where R1 and R2 are the radius of curvature of the bi-convex or bi-concave lens’s first
and second surfaces, and nl is the refractive index of the lens. Thus, the focal length and
radius of curvature of the test samples can be determined using the following experimental
parameters: the periods of the practical and digital gratings, p1 and p2, respectively; the
relative angle between these gratings, θ; the slant angle of the moiré pattern, α; the distance,
d2; and the refractive index of the lens, nl.

3. Experimental Results and Discussion

To demonstrate the feasibility of the proposed method, three convex mirrors (Edmund
Optics) labeled TS1, TS2, and TS3, with focal lengths of −7.751, −25.80, −52.08 mm,
respectively, and radius of curvatures of −15.50, −51.60, and −104.2 mm, respectively, and
two BK7 concave lenses (Edmund Optics) (nl = 1.5151 @ λ = 0.6328 µm) labeled TS4 and
TS5, with focal lengths −50.00 and −200.0 mm, respectively, and radius of curvatures of
−51.51 and −206.0 mm, respectively, were measured. The photos of experiment setup
are shown in Figure 3a,b. A Ronchi grating of laser direct writing photomask (MLA150,
HEIDELBERG INSTRUMENTS) with a period of 0.2822 mm was used. A 0.6328 µm
helium–neon laser was used as the test light source and a digital camera (Canon EOS
650D) was used to capture the intensity of the test light field. The vertical pixel array of
the camera was aligned to the pattern of light field along y-direction. For convenience,
the distances d1 and d2 were both set at 251.7 mm. The captured intensities of TS1–5
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(on the observation screen) are illustrated in Figure 4a–e, respectively. The gray-level
transformed pictures are illustrated in Figure 4f–j, respectively. The corresponding digital
gratings with periods of 9.480, 3.072, 1.659, 1.720, and 0.6410 mm which were set similar
to that of the gray-level transformed patterns are shown in Figure 4k–o. The angle θ
between the practical and digital grating was set as 30◦. Accordingly, the superimposed
moiré patterns were obtained as illustrated in Figure 4p–t, respectively. With these moiré
patterns, the obtained slant angles, α, of TS1–5 were 15.46◦, 15.35◦, 15.79◦, 15.83◦, and
15.50◦, respectively. After substituting the relevant parameters into Equations (10)–(12),
as listed in Table 1, the focal lengths of TS1–5 were −7.757, −25.67, −52.05, −49.85, and
−199.6 mm, respectively, and the radius of curvatures were−15.51,−51.34,−104.1,−51.36,
and −205.6 mm, respectively. Compared with commercial reference values, the results
exhibited a high accuracy of measurement of the focal lengths and radius of curvatures,
and the percent errors were less than 0.5%.

Figure 3. Experiment setup for measuring (a) reflection and (b) transmission samples. SF, spatial light filter; G, Ronchi
grating; TS, test sample; OS, observation screen.

Figure 4. Cont.
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Figure 4. Captured intensities on the screen for test samples (TSs): (a) TS1, (b) TS2, (c) TS3, (d) TS4, and (e) TS5. Gray-level
transformed images of the captured intensity for the TSs: (f) TS1, (g) TS2, (h) TS3, (i) TS4, and (j) TS5. Digital gratings with
a slant angle of 30◦ for TSs: (k) TS1, (l) TS2, (m) TS3, (n) TS4, and (o) TS5. Moiré patterns obtained with digital image post
processing of the TSs: (p) TS1, (q) TS2, (r) TS3, (s) TS4, and (t) TS5.

Table 1. Relevant parameters, experimental results, and percent errors for focal length and radius of curvature measurement.

Test Samples Angle θ (◦) Slant Angle α (◦)

Experimental Value of
Focal Length (mm)

Reference Value of
Focal Length (mm) Percent Error (%)

Experimental Value of
Radius of Curvature

(mm)

Reference Value of
Radius of

Curvature (mm)
Percent Error (%)

TS1 30.00 15.46
−7.757 −7.751 0.0774

−15.51 −15.50 0.0645

TS2 30.00 15.35
−25.67 −25.80 0.5039

−51.34 −51.60 0.5039

TS3 30.00 15.79
−52.05 −52.08 0.0576

−104.1 −104.2 0.0960

TS4 30.00 15.83
−49.85 −50.00 0.3000

−51.36 (R1) −51.51 (R1) 0.2912

TS5 30.00 15.50
−199.6 −200.0 0.2000

−205.6 (R1) −206.0 (R1) 0.1942

3.1. Determination of the Slant Angle for the Digital Gratings

The relationships between the slant angle α of the moiré pattern and the angle θ
between the practical and digital gratings were simulated according to Equation (9). These
relationships are associated with the value of M (the adapted period ratio for two period
patterns), as shown in Figure 5. When M = 1, the relationship between α and θ is linear.
In practice, the period of the digital grating typically is slightly different from that of the
captured pattern. Bending curves are generated, which gradually deviate from the linear
(M = 1) according to the deviation of the value of M from 1. When M < 1, the curves
lie above the linear line. By contrast, when M > 1, the curves lie below the linear line.
The values of M for TS1–TS5 were 0.9964, 0.9881, 0.9922, 0.9900, and 0.9943, respectively
(Figure 5). The value of the slant angle α varies significantly with small variations in the
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angle θ when θ < 2.5◦. By contrast, α has a gentle slope when θ > 10◦. In addition, a large
value of α, approaching 90◦ (with a small angle θ), should be avoided to avert an extreme
value of the tangent function of α in Equations (10)–(12). Therefore, the ideal angle θ was
set as 30◦, as illustrated in Figure 5 and Table 1.

Figure 5. The relationships between the slant angle α of moiré pattern and the angle θ between
practical and digital gratings.

3.2. Analysis of Measurement Uncertainty

With Equation (10), the measurement uncertainty of the focal length can be expressed
as

∆ f =

√(
∂ f
∂p1

∆p1

)2
+

(
∂ f
∂p2

∆p2

)2
+

(
∂ f
∂d2

∆d2

)2
+

(
∂ f
∂α

∆α

)2
+

(
∂ f
∂θ

∆θ

)2
, (13)

with
∂ f
∂p1

=
−p2d2(tan α sin θ + cos θ)

[p1(tan α sin θ + cos θ)− p2]
2 , (14)

∂ f
∂p2

=
p1d2(tan α sin θ + cos θ)

[p1(tan α sin θ + cos θ)− p2]
2 , (15)

∂ f
∂d2

=
p1(tan α sin θ + cos θ)

p1(tan α sin θ + cos θ)− p2
, (16)

∂ f
∂α

=
−p1 p2d2 sec2 α sin θ

[p1(tan α sin θ + cos θ)− p2]
2 , (17)

∂ f
∂θ

=
−p1 p2d2(tan α cos θ − sin θ)

[p1(tan α sin θ + cos θ)− p2]
2 , (18)

where ∆p1, ∆p2, ∆d2, ∆α, and∆θ are errors of the periods of the practical and digital gratings,
the distance d2, the slant angle of the moiré pattern, and the relative angle between these
gratings, respectively. The value of ∆p1 equals to 0.005 mm which corresponds to the
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fabrication line width of photomask (MLA150, HEIDELBERG INSTRUMENTS). With the
assistance of a laser rangefinder (GCL 25, Bosch), the distance from the grating to the vertex
of test samples was measured which was used to determine the value of d2 and therefore
∆d2 equals to 0.3 mm. For spherical mirrors, d2 equals the measured value. For spherical
lenses, d2 equals the distance from the grating to the lens principal point. Therefore, the
distance from the vertex to the principal point which can be estimated as one-third the lens
center thickness must be added into the measured value. Because the period p2, the angles
α and θ were measured on digital images, the measurement values and deviations are
related to the number of pixels, and the physical scale corresponding to one pixel. Shown in
Figure 6 is a digital image of captured pattern with 15 megapixel (5184 pixel × 2912 pixel)
in which an area with 1200 pixel × 1200 pixel and a scale bar of 50 mm with 1761 pixels
are marked. Therefore, the value of ∆p2 equals to 0.028 mm. Figure 7a,b illustrate how to
estimate an angle Θ and an angle deviation ∆Θ on a digital image with K × J pixels. The
angle Θ can be expressed as

Θ = tan−1
[

K(pixels)
J(pixels)

]
, (19)

and the angle deviation ∆Θ can be written as

∆Θ = tan−1

[
1(pixel)√

K2 + J2(pixels)

]
. (20)

Figure 6. A digital image (5184 pixel × 2912 pixel) of captured pattern marked with scale bar and
number of pixels.
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Figure 7. Schematic of the evaluation of (a) angle and (b) angle deviation on a digital image.

Therefore, with Equation (20), considering the digital image with 1200 × 1200 pixels
(K = J = 1200) in Figure 6, the angle deviations of ∆α and ∆θ equal to 0.03◦. According
to Equation (13), the measurement uncertainty ∆f of the focal length for TS1–5 can be
evaluated with values of 0.2, 0.8, 2.0, 1.9, 18.3 mm, respectively. The values of relevant
terms, parameters, and measurement uncertainty ∆f are summarized in Table 2. In order to
clarify the large measurement uncertainty of TS5, from Equations (14)–(18), we can find that
when p1 and p2 have close values, the term of [p1(tanαsinθ + cosθ)− p2]2 in the denominator
will magnify introduced errors of ∆p1, ∆p2, ∆α, and ∆θ (due to tanαsinθ + cosθ ∼= 1, when
α ∼= 15◦ and θ = 30◦). By contrast, in the cases of TS1 and TS2, p2 has a value much larger
than p1 (>>1), therefore the measurement uncertainty can reach sub-millimeter.

Table 2. Values for relevant terms and parameters for the measurement uncertainty of focal length.

Test
Samples

∣∣∣ ∂f
∂p1

∣∣∣ p1∆p1 (mm)
∣∣∣ ∂f

∂p2

∣∣∣ p2∆p2 (mm)
∣∣∣ ∂f

∂d2

∣∣∣ d2∆d2 (mm)
∣∣∣ ∂f

∂α

∣∣∣ α∆α (◦)
∣∣∣ ∂f

∂θ

∣∣∣ ∆θ (◦) ∆f (mm)

TS1 0.1417 0.282
0.005 0.0236 9.480

0.028 0.0092 251.7
0.3 0.1414 15.46

0.03 0.0684 0.03 0.2

TS2 0.4987 0.282
0.005 0.2565 3.072

0.028 0.0305 251.7
0.3 0.4978 15.35

0.03 0.2428 0.03 0.8

TS3 1.1130 0.282
0.005 1.0602 1.659

0.028 0.0620 251.7
0.3 1.1111 15.79

0.03 0.5249 0.03 2.0

TS4 1.0585 0.282
0.005 0.9725 1.720

0.028 0.0594 251.7
0.3 1.0567 15.83

0.03 0.4978 0.03 1.9

TS5 6.3423 0.282
0.005 15.6363 0.641

0.028 0.2379 251.7
0.3 6.3309 15.50

0.03 3.0550 0.03 18.3

Furthermore, with Equation (9) and condition of M ≈ 1, Equations (14)–(18) can be
rewritten as

∂ f
∂p1

=
−(p2/M)d2

[(p1/M)− p2]
2 ≈

−p2d2

(p1 − p2)
2 =

f
p1
· S1, (21)

∂ f
∂p2

=
(p1/M)d2

[(p1/M)− p2]
2 ≈

p1d2

(p1 − p2)
2 =

f
p1
· S2, (22)

∂ f
∂d2

=
p1/M

(p1/M)− p2
≈ p1

p1 − p2
= S3, (23)

∂ f
∂α

=
−p1 p2d2 sec2 α sin θ

[(p1/M)− p2]
2 ≈ −p1 p2d2 sec2 α sin θ

(p1 − p2)
2 = f (sec2 α · sin θ) · S1, (24)

∂ f
∂θ

=
−p1 p2d2(tan α cos θ − sin θ)

[(p1/M)− p2]
2 ≈ −p1 p2d2(tan α cos θ − sin θ)

(p1 − p2)
2 = − f (tan α cos θ − sin θ) · S2, (25)
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with

S1 =
−dr|1− dr|

[1− |1− dr|]2
, (26)

S2 =
dr

[1− |1− dr|]2
, (27)

and
S3 =

1
1− |1− dr|

, (28)

where dr is defined as relative distance which equals d2/f. In Equations (21)–(25) (with
sec2 α sin θ < 1 and (tan α cos θ− sin θ) < 1) it is obvious that smaller absolute values of S1,
S2, and S3 ensure relatively small introduced errors which are directly related to the relative
distance in Equations (26)–(28). Therefore, the relationships between S1, S2, and S3 to the
relative distance dr are plotted in Figure 8a–c. The simulation results reveal that a smaller
measurement uncertainty can be achieved with increasing the distance of d2 for cases of
f > 0 and f < 0. In the case of f > 0, a smaller measurement uncertainty can also be obtained
when d2 is near the focal length; meanwhile, the distance of d2 = 2f must be avoided. In
addition, from Equations (21) and (22), properly increasing the period p1 of the grating
can also reduce the measurement uncertainty. Because a small measurement uncertainty
ultimately relies on a high-precision control of experimental conditions. Considering errors
of ∆p1 = 0.001 mm, ∆p2 = 0.01 mm, ∆d2 = 0.01 mm, ∆α = ∆θ = 0.01◦ under accurate controls,
theoretical evaluations for the measurement uncertainty of focal length under different
focal lengths, relative distances, and periods of grating are summarized in Table A1, in
Appendix A. Accordingly, this method could be applied to regular commercial spherical
lenses and mirrors (−200 mm< f < +200 mm) with ∆f < 1.6 mm within a measurement
distance of 2 m. Considering the limited length of optical benches, there must be a trade-off
between measurement resolution and measurement distance. In addition, distortion of the
grid image may occur on the observation screen during measurement which is a function
of the off-axis image distance. Therefore, it is necessary to capture the image of the paraxial
area to avoid introducing additional errors on the moiré fringes.

Figure 8. Cont.
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Figure 8. Relationships of (a) S1 versus relative distance dr, (b) S2 versus relative distance dr, and
(c) S3 versus relative distance dr.

3.3. Simulation of Light Field Distributions

The intensity behind the grating (with a period p1 = 0.2822 mm) and its intensity profile
were simulated according to Equation (2), as shown in Figure 9. The intensities on the ob-
servation screen, and their intensity profiles, the corresponding digital grating with θ = 30◦,
and their moiré pattern for TS1–5 were simulated (p1 = 0.2822 mm, d1 = d2 = 251.7 mm,
and θ = 30◦) according to Equation (8), as shown in Figure 10. The simulation results
corresponded suitably with the experimental results shown in Figure 4, thus confirming
the correctness of the derived equations.
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Figure 9. Simulated (a) intensities behind the grating (with a period of p1 = 0.2822 mm) and (b) the intensity profile.

Figure 10. Cont.
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Figure 10. Simulated (a) intensities on the observation screen and (b) intensity profiles, (c) corresponding digital gratings,
and (d) the moiré patterns for samples: TS1–TS5.

Compared to Equation (2), Equation (8) contains a cosine modulation term, which
varies the intensity distribution on the observation screen. Therefore, the principal maxi-
mum of the intensity profile decreased and a subsidiary maximum occurred (Figure 10).
The energy splitting reduced the intensity contrast. The period of the principal maximum
of the intensity profile on the observation screen was p1 (1 − d2/f). When the Gaussian
law was followed, (i.e., 1/f = 1/d1 + 1/d2), Equation (8) degenerated to Equation (2) with
an imaging magnification of m = |1 − d2/f |. Because of advancements in the technology
used in personal computers, the field intensity distribution of light propagation can be
visualized. Considering a special case of d1 = zT + 2f and d2 = 2f, where zT = 2p1

2/λ is the
Talbot distance, Equation (8) degenerates to Equation (2) with an imaging magnification
of m = 1, and the simulation of the intensity carpet (d2 versus x2) is shown in Figure 11a
(with λ = 0.6328 µm, p1 = 0.2822 mm, f = 100 mm). As shown in Figure 11b, at a distance
d2 = 2f = 200 mm, the intensity profile is exactly equal to that in Figure 9b, which is the
self-image of grating G at zT = 251.7 mm with m = 1. In the case of TS5, a sub-moiré pattern
was observed (Figure 10 TS5: (d)) because of the subsidiary maximum of the intensity pro-
file. The sub-moiré pattern was parallel to the principal moiré pattern, which did not affect
the determination of the slant angle α of the moiré pattern. Because of the introduction of
digital-grating, measurements taken using this method require only one practical grating
and a single photograph with digital image post-processing. The proposed method could
be applied to regular commercial spherical mirrors and lenses (bi-convex or bi-concave).
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Figure 11. Simulated (a) intensity carpet (with λ = 0.6328 µm, p1 = 0.2822 mm, f = 100 mm) and (b) the intensity profiles at
d2 = 200 mm.

4. Conclusions

By applying digital image post-processing, digital-grating moiré effect was success-
fully used to measure the focal length and curvature with percent errors lower than 0.5%.
The measurement uncertainty and conditions were analyzed and discussed. The field
intensity distribution was derived and visualized using simulations, leading to simplified
measurements. The proposed method has the advantages of a simple set up, easy operation,
high stability, high accuracy, and low cost, and it can be applied to various spherical simple
lenses and mirrors.
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Appendix A

Table A1. Theoretical evaluation values (orthogonal arrays) for the measurement uncertainty of
focal length (unit: mm) under different focal lengths, relative distances, and periods of grating (with
∆p1 = 0.001 mm, ∆p2 = 0.01 mm, ∆d2 = 0.01 mm, ∆α = ∆θ = 0.01◦).

dr = d2/f

2.5 5 10 20 30 40

f p1
0.282

p1
1.00

p1
0.282

p1
1.00

p1
0.282

p1
1.00

p1
0.282

p1
1.00

p1
0.282

p1
1.00

p1
0.282

p1
1.00

10 3.7 1.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

−10 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

25 9.2 3.2 0.6 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.1

−25 0.4 0.2 0.3 0.2 0.2 0.2 0.2 0.1 0.2 0.1 0.2 0.1

50 18.4 6.5 1.2 0.7 0.5 0.4 0.4 0.3 0.4 0.3 0.4 0.3

−50 0.8 0.4 0.5 0.3 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3

100 36.7 12.9 2.4 1.3 1.1 0.8 0.8 0.6 0.7 0.6 0.7 0.6

−100 1.7 0.9 1.0 0.7 0.8 0.6 0.7 0.6 0.7 0.6 0.7 0.6

150 55.1 19.4 3.6 2.0 1.6 1.2 1.2 1.0 1.1 0.9 1.1 0.9

−150 2.5 1.3 1.6 1.0 1.2 0.9 1.0 0.9 1.0 0.8 1.0 0.8

200 73.5 25.8 4.9 2.7 2.1 1.6 1.6 1.3 1.5 1.2 1.4 1.2

−200 3.4 1.7 2.1 1.4 1.6 1.2 1.4 1.1 1.3 1.1 1.3 1.1
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