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Abstract: We theoretically research the four-wave mixing (FWM) and second-order sideband genera-
tion (SSG) in a hybrid optomechanical system under the condition of pump on-resonance and pump
off-resonance, where an optomechanical resonator is coupled to another nanomechanical resonator
(NR) via Coulomb interaction. Using the standard quantum optics method and input–output theory,
we obtain the analytical solution of the FWM and SSG with strict derivation. According to the
numerical simulations, we find that the FWM can be controlled via regulating the coupling strength
and the frequency difference of the two NRs under different detuning, which also gives a means to
determine the coupling strength of the two NRs. Furthermore, the SSG is sensitive to the detuning,
which shows double second-order optomechanically induced transparency (OMIT) sidebands via
controlling the coupling strength and frequencies of the resonators. Our investigation may increase
the comprehension of nonlinear phenomena in hybrid optomechanics systems.

Keywords: hybrid optomechanical systems; four-wave mixing; second-order sideband generation

1. Introduction

Cavity optomechanics (COM) systems [1,2] (as a milestone [3] in optics history), which
investigates the interaction of electromagnetic fields and micromechanical motion, have
witnessed significant progress over the past decade both in fundamental studies and prac-
tical applications including ground state cooling [4–8], mass sensing [9,10], high-precision
measurements [11–17], and quantum information processing [18–21]. The mechanical mo-
tions in COM systems, due to the radiation pressure forces, are tunable by optomechanical
interactions, which in turn influence the optical medes resulting in prominent quantum
interference effects. There are many famous phenomena that have been obtained in COM
systems, such as phonon lasers [22–25], squeezing [26,27], entanglement [20,21], nonre-
ciprocity [28–30], exceptional point (EP) devices [24,25,31,32], optomechanically induced
transparency (OMIT) [33–40], and OMIT induced slow and fast light [36,41–44]. We notice
that many above phenomena remain in the linear optical regime.

COM systems also present a medium to research the nonlinear phenomena between
the electromagnetic field light and matter. Optical bistability [45–49], as a representative
nonlinear phenomena, has been extensively investigated in some kinds of COM systems.
In the COM systems, if the cavity is driven by a strong pump laser field (with frequency ωp)
and a weak probe laser field (with frequency ωs), then when the two pump photons mix
with a probe photon, an idler photon at frequency 2ωp−ωs will emerge, as a result the four-
wave mixing (FWM) appear in the ouput field, which has been investigated in different
optomechanical systems [50–53]. Except nonlinear phenomena of optical bistability and
FWM, recently, another remarkable nonlinear optomechanical effect, i.e., the second-order
sideband generation (SSG), has also been demonstrated in COM systems [54–64], where
the SSG will appear in the output fields with frequencies ωp ± 2δ (δ = ωs − ωp is the
probe-pump detuning) and ωp + 2δ (ωp − 2δ) is the second-order upper (lower) sideband
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frequency component. However, the FWM and SGG in a hybrid optomechanical system,
where a typical optomechanical cavity coupled to another NR via Coulomb interaction has
not been demonstrated until now.

In this paper, we investigate the FWM and SSG in a hybrid optomechanical system
as shown in Figure 1 under the condition of pump on-resonance and off-resonance. The
location of sideband peaks both in the FWM spectrum and SSG depends on the resonator
frequencies and the Coulomb interaction of the two NRs. In particular, the different
frequencies of the resonators also alter the location of the peaks in the FWM spectrum and
SSG. Interestingly, in the pump off-resonance regime, the FWM spectrum can indicate a
means to measure the Coulomb interaction, and we obtain double second-order OMIT
sideband, which is sensitive to the Coulomb interaction and different resonator frequencies.

Figure 1. (a) Schematic diagram of the hybrid coupled optomechanical system including two coupled
nanomechanical resonators (NRs) via Coulomb interaction. (b) Schematic of the energy-level diagram
of the system.

∣∣np
〉
, |nm1〉, and |nm2〉 denote the number states of the cavity photon, the phonons of

NR1 and NR2, respectively. V is the coupling strength of the two NRs.

2. System and Method

The hybrid optomechanical system is shown in Figure 1, which includes a Fabry–
Perot (FP) optomechanical cavity coupling to another NR via Coulomb interaction, and the
Hamiltonian can be given by [65–67]

H = h̄ωcc†c + h̄ωm1b†
1b1 + h̄ωm2b†

2b2 − h̄gc†c(b†
1 + b1)− h̄V(b†

1b2 + b1b†
2)

+ih̄
√

κexεp(c†e−iωpt − ceiωpt) + ih̄
√

κexεs(c†e−iωst − ceiωst). (1)

where the first term gives the cavity field (with frequency ωc) and we use the creation
(annihilation) operator c†(c) to describe the optical cavity. The second and third terms
shows two NRs with the frequencies ωm1 and ωm2, b†

1(b
†
2) and b1(b2) are the creation and

annihilation operators of the two NRs, respectively. The fourth term gives the optomechan-

ical coupling with coupling strength g = ωc
L

√
h̄

2M1ωm1
, where M1 is the effective mass of

NR1 and L is the cavity length. The fifth term describes the interaction of two charged NRs
with coupling strength V via the Coulomb interaction [65–67]. As the cavity is driven by
a two-tone fields, we define εp =

√
Pc/h̄ωp and εs =

√
Ps/h̄ωs as the amplitudes of the
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two laser fields, and Pc and Ps are their powers. κex is extra loss rate and here we consider
κex = κ0, where κ0 is the intrinsic loss rate of photon with the relation of κ = κex + κ0.

We can rewrite Equation (1) in the following in a frame rotating with the frequency
ωp [65–67]

H = h̄∆cc†c + h̄ωm1b†
1b1 + h̄ωm2b†

2b2 − h̄gc†c(b†
1 + b1)− h̄V(b†

1b2 + b1b†
2)

+ih̄
√

κexεp(c† − c) + ih̄
√

κexεs(c†e−iδt − ceiδt). (2)

where ∆c = ωc −ωp is the cavity-pump detuning. We then obtain the Langevin equations
(LEs) as follows with adding the corresponding damping and input noise terms [33,35,65–67]

ċ = −(i∆c + κ)c + igcQa +
√

κex(εp + εse−iδt) + cin, (3)

Q̈a + γm1Q̇a + (ω2
m1 + V2)Qa + V(ωm1 + ωm2)Qb = 2gωm1c†c + ξ1, (4)

Q̈b + γm2Q̇b + (ω2
m2 + V2)Qb + V(ωm1 + ωm2)Qa = 2gVc†c + ξ2, (5)

where the input vacuum noise is denoted by cin with zero mean value, and ξ1 and ξ2 are
Langevin force arising from the environment. γm1 and γm2 are the decay rates of the two
NRs. Qa = b†

1 + b1 and Qb = b†
2 + b2 are the position operators of the two NRs.

Due to the pump field being stronger than the probe field, we use the conversion of
O = Os + δO (O = c, Qa, Qb), i.e., the operators are divided into the steady-state mean
value and a small fluctuation. For the steady-state values, which is determined by the
following equations

(i∆ + κ)cs =
√

κexεp, (6)

ω
′2
m1Qas + V

′
Qbs = 2gωm1|cs|2, (7)

ω
′2
m2Qbs + V

′
Qas = 2gV|cs|2, (8)

where ∆ = ∆c − gQas, ω
′2
m1 = ω2

m1 +V2, ω
′2
m2 = ω2

m2 +V2, and V
′
= V(ωm1 + ωm2). In the

condition of mean-field approximation, the operators can be replaced by their expectation
values 〈xc〉 = 〈x〉〈c〉 [33], For the fluctuation operators, we also use their expectation values
with neglecting nonlinear terms, and we obtain the expectation values of the LEs [33]

〈δċ〉 = −(i∆ + κc)〈δc〉+ igcs〈δQa〉+ ig〈δc〉〈δQa〉+
√

κexεse−iδt, (9)〈
δQ̈a

〉
+γm1

〈
δQ̇a

〉
+ω

′2
m1〈δQa〉+V

′〈δQb〉 = 2gωm1(c∗s 〈δc〉+ cs

〈
δc†
〉
+
〈

δc†
〉
〈δc〉), (10)〈

δQ̈b
〉
+ γm2

〈
δQ̇b

〉
+ ω

′2
m2〈δQb〉+ V

′〈δQa〉 = 2gV(c∗s 〈δc〉+ cs

〈
δc†
〉
+
〈

δc†
〉
〈δc〉). (11)

In order to solve Equations (9)–(11), we use the ansatz as [68]

〈δO〉 = O1+e−iδt + O1−eiδt + O2+e−i2δt + O2−ei2δt, (12)

and substituting Equation (12) into Equations (9)–(11), we can obtian two group equations
with ignoring the terms higher than the second-order. The first group describe the first-
order sideband as following

(i∆ + κ − iδ)c1+ = igcsQa1+ +
√

κexεs,

(i∆ + κ + iδ)c1− = igcsQa1−,

Qa1+ + V1Qb1+ = 2gχ(δ)(c∗s c1+ + csc∗1−),

Qb1+ + V3Qa1+ = 2gλ(δ)(c∗s c1+ + csc∗1−). (13)
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where V1 = V
′
/(ω′2m1 − iγm1δ− δ2), V3 = V

′
/(ω′2m2 − iγm2δ− δ2), χ(δ) = ωm1/(ω′2m1 −

iγm1δ− δ2), and λ(δ) = V/(ω′2m2 − iγm2δ− δ2). Solving the equations, we can obtain

c1+ =
(Λ∗2 + igλΠ1|cs|2)

√
κexεs

Λ1(Λ∗2 + igλΠ1|cs|2)− igΛ∗2Π1|cs|2
, (14)

c∗1− =
−igc∗2s Π1Λ∗2

√
κexεs

Λ∗2 [Λ1(Λ∗2 + igλΠ1|cs|2)− igΛ∗2Π1|cs|2]
, (15)

Qa1+ =
Π1Λ∗2c∗s

√
κexεs

Λ1(Λ∗2 + igλΠ1|cs|2)− igΛ∗2Π1|cs|2
, (16)

where Λ1 = i(∆− δ) + κ, Λ2 = i(∆ + δ) + κ, and Π1 = 2g(χ(δ)−V1λ(δ))/(1−V1V3).
The second group gives the SSG progress as

(i∆ + κ − 2iδ)c2− = igcsQa2+ + igc1+Qa1+,

(i∆ + κ + 2iδ)c2+ = igcsQa2− + igc1−Qa1−,

Qa2+ + V2Qb2+ = 2gχ(2δ)(c∗s a2+ + csc∗2− + c1+c∗1−).

Qb2+ + V4Qa2+ = 2gλ(2δ)(c∗s a2+ + csc∗2− + c1+c∗1−). (17)

where V2 = V
′
/(ω′2m1− 2iγm1δ− 4δ2), V4 = V

′
/(ω′2m2− 2iγm2δ− 4δ2), χ(2δ) = ωm1/(ω′2m1−

2iγm1δ− 4δ2), and λ(2δ) = V/(ω′2m2 − 2iγm2δ− 4δ2). Solving the equations, we can obtain

c2+ =
g2Π3c2

s c∗1−Qa1+ + igΠ3Λ∗4csc1+c∗1− + igc1+Qa1+(Λ∗4 + igΠ3|cs|2) + igc1+Qa1+

Λ3(Λ∗4 + igΠ3|cs|2)− igΠ3|cs|2Λ∗4
, (18)

where Λ3 = i(∆− 2δ) + κ, Λ4 = i(∆+ 2δ) + κ, and Π3 = 2g(χ(2δ)−V2λ(2δ))/(1−V2V4).
According to the optical cavity input and output theory [69] cout(t) = cin(t)−

√
2κc(t),

we then reach the following relation

〈cout(t)〉 = (εp −
√

κexc0)e−iωpt + (εs −
√

κexc1+)e−iωst

−
√

κexc1−e−i(2ωp−ωs)t −
√

κexc2+e−i(2ωs−ωp)t −
√

κexc2−e−i(3ωp−2ωs)t (19)

where the first term is the output field with the frequency ωp, the second one indicates
output field with the frequency ωs, and the third term denotes FWM process with the
requency 2ωp − ωs. The forth and fifth terms shows the SSG process where 2ωs − ωp
(i.e., ωp + 2δ) is the second-order upper sideband and 3ωp − 2ωs (i.e., ωp − 2δ) is the
second-order lower sideband. We introduce a dimensionless FWM intensity to study the
FWM process [70]

FWM =

∣∣∣∣√κexc1−
εs

∣∣∣∣2. (20)

In order to research the second-order process conveniently, we use a dimensionless
efficiency of SSG as [54–57,62,64]

η =

∣∣∣∣−√κexc2+

εs

∣∣∣∣. (21)

The parameter values used in the paper [71] are: λ = 1064 nm, L = 25 mm, ωm1 =
ωm2 = 2π × 947 kHz, Q1 = ωm1/γm1 = 6700, Q2 = ωm2/γm2 = Q1, m1 = m2 = 145 ng,
κ = 2π × 215 kHz, Pc = 0.5 µW, and εs = 0.05 εp.
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3. Results and Discussion
3.1. The FWM Process

The FWM process has been demonstrated in optomechanical systems [50,51,70], which
depends on the intracavity photon number c2

s ∝ Pc in Equation (20). However, in our hybrid
optomechanical system, we concentrate on another two parameters, i.e., the coupling
strength V and the frequency difference of the two NRs. Figure 2a plots the FWM spectrum
as a function of the probe-cavity detuning ∆s = ωs − ωc for several different coupling
strength V with the parameters of the pump power Pc = 0.5 µW and the same frequencies
ωm1 = ωm2 under the condition of pump on-resonance (∆c = 0). In the case of V = 0,
i.e., the typical FP optomechanical system without considering another NR, we find two
sharp sideband peaks (the black curve in Figure 2a) in the FWM spectrum accurately
locating at the resonator frequency ∆s = ±ωm1, which can be attributed to the quantum
interference of the phonon mode and the beat frequency δ of two optical fields. Then, if the
beat frequency δ is close to the resonator frequency ωm1, the resonator starts to oscillate
coherently leading to Stokes (ωS = ωp −ωm ) scattering of light from the optomechanical
system. However, when another NR is taken into consideration (V 6= 0), the sideband
peaks locates at ∆s = ±ωm1 splits into two peaks, and with increasing V from V = 0.1 ωm1
to V = 0.9 ωm1, the width of the splitting in the FWM spectra is broadening at the expense
of intensity as shown the color curves in Figure 2a. When we measure the sideband peaks
splitting width of the FWM spectrum under V 6= 0, we find that the relation between
the splitting width and the coupling strength V of the two NRs is linear as shown in
Figure 2b, and the inset in Figure 2b gives the FWM spectrum at a fixed coupling strength
V = 0.3 ωm1. The result will give a method the measure the coupling strength V of the two
NRs and we will discuss the result in the following.
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Figure 2. (a) The FWM spectrum versus the probe-cavity detuning ∆s = ωs −ωc for several different
coupling strengths V with the parameters Pc = 0.5 µW and ωm1 = ωm2 at ∆c = 0. (b) the peak
splitting of the two sideband peaks versus the coupling strength V, and the inset in (b) give the FWM
spectrum at a fixed V = 0.3 ωm1

Switching the condition to pump off-resonance, i.e., ∆c = ωm1, we investigate the FWM
process under different parametric regimes. In Figure 3a, we plot the FWM spectra for five
different coupling strengths V at Pc = 5 µW and ωm1 = ωm2 in the case of red sideband
(∆c = ωm1). We can see that there are four sharp sideband peaks in the FWM spectra, which
presents mirror symmetry for ∆s = 0, and the splitting of both sides of the peaks is broaden-
ing with enhanced intensity of the FWM spectra for increasing the coupling strength V from
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V = 0.1 ωm1 to V = 0.9 ωm1. In addition, the location of the sideband peaks is related to the
coupling strength V. We take V = 0.3 ωm1 as an example as shown the left inset in Figure 3a, we
see that the left two peaks locate at−1.3 ωm1 and−0.7ωm1, i.e.,−ωm1∓V; while the right two
peaks locate at 0.7 ωm1 and 1.3 ωm1, i.e., ωm1±V. When measuring the width of the splitting of
both of the two sideband peaks in the FWM spectra, we find the width of the splitting is related
to the coupling strength V as shown the right inset in Figure 3a, which plots the splitting of
both of the two sideband peaks versus the coupling strength V. Obviously, the splitting width
relies linearly on the coupling strength V and reaches to 0 in the absence of the coupling, which
presents an effective means to determine the coupling strength V of the two NRs. Thus, we can
measure the coupling strength V of the two NRs via only simply measuring the splitting distance
of two sideband peaks in the FWM spectrum. Moreover, we also study the FWM spectrum for
different resonator frequencies at a fixed coupling strength V. In Figure 3b, we show the FWM
spectra as a function of ∆s for several different resonator frequencies with the parameters of
Pc = 5 µW and V = 0.3 ωm1 in the case of ∆c = ωm1. We find that the peaks in the left part is
left-shift and the peaks in the right part is right-shift with increasing the frequency ωm2 from
ωm2 = 0.2 ωm1 to ωm2 = 2.0 ωm1, and both the intensities of two sideband peaks experience
the process of enhancement to decrease. As in Equations (9)–(11), where ω

′2
m1 = ω2

m1 +V2 and
ω
′2
m2 = ω2

m2 +V2, i.e., the effective frequencies of the two NRs are modulated by the coupling
strength V of the two NRs. In Figure 3b, we set a fixed coupling strength V = 0.3 ωm1, if the two
NRs are identical resonators, i.e., the two NRs own the same frequencies ωm1 = ωm2, which is
demonstrated in Figure 3a and the splitting width of the sideband peaks in the FWM spectrum
is proportional to the coupling strength V. In the case of ωm1 > ωm2, i.e., ω

′
m1 > ω

′
m2, the FWM

spectra is squeezed and both the two sideband peaks move to ∆s = 0. In the case of ωm1 < ωm2,
i.e., ω

′
m1 < ω

′
m2, the FWM spectra is expanded and the sideband peaks move to both sides.

Compared with FWM process in the optomechanical system only including one mechanical
mode and one optical mode [72,73], the intensity of the FWM in our hybrid system is enhanced
significantly modulated by another NR.
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Figure 3. (a) The FWM spectra for five different coupling strengths V at Pc = 5 µW and ωm1 = ωm2

in the case of ∆c = ωm1, and the left inset is V = 0.3ωm1, the right inset plots the splitting of the two
sideband peaks as a function of the coupling strength V. (b) The FWM spectra as a function of ∆s for
several different resonator frequencies with the parameters Pc = 5 µW and V = 0.3 ωm1 in the case
of ∆c = ωm1.
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3.2. The SSG Process

On the other hand, the SSG is also a distinguished nonlinear phenomenon in optome-
chanical systems, and Equation (21) gives the dimensionless efficiency of the SSG process.
As we know, if the optomechanical system is driven by a two-tone field, the output field
with frequency 2ωs −ωp (i.e., ωp + 2δ) is the second-order upper sideband and the output
field with frequency 3ωp − 2ωs (i.e., ωp − 2δ) is the second-order lower sideband. Here, we
concentrate on the second-order upper sideband (ωp + 2δ) and study the coupling strength
V and the frequency difference of the two NRs the affect the SSG process for different
detuning. In Figure 4, we show the efficiency η of SSG as a function of the normalized
probe detuning ∆s/ωm1 for several different coupling strengths V with the parameters of
the pump power Pc = 1.5 µW and the same frequencies ωm1 = ωm2 under the condition of
pump on-resonance ∆c = 0. If the system is the typical FP optomechanical system without
considering another NR, i.e., V = 0, as shown the black curve in Figure 4, it is clear that
four sideband peaks emerge in the efficiency η of SSG, where two principal sideband peaks
locate at ∆s = ±ωm1 and another two secondary sideband peaks locate at ∆s ≈ ±0.5 ωm1
with a small shift. We accurately identify the location of the principal sideband peaks at
±1.0 ωm1 and secondary sideband peaks at−0.46 ωm1 and 0.53 ωm1, respectively, as shown
the black curve in Figure 4. When another NR is considered (V 6= 0), we find that both the
principal sideband peaks locating at ±1.0 ωm1 and the secondary sideband peaks around
±0.5 ωm1 split into two peaks, and then eight sideband peaks appear in efficiency η of SSG.
Here, we take V = 0.1 ωm1 as an example as shown the inset in Figure 4. The splitting of
principal sideband peaks locate at −1.1 ωm1 and −0.9 ωm1 (i.e., −ωm1 ∓V), and 0.9 ωm1
and 1.1 ωm1 (i.e., ωm1 ±V) with the width of splitting of 2 V. The splitting of secondary
sideband peaks are located at (−0.53, −0.43) ωm1 and (0.46, 0.56) ωm1, i.e., ±ωm1 − 0.07 V
and ±ωm1 + 0.03 V, respectively, with the width of splitting of V.
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Figure 4. The efficiency η of SSG versus ∆s/ωm1 for several different coupling strengths V with the
parameters Pc = 1.5 µW and ωm1 = ωm2 under the condition of ∆c = 0, and the inset gives the
condition of V = 0.1 ωm1.

Moreover, we also investigate the different resonator frequencies of the two NRs that
influence the SSG process as shown in Figure 5. Figure 5b gives the efficiency η of SSG
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versus ∆s/ωm1 for the same frequencies of the two NRs at the parameters of Pc = 1.5 µW
and V = 0.1 ωm1 under the pump on-resonance ∆c = 0, which manifests four principal
sideband peaks locating at ±ωm1 ±V and four secondary sideband peaks locating around
∆s ≈ ±0.5 ωm1, and the precise locations are marked in Figure 5b. If ωm2 < ωm1 as shown
in Figure 5a, we find the spectrum of the SSG is squeezed, while if ωm2 > ωm1 as shown in
Figure 5c, we can see that the spectrum of the SSG is stretched, and the accurate locations
are identified in Figure 5a,c, respectively.
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Figure 5. (a) The efficiency η of SSG as a function of ∆s/ωm1 for ωm2 = 0.9ωm1. (b) The efficiency η

of SSG as a function of ∆s/ωm1 for ωm2 = 1.0ωm1. (c) The efficiency η of SSG as a function of ∆s/ωm1

for ωm2 = 1.1ωm1. The other parameters are Pc = 1.5 µW, V = 0.1ωm1, and ∆c = 0.

Then, we further research the SSG for several different parametric regimes in the
condition of ∆c = ωm1. Figure 6a presents the efficiency η of SSG versus ∆s/ωm1 with four
different coupling strengths V at Pc = 2.0 µW and the same frequencies ωm1 = ωm2. When
V = 0 as shown the black curve in Figure 6a, i.e., without considering another NR, we
find that not only a second-order sharp single peak locating at ∆s = 0.5 ωm1 but also a
second-order OMIT sideband locating at ∆s = 1.0 ωm1 with symmetrical splitting appear in
the SSG spectrum. Once another NR is taken into consideration, i.e., V 6= 0, we can obtain
two significant phenomena in the SSG spectra: (a) the single peak locating at ∆s = 0.5 ωm1
splits into two peaks; (b) the second-order OMIT sideband locating at ∆s = 1.0 ωm1 splits
into double second-order OMIT sideband with asymmetrical splitting. The phenomenon
originates from the coupling between NR1 and NR2 which not only adds a fourth level, as
shown in Figure 1b, but also breaks down the symmetrical second-order OMIT sideband
due to quantum interference and, therefore, induces sharp bright resonance within the
second-order OMIT sideband. It is obvious that due to the interaction of the two NRs via
Coulomb interaction, the coupled number states of the photon and phonons are induced.
Then, the symmetrical second-order OMIT sideband is split into two asymmetrical double
second-order OMIT sideband. Here, we take V = 0.1 ωm1 as an example as shown in the
inset of Figure 6a, we find the two splitting peaks located at 0.45 ωm1 and 0.55 ωm1 with
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the width V of the splitting, i.e., the two sharp peaks locate at ωm1 ±V/2. While another
double asymmetrical second-order OMIT sidebands locate at 0.9ωm1 and 1.1 ωm1 with the
width 2 V of the splitting, i.e., the double second-order OMIT sidebands locate at ωm1 ±V.
With further increasing the coupling strengths V of the two NRs, both the splitting of the
two sharp peaks and the double second-order OMIT sidebands are enhanced. Moreover,
we also investigate the frequency difference of the two NRs that affect the efficiency η
of SSG. In Figure 6b, we show the efficiency η of SSG as a function of ∆s/ωm1 for three
different frequencies at Pc = 2.0 µW and V = 0.1 ωm1. It is obvious that the SSG spectra
show two splitting peaks around ∆s = 0.5 ωm1 and double asymmetrical second-order
OMIT sidebands around ∆s = 1.0 ωm1, and if ωm2 < ωm1, the SSG spectrum shifts to the
left, if ωm2 > ωm1, the SSG spectrum shifts to the right. Therefore, the double second-order
OMIT sidebands can be controlled with manipulating the coupling strength V and the
frequency difference of the two resonators.
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Figure 6. (a) The efficiency η of SSG four different coupling strengths V with the parameters of
Pc = 2.0 µW and ωm1 = ωm2 at ∆c = ωm1, and the inset gives V = 0.1 ωm1 as an example. (b) The
efficiency η of SSG as a function of ∆s/ωm1 for three different frequencies at Pc = 2.0 µW and
V = 0.1 ωm1.

Compared with the SSG in the typical FP optomechanical system without considering
another NR, there are several advantages of the SSG in our hybrid optomechanical system.
In the condition of ∆c = 0, if only one NR in the system (V = 0), the SSG spectrum presents
the sharp principal sideband peaks at ±1.0 ωm1 and secondary sideband peaks around
±0.5 ωm1, while if another NR is considered (V 6= 0) in the case of identical NRs with the
same frequencies (ωm2 = ωm1), both the sharp principal sideband peaks and secondary
sideband peaks are split into two peaks, and the splitting width of the principal sideband
peaks is linear with respect to the coupling strength V of the two NRs, which indicates
a method to precisely determine the coupling strength V of the two NRs. In addition, if
the two NRs are different with different frequencies (ωm2 6= ωm1), the location of sharp
sideband peaks in the SSG spectra are tunable. On the other hand, in the condition of
pump off-resonance, i.e., ∆c = ωm1, the SSG shows a second-order OMIT sideband [64] at
V = 0, while if another NR is taken into consideration (V 6= 0), the SSG displays double
second-order OMIT sidebands which is very different from the case of V = 0. Therefore,
the SSG process can be tunable via controlling the coupling of the two NRs.
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4. Conclusions

We theoretically demonstrated the FWM and SSG in a hybrid COM system which is
driven by a two-tone field for different detuning conditions, where an optomechanical res-
onator is coupled to another NR via Coulomb interaction. We first studied the FWM under
the condition of pump on-resonance and pump off-resonance, when the coupling strength
V of the two NRs is considered, the FWM presents four modes splitting, which gives a
method to determine the coupling strength V. In addition, the frequency difference of the
two NRs also alter the FWM process. On the other hand, another nonlinear phenomena
of the SSG process has also demonstrated both in pump on-resonance and red sideband
with controlling the parameters of the coupling strength V and the frequency difference
of the two NRs. Moreover, the SSG is sensitive to the detuning, which displays the dou-
ble asymmetrical second-order OMIT sidebands via controlling V and frequencies of the
resonators, which may indicate a further insight of nonlinear optomechanical phenomena
and may find important applications fot manipulating light propagation and quantum
communications based on the hybrid optomechanical system.
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