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Abstract: Age-related cataracts are one of the most prevalent causes of visual impairment around the
world. Understanding the mechanisms of cataract development and progression is essential to enable
early clinical diagnosis and treatment to preserve visual acuity. Reductive chemicals are potential
medicines effective on cataract treatment. In this work, we investigated the cataract-induced oxidative
damage in the crystalline lens and a kind of reductant, α-lipoic acid (ALA), ability to reduce the
damage. We created oxidative environment to investigate the relationship between the progression
of oxidative cataract and lenticular biomechanical properties measured by dynamic optical coherence
elastography in porcine crystalline lenses ex vivo. The efficacy of ALA to minimize the stiffening of
the lens was also quantified. The results showed a significant increase in Young’s modulus of the
lens due to the formation of the oxidative cataract. We found a statistically significant difference
between Young’s modulus of the lenses stored in phosphate-buffered saline and ALA solution after
incubation in H2O2 solution for 3 h (43.0 ± 9.0 kPa versus 20.7 ± 3.5 kPa, respectively). These results
show that the lens stiffness increases during oxidative cataract formation, and ALA has the potential
to reverse stiffening of the lens caused by oxidative damage.

Keywords: crystalline lens; optical coherence elastography; elasticity; alpha-lipoic acid; oxidation;
cataract; elastography

1. Introduction

A cataract is an opacity of the crystalline lens that can severely impair vision with
symptoms including blurry vision, faded colors, poor night vision, and halos around
light [1]. Cataracts are one of the most prevalent causes of vision loss, accounting for
approximately 50% of blindness worldwide [1,2]. While cataracts can have various causes,
including trauma, chemical exposure, radiation, and drug abuse, the leading reason for
cataract development is aging [1–4]. The mechanisms of age-related changes in the crys-
talline lens are not fully understood. However, oxidative stress is often considered a major
factor contributing to lens changes during aging and cataract formation [1,5–10]. The oxida-
tion of methionine residues and loss of sulfhydryl groups of proteins are both progressive
as the cataract worsens until 90% of cysteine and half the methionine residues are oxidized
in the most advanced form of cataract [10–12].

Glutathione (GSH) in the crystalline lens functions as an antioxidant for lens proteins,
and loss of nuclear GSH may be the critical event that precedes age-related cataract forma-
tion [10,13–16]. Previous studies have indicated an important hydroxyl radical scavenging
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function of GSH in lens epithelial cells to preserve the lens by offering a reductive envi-
ronment [17,18]. Therefore, antioxidants may have the potential to protect the lens from
oxidative damage and, subsequently, cataracts. Several antioxidants have been reported
to delay cataract formation in ex vivo and in vivo animal models [4,13,19]. In the past
few decades, α-lipoic acid (ALA) has emerged as an antioxidant and nutritional supple-
ment [20] that, among other benefits, has been shown to be effective in preventing the
onset and progression of cataract [21–26]. Moreover, it has recently been demonstrated
that alpha-lipoic acid has a potential therapeutic role in restoring accommodation to the
presbyopic eyes by reducing lens stiffness [15]. Previous research shows that both pres-
byopic [27–29] and cataract [30] lenses are stiffer than healthy lenses, which suggests that
monitoring the biomechanical properties of the lens can provide important information
about the mechanisms of lens aging, presbyopia, and cataract formation. Furthermore, it
has been hypothesized that progressive age-dependent hardening of the crystalline lens
may be responsible for both presbyopia and age-related cataracts [7].

Various methods have been proposed to characterize the elastic properties of the
crystalline lens [27–34]. However, the majority of these techniques are invasive and de-
structive, thus limiting their clinical applicability. Several noninvasive techniques have
been proposed to measure lens elasticity, such as Brillouin microscopy [35,36], ultrasound
elastography [37–40], and optical coherence elastography (OCE) [41–44]. The application of
OCE can measure the lenticular biomechanical properties from analysis of nanometer-scale
force-induced displacements. Dynamic OCE is based on external dynamic stimulation
and the measurement of the tissue motion using optical coherence tomography (OCT) [45].
In our previous work, we demonstrated that the biomechanical properties of the lens
could be measured in situ and quantified lenticular biomechanical properties as a function
of age and intraocular pressure using dynamic OCE [43,44,46]. Recently, we used shear
wave OCE to show the correlation between lens opacity and elasticity during cold cataract
formation in a porcine model ex vivo [47].

To simulate cataract formation, we incubated the lenses in hydrogen peroxide. It
has been shown that there is a close parallel between protein modifications found in
cataract and those generated with hydrogen peroxide [48]. In this study, we first applied
OCE to observe the elasticity of the lens during the oxidation process of the lenses. We
investigated the changes in the lens elastic properties during oxidative cataract formation
and the effect of ALA on resisting oxidation and lens hardening. We used shear wave
OCE to quantitatively evaluate the changes in surface wave velocity and Young’s modulus
during cataract formation. After measuring surface wave propagation in fresh porcine
lenses, the lenses were incubated with hydrogen peroxide (H2O2) to induce oxidative
cataracts [24]. Subsequently, the lenses were incubated in ALA to investigate their effect
on cataract development. The results show a significant increase in lens stiffness during
cataract formation and the potential of ALA to reduce the stiffening of the lens caused by
oxidative damage.

2. Materials and Methods
2.1. Experimental Set-Up

The dynamic OCE system is built based on a phase-sensitive spectral domain OCT
(SD-OCT) system, which is combined with an air-pulse excitation system. A schematic
of the experimental system is shown in Figure 1 and has been described in our previous
work [49,50]. The OCE system includes a superluminescent diode (SLD, S840-B-I-20,
Superlum Co., Cork, Ireland) with a central wavelength of 840 nm and a bandwidth of
49 nm. The acquisition speed of the camera (spL4096-140km, Basler AG, Ahrensburg,
Germany) was set as 40 kHz. The displacement stability of the system was measured as
12 nm in air. The air-pulse excitation system used an electronically controlled pneumatic
solenoid and control unit to produce a short air-pulse (≤1 ms) [50]. The pressure was
controlled by a pneumatic valve and monitored by a pressure gauge. The air-pulse was
synchronized with the SD-OCT system frame trigger.
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Figure 1. Schematic of the OCE system. (a) A micro-air pulse is co-aligned with an SD-OCT system to detect air pulse-
induced elastic waves on the surface of the excised porcine lens and (b) the sample holder.

2.2. Sample Preparation

Fifteen porcine eyes from animals within 4-6 months of age were shipped overnight
on ice (Sioux-Preme Packing Co., Sioux City, IA, USA). The lenses were extracted carefully
from the eye globes and visually inspected to ensure there was no damage. The lenses were
divided into five groups of three lenses each and incubated at 37 ◦C in different storage
media. The first group was incubated in a solution of 500 mM H2O2 in 1X phosphate
buffered saline (PBS) for 9 h. The second group was first incubated in the peroxide solution
for 3 h and then was removed and incubated in a 100 mM ALA (sodium salt) solution for
an additional 6 h (H2O2 → α-Lipoic Acid). The third group was incubated in the H2O2
solution for 3 h and then was removed and incubated in 1X PBS for 6 h (H2O2 →PBS).
The fourth group was incubated in the ALA solution for 9 h. Finally, the fifth group was
incubated in 1X PBS for 9 h. The OCE measurements of lens elasticity were repeated every
3 h for 9 h.

PBS-only group was the negative control. ALA-only group was a negative control
to investigate if ALA would cause changes in lenticular stiffness even in the presence of
no oxidative damage. The H2O2 group was the positive control, showing the direct effect
of oxidative damage on lenticular biomechanical properties. The H2O2→PBS group was
a positive control group to demonstrate that PBS cannot ameliorate or reverse oxidative
damage. The H2O2→ALA group was the primary experimental group, showing that ALA
could reduce or reverse oxidative damage induced changes to lens stiffness. We performed
preliminary experiments with 12-, 9-, 6-, and 3-hour increments and found that we could
detect elasticity changes even at 3 hour increments.

2.3. Optical Properties Measurements

The pictures of the lenses in different media were taken by a standard dissection
microscope (Stemi 508, Carl Zeiss Microscopy, LLC, Thornwood, NY, USA). For quantitative
assessments of the changes in optical transparency, the OCT images were utilized to
calculate the reciprocal of the OCT signal slope [50], referred to here as the attenuation, to
quantify the opacity of the lenses. One hundred A-lines taken from the center of the lens
were averaged for the calculation to eliminate artifacts in the calculations due to sensitivity
roll-off and de-focusing. The A-lines were averaged for each sample, and least-squares
linear fit was performed to calculate the OCT signal slope. The selected region was 112 µm
below the surface to avoid the influence of the specular reflection and the linear fit was over
1.68 mM, which was where the intensity was indistinguishable from the background noise.

2.4. Surface Wave Measurements

The extracted lenses were placed in the home-made lens holder. During OCE mea-
surements, the lenses were half-submerged in 1X PBS, and an additional 1X PBS was
topically dropped on the upper surface of the lenses every 20 s to make sure the lenses were
hydrated. The focused air-pulse was targeted at the apex of the lens. The air-pulse induced
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a low amplitude localized displacement (≤10 µm) at the surface of the lens, which then
propagated as an elastic wave. The SD-OCT system acquired successive M-mode images
(n = 251) over a ~6.1 mM line [50], where the center of the scan was at the apex of the lens.
The scan time for one position was approximately 10 ms, and the entire M-B scan time was
approximately 30 s. The lenses were placed on a hollow tube with diameter of 7.3 mM. The
raw temporal phase profiles were unwrapped, converted to displacement, and corrected
for surface motion and refractive index mismatch artifacts [51]. The displacement profiles
along the propagation path (i.e., along the curvature of the sample) were then processed by
a cross-correlation algorithm to obtain the elastic wave propagation delays [52]. In short,
the displacement profile at the excitation was used as a reference profile, and the displace-
ment profiles from successively more distant positions were then cross-correlated with the
reference profile. The peak of the subsequent cross-correlation was selected as the temporal
delay for the elastic wave propagation to that OCE measurement position. A linear fit was
then performed on the elastic wave propagation delays and their corresponding distances
(incorporating the curvature of the sample). The speed of the elastic wave was converted
to Young’s modulus, E, by the surface wave equation for incompressible material [53,54]:

E = 3ρ
( cg

0.955

)2
(1)

where ρ = 1183 kg/m3 was the lens density [55], and cg was the OCE-measured surface
wave group velocity. Before measurements, all porcine lenses were physically measured
with calipers, and there were no detectable changes in sample geometry during storage.

3. Results
3.1. Lens Transparency Analysis

Figure 2 shows images taken by a standard dissection microscope (Stemi 508, Carl
Zeiss Microscopy, LLC, Thornwood, NY, USA) of the lenses in different media. As shown
in Figure 2, the lenses incubated in PBS and the ALA solution did not show any apparent
changes in the transparency, even after 9 h. However, for the lenses incubated in the
500 mM hydrogen peroxide solution, the transparency was noticeably reduced. The most
opaque lenses were the lenses incubated with H2O2 for 9 h, as expected. The lenses that
were placed in PBS after 3 h incubation in H2O2 became more transparent at 6 h and 9 h.
Moreover, lenses incubated with the ALA solution after 3 h incubation in the H2O2 solution
became clearer after 6 h and 9 h than the lenses that were incubated in only PBS after
incubation in the hydrogen peroxide solution, suggesting that ALA may be more effective
in reversing the oxidative effects of H2O2 than PBS.

Figure 3 plots the results of quantitative analysis of the changes in optical transparency
for all of the samples. As the opacity of the lenses seen in Figure 2 increased, the scattering
in the OCT image increased, resulting in greater attenuation. Statistical testing by a one-
way ANOVA showed that the attenuation was not significant as a function of time for
the two H2O2-free groups and H2O2→PBS group (p > 0.05), but was significant for the
H2O2-only (p = 0.005) and H2O2→ALA groups (p = 0.048). These results indicate that
the H2O2→ALA media change helped the lenses recover their transparency, while the
H2O2→PBS group did not recover its transparency. This is clear from Figure 3, where there
H2O2→ALA group decreases its attenuation much more quickly than the H2O2→PBS after
the media change at 3 h. At 9 h after incubation, there was a significant different in the
attenuation of the H2O2-only (p = 0.004) and H2O2→PBS (p = 0.023) groups as compared
to the PBS-only samples, but not in the H2O2→ALA (p = 0.34) and ALA-only (p = 0.65)
groups as compared to the PBS-only samples.
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3.2. OCE Measurement of the Lenticular Biomechanical Properties

Figure 4 shows the space-time maps of two representative samples. Figure 4a was a
sample from the H2O2→PBS group, and the elastic wave group velocity was 3.68 m/s. A
space-time map of the elastic wave propagation in a sample from H2O2→ALA group is
shown in Figure 4b, where the group velocity of the elastic wave was 2.32 m/s.
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Figure 4. Space-time maps of one (a) H2O2→PBS and (b) H2O2→ALA lens at nine hours. The elastic wave propagation
velocity was (a) 3.68 m/s and (b) 2.32 m/s.

Figures 5 and 6, as well as Table 1, show the OCE-measured group velocities and
Young’s moduli estimated using Equation (1) for different storage media and times of
incubation. The elastic wave group velocity of three H2O2 groups started increasing
compared to the two other groups after 6 h of incubation. After 9 h, the elastic wave
propagated much more quickly in the H2O2-only group and H2O2→PBS groups, and
the wave speed was also greater, albeit less so, in the H2O2→ALA group as compared
to the H2O2-free groups. The elastic wave group velocity did not change much. Those
two H2O2-free groups (PBS group and ALA group) did not change their group velocities
much during the 9-hour incubation. Because the Young’s moduli were calculated from
group velocities. The major relationship among the Young’s moduli of the five groups
were similar.

Table 1. Surface wave group velocities and Young’s moduli of the lenses incubated in different storage media. The error is
the intersample standard deviation.

0 h 3 h 6 h 9 h

cg (m/s) E (kPa) cg (m/s) E (kPa) cg (m/s) E (kPa) cg (m/s) E (kPa)

H2O2 1.47 ± 0.22 7.28 ± 2.29 1.26 ± 0.06 5.21 ± 0.51 2.34 ± 0.08 18.09 ± 1.33 7.26 ± 0.90 176.62 ± 44.86

H2O2→ALA 1.25 ± 0.07 5.15 ± 0.60 1.41 ± 0.03 6.55 ± 0.25 1.62 ± 0.05 8.69 ± 0.55 2.49 ± 0.21 20.67 ± 3.51

H2O2 → PBS 1.39 ± 0.17 6.44 ± 1.61 1.49 ± 0.15 7.35 ± 1.51 2.29 ± 0.16 18.08 ± 2.87 3.61 ± 0.40 43.03 ± 8.99

ALA 1.44 ± 0.18 6.95 ± 1.80 1.34 ± 0.06 5.98 ± 0.51 1.36 ± 0.05 6.12 ± 0.44 1.51 ± 0.31 7.82 ± 3.38

PBS 1.56 ± 0.09 8.18 ± 1.06 1.28 ± 0.18 5.54 ± 1.47 1.25 ± 0.10 5.17 ± 0.78 1.37 ± 0.14 6.28 ± 1.21
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Figure 6. The OCE-estimated Young’s moduli for the lenses incubated with five different media.
The data are presented at the intersample mean ± standard deviation (N = 3 for each group). The
asterisks indicate statistical significance (p < 0.05) determined by Student’s t-test.
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The Young’s modulus of the lenses incubated only in H2O2 solution for 9 h was
significantly different from other groups (p < 0.001 by t-test). The Young’s modulus of the
lenses incubated in H2O2 and then ALA solution increased significantly from 0 h to 9 h
by one-way ANOVA test (p < 0.001). The lenses incubated in H2O2 and then PBS media
also showed an increase in Young’s modulus at 0 h and at 9 h by one-way ANOVA test
(p < 0.001). Meanwhile, Young’s moduli of the lenses that were incubated with PBS did
not change significantly by one-way ANOVA test (p = 0.10) for 9 h. In addition, there was
a statistically significant difference in Young’s modulus between the lenses stored in PBS
and ALA solutions after incubation in H2O2 solution at the final 9-hour measurement by
Student’s t-test (p = 0.04). Data for the wave velocities and Young’s moduli are summarized
in Table 1.

4. Discussion

The oxidative cataract drastically alters not only the lenticular transparency but also
biomechanical properties. OCE is well suited to investigate the changes in the crystalline
lens associated with cataract onset, progression, and potential treatment. In this study, the
surface wave velocity and Young’s modulus of the lens during oxidative cataractogenesis
were measured, and a significant increase in the stiffness of the cataract lenses was observed.
The most dramatic changes occurred between 6 and 9 h of incubation, even if the lenses
were stored in the H2O2 medium for the first 3 h only. After more than 9 h of incubation in
hydrogen peroxide, the lenses started to demonstrate some plastic behavior. The lenses
are losing their elasticity and become very stiff. Although the relationship between lens
stiffness and age is currently well known [27–31], studies on the influence of cataract
formation on lens stiffness are still limited [30,56]. Based on our previous results and this
study, both cold and oxidative cataracts cause the lens to become stiffer, and the changes in
stiffness correlate with the changes in lens opacity [47].

As shown in Figures 2 and 3, our results are in agreement with the literature, where the
protective effect of ALA has been demonstrated [21–26]. The present study shows that the
protective effect of ALA includes weakening of the stiffening caused by oxidative cataract.
The results show a statistically significant difference between Young’s modulus of the lenses
stored in PBS and ALA media after incubation in H2O2 solution for 3 h (43.03 ± 8.99 kPa
versus 20.67 ± 3.51 kPa), which is in agreement with the work [15], where the decrease
in the stiffness of the eight-month-old lenses after ALA treatment was shown in a mouse
model. However, no statistically significant difference between control groups stored only
in PBS and ALA media was observed in our results. This could be because the porcine
lenses used in our study were obtained from relatively young animals, which did not have
significant age-related changes in the biomechanical properties. Evaluating the effects of
ALA on the aging-related biomechanical properties of the lens is the next step of our work.

Figures 2 and 3 show how the optical changes of the lens started at the 3-hour point.
However, Figures 5 and 6 demonstrate that the mechanical changes of the lens started at
6 h after incubation in the media. Varma et al. applied a 2-hour interval and the reactive
oxygen species starts to make sense after 2 h [57]. Because GSH is abundant in epithelium
and the outer cortex, it needs some time to consume the inner reductant for ALA to show
effects. Interestingly, after the treatment of ALA, the optical properties recovered, but the
changes in lenticular stiffness persisted. Due to high concentration of H2O2, the changes
in opacities were observed in a very short time (3 h). However, Spector et al. show that
it took 72 h for 0.2 H2O2 mM alter the transparency of lenses [58], which was 2000 times
less concentrated than the solution used in this work. A next step of our work is to assess
the changes in attenuation and elasticity at various concentrations to more rigorously
determine the link between oxidative induced damage effects on optical transparency and
biomechanical properties of the lens.

While our measurements were made on extracted lenses, OCE could be successfully
used for the measurement of lens elasticity in situ and in vivo. The values of the surface
wave speed in this study are in agreement with our previous results obtained on both
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extracted lenses and in situ lenses, i.e., inside eye globe. To translate these values to Young’s
modulus values, we used a model of surface wave in a homogeneous elastic medium. Such
a model, however, has significant limitations. The elasticity distribution inside the lens is in-
homogeneous, and the stiffness gradient is especially pronounced in aged lenses [28,31,33].
Therefore, the measurements on the lens surface are less sensitive to the mechanical prop-
erties of the nucleus, the central part of the lens. Moreover, different models gave different
value of Young’s modulus in the previous research of some other groups. Hollman et al.
has the results of 5-10 kPa [31]; Schachar et al. has the shear modulus of 6.2 Pa [59]; which
means the Young’s modulus is about 20 Pa; and our previous result shows the Young’s
Modulus is about 10 kPa [47]. However, since the trends are also important, we need to
understand the absolute value based on our model to check the availability of our model.
To overcome such limitations and quantify elasticity distribution in the lens, we have
demonstrated the combination of dynamic OCE with Brillouin microscopy [36]. Another
limitation in the model was that the effect of viscosity was not considered, but viscosity
could play a significant role in the process of wave propagation. The measurement of the
elastic wave dispersion in the lens, not only group velocity, along with the development of
an appropriate wave propagation model that incorporates the geometry of the lens and
specific boundary conditions, is the focus of our future work.

5. Conclusions

In this work, we first applied OCE to observe the elasticity of the lens during the
oxidation process and mimic the oxidative cataract generation. Oxidative cataract was
induced in ex vivo porcine lenses, and the lenticular stiffness was assessed using elastic
wave-based OCE. The cataract lenses demonstrated a significant increase in stiffness
and opaqueness. The results show that there is a relationship between the stiffness and
transparency of the lenses, and α-lipoic acid may potentially preserve both stiffness and
transparency of the lenses. Future work includes evaluating the effectiveness of α-lipoic
acid in vivo using OCE.
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