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Abstract: Mechanical properties of metallic-nanowire self-oscillations are investigated through a
coherent-state analysis. We focus on elucidating the time behavior of quantum energy in such
oscillations, in addition to the analysis of fluctuations, evolution of eigenstates, and oscillatory
trajectories. The quantum energy varies somewhat randomly at first, but, at a later time, it undergoes
a stable periodical oscillation; the mean energy in the stabilized motion is large when the frequency
of the driving force is resonated with that of the intrinsic oscillation of the nanowire. We confirmed
that when the oscillatory amplitude is sufficiently low, the quantum energy is quite different from
the classical one due to zero-point energy which appears in the quantum regime. Because the power
in such an oscillation is typically ultra low, quantum effects in the nanowire oscillations are non-
negligible. Detailed analysis for the evolution of the probability densities and their relation with
the oscillation trajectories of the nanowire are also carried out. Characterizing quantum effects in
the actual oscillatory motions and clarifying their difference from the classical ones are important in
understanding nanowire self-oscillations.

Keywords: nanowire; nanoelectromechanical system; quantum energy; coherent state

1. Introduction

The achievement of technological breakthroughs in next-generation nanoelectrome-
chanical systems (NEMSs) may be possible only when we can efficiently control light–
matter interactions [1]. It is highly required to develop high-speed autonomous nanoelec-
tronic devices such as nanoresonators and signal generators through advanced NEMS
technologies. As a consequence, the mechanism of nanoelectromechanical oscillations
in nano and photonic devices has been extensively investigated during the past several
decades. Nanoelectromechanical systems that adopt nanowire resonances have become
important in nanomechanics on account of their potential applicability in diverse fields of
the state-of-the-art nanotechnology, such as timing/switching [2,3], ultrasensitive mechani-
cal detection and resolution [4,5], single electron resonance tuning [6,7], and radio-wave
receptors [8,9].

In particular, self-oscillating nanowires [10–20] are noticeable because of their use-
fulness as a tool for on-chip controllable electronic actuations [10] and producing field
emissions [11,12]. Self-oscillation of nano and micromechanical resonators can be produced
by feedback from external amplifiers [13,14]. Alba et al. recently suggested self-oscillations
of nanowires operated by photothermal forces prepared using a laser beam [13]. They
achieved nanowire self-oscillations at low power thresholds of incident driving light less
than 1 µW. Because the power in such an oscillation is ultra low, it is desired to treat the
system quantum mechanically in general, instead of the classical analysis [20,21].

Self-oscillations of nanowires occur due to the periodical electrostatic force acting on
them, which compensates for air damping. The incident laser beam and a reflecting Si
mirror will produce the standing wave, which acts as the origin of the driving force for
the nanowire deposited between them. The setup of this system requires less stringent
criterion for the degree of the ambient vacuum, leading to new flexible device applications
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with smaller device footprints. For more details of the mechanism of nanowire self-
oscillations, including the enhancement of the quality factor and the photothermal effects
on the oscillatory motion, refer to reference [13] and references therein. The theoretical
understanding of the oscillatory behavior of the system and the proper analysis of their
underlying features may be crucial in order to support the interpretation of associated
experimental outcomes.

The purpose of this work is to investigate quantum effects in nanowire self-oscillations
by introducing a coherent-state model for their quantum description [22]. To this end, we
regard nanowire oscillations induced by periodically varying external forces. Especially, we
focus on elucidating the characteristics of the resultant quantum energy. The coherent states
heavily resemble classically oscillating states, allowing quantum-classical correspondence
for a certain situation, i.e., in the classical limit. However, the differences in the evolution
of quantum observables with the classical counterparts are important, especially in the low
oscillation-energy limit because of the prominence of quantum effects in that situation. In
this regard, the analysis in our research may provide a deeper insight for characterizing
the oscillatory motion of nanowires.

The nanowire oscillations are actually described by time-dependent Hamiltonians
due to the periodic external force and the damping factor. Such Hamiltonian systems will
be described with the annihilation and the creation operators associated with the harmonic
oscillator (HO). Based on this description, we will analyze the evolution of the system in
detail and will compare the consequences with those of the classical analysis.

2. Methods

To analyze temporal evolution of nanowire self-oscillations, we first need to describe
their oscillatory motion. We consider an optically absorbing bimetallic nanowire of which
the substance is SiN-Nb for convenience, which was used in reference [13]. The size of the
sample nanowire reported in reference [13] is 40 µm × 55 nm × 25 nm (length × width ×
thickness). However, without difficulty, our study can also be extended to other cases of
nanowire self-oscillations of which material and its size are different.

In principle, it is possible to describe nanowire oscillations quantum mechanically
regardless of the size of a nanowire. However, such a description may especially be
useful when the mechanical description of the oscillation cannot be covered by classical
mechanics. From an experimentally supported theory of quantum mechanics, it is known
that quantum effects are non-negligible when the dimension of material is less than the
Fermi wavelength [23].

The type of material may also affect the measure of quantum effects. Regarding
this, quantum effects in the oscillation are relatively prominent when the stiffness (spring
constant) of the material is large; this is due to the fact that quantum zero-point energy is
proportional to the oscillatory frequency, i.e., square root of the spring constant.

The oscillation of the nanowire is driven by a standing wave that is prepared by an
incident laser beam and a reflecting mirror. A sinusoidal photothermal force induces a
self-oscillation of the nanowire of which either side is clamped. The classical equation of
motion for such an oscillation can be written as [13]

ẍ + γe ẋ + ω2
e x = fd cos(ωt), (1)

where γe is the effective damping factor, ωe is the effective angular frequency, and fd is the
amplitude of the photothermal force divided by the nanowire mass and ω is the driving
frequency. For detailed formulae of γe and ωe, see, for example, reference [13].

The quantum Hamiltonian of the system is represented as

Ĥ = e−γet p̂2

2m
+ eγet 1

2
m[ω2

e x̂2 − 2 fd cos(ωt)x̂]. (2)



Photonics 2021, 8, 237 3 of 14

This is obtained by replacing canonical variables x and p in the classical Hamiltonian with
quantum operators x̂ and p̂, respectively. In other words, if we replace x̂ and p̂ with x and
p from Equation (2), we have the classical Hamiltonian. Based on Hamilton’s equations

ẋ =
∂H
∂p

, ṗ = −∂H
∂x

, (3)

we can easily confirm that such a classical Hamiltonian yields Equation (1).
Using the annihilation operator â =

√
mωe/(2h̄)x̂ + (i/

√
2mωeh̄) p̂ and its hermitian

adjoint â† (creation operator), this Hamiltonian can be rewritten in the form

Ĥ =
h̄ωe

2
[cosh(γet)(2â† â + 1) + sinh(γet)(â2 + â†2)]

−eγet

√
mh̄
2ωe

fd cos(ωt)(â + â†). (4)

We can express the eigenvalue equation of the annihilation operator as

â|α〉 = α|α〉, (5)

where α is the eigenvalue and |α〉 is the eigenstate. Notice that the eigenstate in this case is
the well-known Glauber coherent state [22].

The expectation value of the Hamiltonian in the coherent state is given by

Hα = 〈α|Ĥ|α〉. (6)

From the use of Equation (4) together with the relations

〈α|â|α〉 = α, 〈α|â†|α〉 = α∗, (7)

we readily have

Hα =
h̄ωe

2
[cosh(γet)(2|α|2 + 1) + sinh(γet)(α2 + α∗2)]

−eγet

√
mh̄
2ωe

fd cos(ωt)(α + α∗). (8)

In the next section, this formula will be used in order to study the time behavior of the
system in the coherent state.

3. Results and Discussion
3.1. Solution for the Eigenvalue

To see time evolution of observables in the coherent state, it is necessary to know
how α evolves in time. The time evolution of α can be analyzed from the Euler–Lagrange
equation, which is given by

α̇ =
1
ih̄
[α, Hα], (9)

where [X, Y] is a Poisson bracket of the form [24]

[X, Y] =
∂X
∂α

∂Y
∂α∗
− ∂X

∂α∗
∂Y
∂α

. (10)

A simple evaluation after substituting Equation (8) into Equation (9) leads to

α̇ = −iωe[cosh(γet)α + sinh(γet)α∗] + ieγet
√

m
2h̄ωe

fd cos(ωt). (11)
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To solve this differential equation, we divide α into real and imaginary parts such that

α(t) = α1(t) + iα2(t), (12)

where α1 and α2 are real. Then, we easily confirm that the real and imaginary parts of
Equation (11) are given respectively by

α̇1 = ωee−γetα2, (13)

α̇2 = −ωeeγetα1 + eγet
√

m
2h̄ωe

fd cos(ωt). (14)

We confirm, using these two equations, that α1(t) satisfies the differential equation of
the form

α̈1 + γeα̇1 + ω2
eα1 =

√
mωe

2h̄
fd cos(ωt). (15)

On the other hand, α2 can be directly identified from Equation (13) once α1 is determined
from Equation (15).

From basic mechanics, the solution of α1 in Equation (15) (and consequently, α2)
is composed of a complementary solution α1,c (α2,c) and a particular solution α1,p (α2,p),
such that

α1 = α1,c + α1,p, (16)

α2 = α2,c + α2,p. (17)

A minor evaluation using Equation (15) together with Equation (13) gives the complemen-
tary and the particular solutions as

α1,c = α0 exp(−γet/2) cos(ωMt + ϕ), (18)

α1,p =

√
mωe

2h̄
fd

cos(ωt− δp)

[(ω2
e −ω2)2 + γ2

eω2]1/2 , (19)

α2,c = −α0 exp(γet/2) cos(ωMt + ϕ− δc), (20)

α2,p = −
√

m
2h̄ωe

ω fd exp(γet)
sin(ωt− δp)

[(ω2
e −ω2)2 + γ2

eω2]1/2 , (21)

where ωM =
√

ω2
e − γ2

e/4, δp = atan(ω2
e −ω2, γeω), δc = atan(γe, 2ωM), α0 is a constant,

and ϕ is an arbitrary phase. Here, δ ≡ atan(u, v) is an inverse function of tan δ = v/u,
where the valid range of this function is 0 ≤ δ < 2π. The complete solution of α given
above will be used in estimating the quantum time behavior of the system in the subse-
quent subsections.

3.2. Fluctuations

Now, we see the fluctuations of canonical variables which are expressed in terms of
the ladder operators as

x̂ =

√
h̄

2mωe
(â + â†), (22)

p̂ = i

√
mωeh̄

2
(â† − â). (23)

The fluctuation of an arbitrary operator Â in the coherent state can be defined to be

∆A = [〈α|Â2|α〉 − 〈α|Â|α〉2]1/2. (24)
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For the case of canonical variables given in Equations (22) and (23), we easily have

∆x =

√
h̄

2mωe
, (25)

∆p =

√
mωeh̄

2
. (26)

Equation (5) has been used in these derivations. We can see that these two fluctuations
give the exact minimum uncertainty product ∆x∆p = h̄/2. However, if we use the
physical momentum that is defined by p̂k = p̂e−γet (see Equation (A2) in Appendix A and
reference [25]) instead of the canonical momentum, the uncertainty product is given by

∆x∆pk = (h̄/2)e−γet. (27)

This vanishes in the long time limit, whereas the value of ∆x∆p does not vary at all times.
However, in the HO limit where γe → 0, Equation (27) also becomes a constant value h̄/2,
which is the minimum uncertainty.

3.3. Evolution of the Quantum Energy

We now turn our attention to the quantum mechanical energy. Unlike the classical
energy, quantum energy is different depending on given quantum states. For instance, it is
well known that quantum energy is discrete and involves a zero-point energy in the Fock
state. For the case of the coherent state that we treat now, quantum energy is determined in
terms of α.

It is well known that the energy operator of a nonstationary system is different from
the Hamiltonian. The energy operator in this dissipative system is given by [26,27]

Ê = e−2γet p̂2

2m
+

1
2

mω2
e x̂2. (28)

This can be obtained from Equation (A3) in Appendix A via the replacement of x and p by
operators x̂ and p̂, respectively. The evaluation for the expectation value of this operator in
the coherent state gives the quantum energy:

Eα =
h̄ωe

2
e−γet[cosh(γet)(2|α|2 + 1) + sinh(γet)(α2 + α∗2)]. (29)

In the derivation of this quantity, we have used Equations (22) and (23) together with
Equation (7). We have illustrated the time evolution of the quantum energy and the
corresponding Hamiltonian in Figures 1–3. Figure 1 shows that, while the expectation
value of the Hamiltonian increases with time, the quantum energy dissipates. Such a
dissipation is more significant when γe is large. However, the quantum energy cannot
be lowered below a certain value because of the existence of the intrinsic uncertainty in
quantum observables, including the quantum energy. The magnitude of γe is determined
by the air pressure in the experimental chamber. Hence, in order to diminish its magnitude,
the degree of vacuum in the chamber should be kept high.

From Figure 2, we see that both the Hamiltonian and the quantum energy oscillate
according to the driving force. Figure 2A,B shows that the Hamiltonian and the quantum
energy oscillate rapidly depending on the driving frequency ω, provided that ω > ωe. On
the other hand, for the case ω < ωe given in Figure 2C, the quantum energy varies with a
relatively high amplitude. Figure 2B,C shows that if the amplitude of the external driving
force is high (i.e., fd is large), the variation of the energy becomes significant. An entrain-
ment of the self-oscillation occurs if the driving force is sufficiently high [13,28,29]. Then,
the nanowire oscillates according to the driving frequency rather than its natural frequency.
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Figure 1. The dependence of time evolution of the Hamiltonian expectation value (A) and the
quantum energy (B) on γe. The values that we have used are ωe = 1, ϕ = 0, α0 = 1, ω = 5, m = 1,
h̄ = 1, and fd = 0.5. The reference line (dashed line) in the bottom part of (B) is 0.25, which is the
minimum value of the quantum energy in this model; this rule will also be applied in the subsequent
figures of the quantum energy (Figures 2C and 3C).

Figure 3 reveals that the driving frequency ω is also a critical factor on the evolution
pattern of the quantum energy and the Hamiltonian. If ω is near ωe, the increase of the
Hamiltonian over time is very rapid (see the green curves in Figure 3A,B). On the other
hand, we see from Figure 3C that the quantum energy steadily oscillates over time when
t is sufficiently large; in this case, the mean energy is relatively high when ω is near the
resonance one. The frequency of such an energy oscillation increases as ω grows. In an
extreme case where ω = 10 (the violet curve in Figure 3C), the frequency of the energy
oscillation is very large while the oscillation does not thoroughly disappear even after a
long lapse of time (see the inset in Figure 3C). Because cosh(γet) ' sinh(γet) ' exp(γet)/2
in the limit γet� 1, the quantum energy represented in Equation (29) eventually becomes

Eα '
h̄ωe

2
[α2

1(t) + 1/2], (30)

after a sufficient long time. However, if we consider that α1,c exponentially dissipates over
time according to Equation (18), the energy expression in Equation (30) can be further
simplified to

Eα '
h̄ωe

2
[α2

1,p(t) + 1/2]. (31)
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Hence, in a long time limit, the quantum energy oscillates depending on ω which is the
oscillation frequency of α1,p. This is the reason why Figure 3C shows the increase of the
oscillation frequency of Eα in the stabilized situation as ω grows.

Figure 2. The time evolution of Hα (A) and Eα (B,C) depending on fd, where ω = 8 for (A,B), while
ω = 0.5 for (C). The values that we have used are γe = 0.2, ωe = 1, ϕ = 0, α0 = 1, m = 1, and h̄ = 1.
The difference of (C) from (B) is only the value of the taken ω.
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Figure 3. The effects of ω on the time evolution of Hα (A,B) and Eα (C). (B) is a log-scale graph for a
relatively long time. The values that we have used are γe = 0.2, ωe = 1, ϕ = 0, α0 = 1, m = 1, h̄ = 1,
and fd = 0.5.

By comparing Equations (18) and (19), we see that α0 is involved in α1,c, whereas
α1,p does not involve it. For this reason, if the amplitude α0 grows, Eα (and hence Hα)
increases monotonically at first. However, when t is sufficiently large, the influence of α0 on
quantum energy is negligible because the right-hand side of Equation (31) is independent
of α0. For the non-driven case ( fd = 0), the quantum energy reduces to the case of a simple
dissipative oscillator, which is shown in Equation (A16) of reference [30].
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Figure 4 is the comparison of the quantum energy with the corresponding classical
energy described in Appendix A. For the case that the oscillation amplitude of the nanowire
is small, quantum energy is quite different from the classical energy (see Figure 4A).
The instantaneous minimum values of the quantum kinetic energy Tα and the quantum
potential energy Vα are not zero, whereas their classical counter parts are zero. However,
we see from Figure 4B that the quantum and the classical energies are very much the same
when the oscillation amplitude is sufficiently high. The second term in the right-hand side
of Equation (31) gives the lowest limit of the quantum energy, which is h̄ωe/4 for a large
t. It may be possible to neglect quantum effects in the oscillation if the oscillatory energy
is 1000 times larger than this base energy; hence, a rough critical energy that divides the
low and high energies is Eα,critical = 250h̄ωe. For example, for the case that the effective
frequency is given by fe = ωe/(2π) = 10 MHz, the critical energy is estimated to be
Eα,critical ∼ 2× 10−24 J.

Figure 4. Comparison of the quantum energy with the classical energy for a low (A) and a relatively
high (B) amplitude regime. Eα, Tα, and Vα are the total quantum energy, the quantum kinetic energy,
and the quantum potential energy, whereas Ecl, Tcl, and Vcl are the total classical energy, the classical
kinetic energy, and the classical potential energy, respectively. The taken values of (α0, A0, fd) are
(1, 1.74, 1) for (A) and (10, 14.2, 10) for (B). Other values that we have used are γe = 0.2, ωe = 1,
ϕ = 0, m = 1, h̄ = 1, and ω = 5.
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3.4. Analysis of the Eigenstate

Now we see the evolution of the coherent state 〈x|α〉, which is the eigenstate in
Equation (5). The solution of Equation (5) in the configuration space is given by

〈x|α〉 = 4

√
mωe

h̄π
exp

(
− mωe

2h̄
x2 + α

√
2mωe

h̄
x− 1

2
|α|2 − 1

2
α2

)
. (32)

For the case of γe → 0 and fd → 0, we have α(t) = α(0)e−iωet; then, the above eigenstate
exactly recovers to that of the simple harmonic oscillator, which appeared in reference [31].

The evolution of the probability density |〈x|α〉|2 can be seen from Figure 5. The
position, in which the probability density takes a peak value, oscillates and converges
toward the origin over time at first. However, it does not totally collapse even after a long
lapse of time; in this case, the remained oscillation with a reduced amplitude is due to the
external driving force. If the power supplied from the laser beam is suspended, such a
residual oscillation will be quenched eventually. However, even in that case, the width of
the probability density in the configuration space may not vanish. The probability density
left in the non-zero position in this case is intrinsically related to the minimum uncertainty.

Figure 5A is for ω > ωe while Figure 5B is the case ω < ωe. A careful observation of
Figure 5A reveals that the associated probability density exhibits a rapid oscillation with a
tiny amplitude due to the relatively high value of the driving-force frequency. On the other
hand, the probability density in Figure 5B oscillates with a relatively huge amplitude even
when t is sufficiently large as a consequence of the smallness of the driving frequency ω;
recall, from Figure 2C, that the quantum energy also deviates highly when ω is small.

Figure 5. Time evolution of the probability density |〈x|α〉|2 for ω = 5 (A) and ω = 0.5 (B). The
values that we have used are γe = 0.2, ωe = 1, ϕ = 0, α0 = 3, m = 1, h̄ = 1, and fd = 1.
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It may also be noteworthy to analyze the behavior of the probability densities when the
driving frequency approaches amplitude resonance frequency, (ω2

e − γ2
e/2)1/2. We have

depicted the evolution of |〈x|α〉|2 together with the momentum probability density |〈p|α〉|2
for a nearly resonated system in Figure 6. For the plot of |〈p|α〉|2, we used the Fourier
transformation of Equation (32). Figure 6A,B shows that both the position expectation
value xα and the classically evaluated position xcl (the momentum expectation value pα and
the classical canonical momentum pcl) closely follow the trajectory of the most probable
value of |〈x|α〉|2 (|〈p|α〉|2). For the case of the resonance or near resonance where fd is
sufficiently large, α1,p and α2,p are dominant compared to α1,c and α2,c, respectively (see
Equations (18)–(21)). Due to this, the probability density |〈x|α〉|2 in Figure 6A oscillates with
a relatively high amplitude even when t is large. On the other hand, oscillatory amplitudes
of |〈p|α〉|2 and the canonical momenta pα and pcl diverge exponentially over time. In
addition, the physical momentum pk,α does not diverge but oscillates fairly uniformly.

Figure 6. (A): Comparison of the time evolution of the probability density |〈x|α〉|2 (density plot) with
that of the quantum expectation value xα (= 〈α|x̂|α〉) and its classical counter part xcl represented in
Equation (A4). (B): Comparison of the time evolution of the momentum probability density |〈p|α〉|2

(density plot) with that of the quantum expectation value pα (= 〈α| p̂|α〉), pcl (Equation (A5)), and the
expectation value of the physical momentum pk,α (= 〈α| p̂k|α〉). ω = 1.1 is used for both panels (A,B);
this case corresponds to near resonance like that of the green curves in Figure 3. Other values that we
have used are γe = 0.2, ωe = 1, ϕ = 0, α0 = 3, m = 1, h̄ = 1, fd = 1, and A0 = 4.2426.
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4. Conclusions

We have investigated the time evolution of nanowire self-oscillations activated by
an incident laser beam in the coherent state. The quantum solution of the system has
been obtained from the fundamental Hamiltonian dynamics. We have focused on time
behavior of the quantum energy based on its rigorous analytical evaluation. The effects of
the variations of several parameters on the evolution of the quantum energy have been
analyzed using various relevant illustrations.

It turned out that the external driving force gravely affects the nanowire oscillation.
Although the quantum energy dissipates over time at first, it becomes a steadily oscillating
stable value at a later time where the average energy dissipated by damping is entirely
compensated by the external driving force. The mean energy in the stabilized oscillation
becomes high when the driving frequency approaches the resonance frequency; this means
that the resonance is important in order to maintain the nanowire oscillation.

We have confirmed that quantum mechanical energy in a weak oscillation is very
different from the classical one as a manifestation of quantum effects, especially when
the oscillation power is nearly lowest. Apparently, quantum effects are non-negligible in
nanowire oscillations as a consequence of the fact that the power in such oscillations is
actually extremely low [13].

The analysis for the evolution of the quantum probability densities is also carried out.
The position, in which the position probability density takes a peak value, oscillates in time.
The amplitude of such an oscillation is especially large when the periodically varying force
supplied by the external beam is resonated with the intrinsic nanowire oscillation. As ω
deviates from the resonance frequency, the oscillation amplitude at a sufficiently large t
drops. However, in such non-resonated cases, the oscillation amplitude when ω < ωe is
quite large compared to that when ω > ωe, provided that the amplitude of the driving
force is sufficiently large. We showed that the time behaviors of the probability densities
match well with the trajectories of the position and momentum variables.

The consequence in this work may be useful in understanding the quantum effects of
nanowire self-oscillations. The elucidation of fundamental mechanisms for the nanowire
oscillations is necessary in order to apply them to NEMSs. The low power consumption
of nanowire self-oscillations may admit a new route for self-excited low-loss integrable
NEMS devices with an enhanced Q-factor [20,32].
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Appendix A. Classical Energy

From the classical point of view, the energy of the system is given by

Ecl =
1
2

mẋ2 +
1
2

mω2
e x2. (A1)

This can also be represented in terms of momentum instead of ẋ. If we insert Equation (2)
into the first part of Equation (3), we have the expression of the canonical momentum as

p = pkeγet, (A2)
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where pk is the physical momentum (pk = mẋ). Now the classical energy of the system
can be rewritten in terms of p, such that

Ecl = e−2γet p2

2m
+

1
2

mω2
e x2. (A3)

If we denote the classical solutions for canonical coordinate x and momentum p as xcl and
pcl, respectively, they are represented in the form

xcl = A0 exp(−γet/2) cos(ωMt + ϕ) + fd
cos(ωt− δp)

[(ω2
e −ω2)2 + γ2

eω2]1/2 , (A4)

pcl = m exp(γet)
dxcl
dt

, (A5)

where A0 is an amplitude.
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